
SLAC-PUB-2198 ’
September 1978
(1)

h

THE’ LASS HARKXW?E FRCXXSSCR*

Paul F. Kunz, Richard N. Fall, Michael F. Gravina

Stanford Linear Accelerator Center
Stanford University,

The

ABS’lRACT

The problems of data analysis with hardware
processors are reviewed and a description is given
for a programmable processor. ‘Ihis processor, the
168/E, has been designed for use in the IASS mul-
ti-processor system; it has an execution speed
comparable to that of the IBM 370/168 and uses the
subset of IBM 370 instructions appropriate to the
LASS analysis task.

1. INTRODUCTION.

In the interest of performing systematic stu-
dies in high energy nuclear physics, several large
spectrometers have been constructed at CEXN, BNL,
and SLAC [l]. ‘i’hese spectrometers are capable of
taking data at such a rate that the amount of com-
puting time required for the data analysis is
becoming a major problem. At SIAC, for example,
the Large Aperture Solenoid Spectrometer (LASS)
has the capability of recording events on magnetic
tape at an average rate of an event every 10
milliseconds [2]. However, the mean time required
for processing an event at the SLX computer cen-
ter is of the order of 100 milliseconds.** The
goal of the LASS processor project is to process
the events so as to cut down significantly the
amount of computer time required to support a LASS
experiment. With the advent of large detectors
and relatively inexpensive read-out electronics,
the problem of computer support for the data anal-
ysis in LASS is fast becoming a familiar one faced
by many experimenters in high energy nuclear phys-
ics [3].

Section 2 of this paper discusses the criteria
imposed on hardware processing in general tiile
section 3 reviews the components available for
implanentation. Section 4 describes the

Stanford, California, 94305, U.S.A.

and

Hanoch Brafman

Wiezmann Institute
Rehovot, Israel

***T;E gjp rted by the U.S. Department of Ener y. underestimated in hardware
computer center consists of a trip ex 4

An aspect frequent1
processing projects L

system with tw IBM 370/168’s and one IBM 360/91.
the programming time.

Since the intention is to duplicate in hardware a

. programmable processor designed for use with tASS.
Finally, section 5 is a summary.

2. CRITERIA.

In order to specify the criteria for the LASS
hardware processor, a study was made of the data
analyis task. It was quickly realized that the
inherent structure of the task lent itself natur-
ally to a multi-processor system since the overall
task can be broken down into distinct sub-tasks
such as unpacking the raw data, finding space
points, finding line segments, etc. These sub-
tasks generally try all ccimbinations of a pair of
coordinates in tm planes and search for a match
with coordinates in the remaining planes. *is
search leads to a nested loop structure of the
sub-tasks which accounts for the considerable
amount of ccmputer time required for execution.

The question remained, however, as to what set
of criteria one should use in selecting the indi-
vidual processors. ‘Ihe criteria used for LASS,
outlined in the following sections, are similar to
those one might use in other projects whether they
be single or multi-processor systems.

2.1 SPEED OF EXECUI’ION. --

The effective execution speed of the overall
system must be about an order of magnitude faster
than a large scale computer such as SIAC’s IBM
370/168. Such speeds are difficult to achieve
since the 370/168 has a cycle time of 80 nanose-
conds and can do a memory to register ADD in 4
cycles.

2.2 SPEED OF FWXXQWING. -- c

(To be presented at the 11th Annual Microprogramming Workshop, Asilomar, Pacific Grove, CA., November 19-22, 1978)

-2- ,

ccmplex algoritbn which normally requires a
considerable effort in software on a large compu-

- ter, the means by which one will understand,
wr itb, deb$f, and support the program in a hard-
ware processor is an important consideration.

2.3 FLEXIBILITY.

Progran algoritbns frequently change as one
gains experience, encounters unforeseen problems,
or changes the focus of the experiment in light of
preliminary data. The programs may also change as
new or modified detectors are brought into the
apparatus, or different experiments are run on the
same apparatus. It is important therefore that a
processor’s program can be easily modified.

2.4 RELIABILITY.

‘Ihe processors and the system in which they are
contained should be as simple as possible in order
to achieve a high degree of reliability. A modu-
lar system would allow easy replacement of faulty
modules or the introduction of upgraded ones. l’he
modules should be made of ccmponents which can be
replaced, if faulty, by parts readily available
from stock.

2.5 SPEED OF FABRICATION. --

‘Ihe fabrication time, which includes the time
it takes to design, build and debug the processing
system, must take into account the talents of the
people involved in the project. To be practical
one should make maximum use of technologies which
are already well known.

2.6 COST AND SIZE. ---

‘Ihe cost and size are important criteria if one
is going to have many parallel processors.

2.1 CCMPATIBILITY.

Cne would like to have a system which has maxi-
mun ccmpatibility with existing equipment includ-
ing the format in which the data is presented by
the detectors and the physical configuration of
the apparatus.

extremely fast processor. For exrmnple, one can do
the calculation

XP = A X(i) + B Y(j)

in the time it takes to do one multiplication and
one addition by building two parallel multipliers
and separate memory banks for X and Y. Further-
more, 16 by 16 bit multiplication time can be
reduced to under 200 nanoseconds by using special-
ized integrated circuits. ‘Ihis approach has been
made considerably easier in recent years with the
availability of MS1 and LSI integrated circuits.
But since the program is effectively contained in
the point-to-point wiring, it suffers from certain
severe disadvantages. For example, the writing of
a program takes a considerable logic design effort
and the debugging or changing of the program usu-

‘ally involves rewiring sections of the circuit.
Consequently, these processors take a long time to
build and debug. Flexibility is limited when the
algorithm one would like to use has been simpli-
fied in order to be implemented in hardware and
only a limited range of program changes are
allowed without a major reworking of the cir-
cui try. Also, reliability is impaired by the fact
that the circuits are one of a kind and hence can-
not be easily replaced and must be repaired by an
expert when faulty. Cost and size of such proces-
sors may be reasonable but frequently they are not
compatible with existing equipment. For the above
reasons it was decided that hardwired processors
were undesirable for a large spectrometer facility
such as LASS.

Ihe required fast effective execution speed can
also be achieved by an array of programmable pro-
cessors. There are many inexpensive programmable
processors commercially available today which one
might consider as elements in a multi-processor
system. Since in recent years the cost of mini-
computers has dropped considerably and their speed
has increased (one might also consider their use
in such a system.

In order to compare various processors, a study
was made on the execution time of a simple DO-LOOP
which frequently occurs in the data analysis task
as the innermost LO-LOOP of many of the sub-tasks.
Cur studies show that for a spacepoint or line-
finding subroutine, the repeated execution of this
W-LOOP can account for about half of the total
execution time. The execution time for this DO-
LOOP gives us a rough idea of the execution speed
of various processors without running benctrnark
programs.

3. REVIEW OF AVAILABLE CCMPO~NEMTS. --

A frequently used approach to hardware process-
ing is to build hardwired boxes with point-to-
point logic.* It allows one to design an

* For an excellent review with a large bibliogrb
my see C. Verkerk, “Special Purpose Processors”,
Proc. 1974 CEXN School of Computing, G&ysund,
Norway, August 1974.

I

-3-

lhe equivalent FCRlRAN statements for the Do-
_ LOOP studied are:

-
W 100 I=l,N
IF (X(1) .LT. XP) GO TO 200

100 CONTINUE
.
.
.

200 CONTINUE

In machine code the W-LOOP consists of only four
operations:

1) a CCMPAHE of a measured coordinate
with a predicted coordinate in
memory;

2) a BRANCH if the compare was low;

3) a DECrement of the coordinate index
and;

4) a BRANCH to the top of the loop if
one has not exhausted the coordinate
list.

Table I shows the execution time of this simple

Manufacgtuzf

Program Code

CCMpare Xi and Xp 16.0 us
BRANCH LOW 5.0
DECrement i 2.5
BRANCH Greater 5.0

Total Time 28.5

Relative Cost

loop for various programmable processors. For
each processor except the right-most two, the code
was optimized in assembly language with 16 bit
integer data. ‘Ihe approximate cost of each pro-
cessor, relative to the Intel 8080, is also given.

‘Ibe two popular MC6 micro-processors suffer in
this comparison because of their B-bit word size,
thus the LSI-11 has a clear advantage over them.
The execution time of a typical mini-computer is
represented by the PDP-11/40 while that of an
advanced mini-computer with MCS memory by the
PDP-U/45. ‘Ihe PDP-11’s are both micro-programmed
processors, so they also represent roughly the
kind of performance one could achieve by designing
a mini-computer with an IS1 bipolar micro-proces-
sor slice such as the 2901 series. The execution
time on an IBM 370/168 is shown for comparison.
One should bear in mind that to meet the real-time
data rate of IASS one needs a system which is an

* order of magnitude faster than the 370/168. ‘lhus
in a system of parallel processors one would need
10 370/168’s, 30 PDP-11/45’s, 70 PDP-11/40’s, 160
LSI-11’s or 280 Intel 8080’s. None of these
options is within our budget and even if it here
it is deemed extremely difficult to organize the
interconnection of so many processors into a work-
able system.

TABLE 1.
C@lPARISCN OF PHa%AMMAB LE FR~ESCRS

Intel
8080

I
“%Fa

I LEll

1

16.0 us
4.0

4.0

1
4.0

28.0

1

4.9 us
3.5

4.2
3.5

16.1

1.2

I
2.5 us 0.9 us
1.4 0.5
1.0 0.5
1.8 0.9

6.7 2.8

10 30

370%8

0.32 us 0.45 us
0.24 0.15
0.08 0.15
0.36 0.15

1.00

3000 2

SAC
168/E

0.90

Another aspect of this ccmparison of processors
is the difference in their instruction set. For .
example, the 6800 matches the performance of the
8080, in spite of its longer cycle time, because
it requires only 7 instructions, rather than 9,
for the DC-LOOP. ‘lhe LSI-11, PDP-11’s and IBM 370
require only 4 instructions. In general, an aver-
age programmer can produce faster and more effi-
cient code with a processor that has a more flexi-
ble instruction set. ‘Ihe IBM 370/168 has a
certain advantage of the processors considered,
having 16 working registers which can be used
either as accumulators or index registers.

None of the available inexpensive processors
are fast enough nor do they have a sufficiently
powerful instruction set. Consequently a program-
mable processor has been designed which would meet

our needs. ‘Ihe remainder of this paper discusses
the features of this processor.

4. THE LASS PR- LE PR~ESSCR: --
168/E

‘Ihe LASS hardware processors have been designed
so that they are very fast, easily programmed, and
relatively low in cost. Each processor has the
execution speed comparable to an IBM 370/168 and,
in order to minimize the programming task, the
processors have been designed to efficiently emu-
late a subset of the 370 machine instructions.

-4-

4.1 FRaxssal -ARE.

The processors, which have been given the name
168/E, are divided into four parts: a program
memory 24 bits wide, a data manory 32 bits wide,
an integer processing unit, and a floating-point
processing unit. lhe separation of program and
data memories, which allows simultaneous access to
them, is an important feature for the speed of
execution. Figure 1 shows a block diagram of the
processing unit, and the following paragraphs dis-
cuss its various features.

The integer processing unit is contained on one
circuit board. Its basic sections are the micro-
processor slice array with its associated control
logic, the branch control logic, and the data
memory control logic. The most significant bits I
of the program memory (the control field) deter-
mine the control section within the integer pro-
cessing unit which will execute the instruction,
with date for the instruction in the renaining
bits (the data field).

PROGRAM
16 MEMORY

BUS

24 BIT MEMORY

DATA
?v$TORY *‘I6 .‘32

MSHW LSHW

MULTIPLEXOR

ACORESS

32 BIT MEMORY

Figure 1 : Block diagram of the 168/E

16

The heart of the processing unit is an array of
8 bipolar LSI micro-processor B-bit slices, the
2901A. As shown in figure 2, it comprises an 8
function Aritbnetic Iogic Unit; 16 adressable
registers with dual port readout; an auxiliary
register Q which is used for double precision
shifts and multiplication; and a shifting network
at the register file input ports. In addition
there are status out uts to indicate CARRY or
OVERFLOW conditions an 8 ZERO or NEGATIVE results.

lhe micro-processor slices require 18 bits of
information to execute an instruction: 3 bits to
define the source operands, 3 bits to define the
function, 1 for the CARRY input, 3 bits to define
the destination, and 4 bits each to define the two
read addresses of the register file. A register
is used between the program memory and the micro-
processor slices so that the instruction fetch
cycle can be

IF
ipelined. lhe simultaneous fetch

and execution eature of this processor is another

-5-

of the reasons for its high execution speed.

External-to the slice array is a 15 bit binary
program counter. Normally, the processor clock
steps the processor sequentially through the pro-
gram memory. An unconditional BRANCH instruction
is executed by a parallel load to the counter from
the data field of the program memory or the data
output of the slices.

A ADDR
(READ)

B ADDR
(READ/WRI

CLOCK

The status bits from the slice are not bit for
bit the same as the 370/168 condition code bits,
but with a few logic gates the 2901A status bits
can be changed to match those of the 370/168
exactly. ‘these modified status bits can then be
loaded into the condition code register in the
integer processor. A conditional BRANCH instruc-
tion is executed by placing the counter in the
parallel load mode if the status bits of the slice
match those in the current processor instruction.

“AM+, rRA% -

I

Ul
SHIFTER

Q-REGISTER

DIRECT
DATA

INPUT

MULTIPLEXER MULTIPLEXER

CARRY
IN &FUNCTION ALU

_-

I’

OUTPUT
ENABLE

I I

MULTIPLEXER
I I

i

DATA OUT FLAGS

‘ihe progrmns for these processors can almost
always be written is such a way that the BRWCH
addresses are known at load time, and this address
can be in the program memory data field data.
TnUS, most BRANCH instructions can be executed in
one machine cycle.

A hardware multiplication and division algo-
rithm has been implemented in the 168/E proces-
sors. It is done by momentarily stopping the pro-
gram counter clock while cycling the slices
through conditional ADD and SHIFT instructions.

Figure 2 :
Block diagram of the 2901A

CARRY - OUT, OVERFLOW
ZERO, NEGATIVE, c, P

In order to allow for efficient indexing of the
data memory, the data memory address is formed by
an ADD of bits from the data field of the program
memory and from the outputs of the slices. Data
may be written to the memory from the slices and
similarly data may be presented to the direct
inputs of the slices from the data memory or from
the program memory.

All of the 168/E instruction that manipulate
floating-point quantities are executed by the
floating-point processing unit (not shown in

figure 1). This unit comprises a two-port
_ register file, an ALU, a control unit, and a hard-

ware shifting-etwork.

*en a floating-point instruction is encoun-
tered by the 168/E, the clock to the integer pro-
cessor is stopped, and the floating-point proces-
sor is allowed to execute the instruction. If the
instruction is one that calls for a setting of the
condition codes, the appropriate information from
the floating-point processor is strobed into the
condition code register in the integer processing
unit. If the floating-point instruction requires
multiple clock cycles, the floating-point control
unit stops the clock to the integer processor for
as long as is necessary. In the case of floating-
point instructions that require data memory
accesses, the data memory address is generated by
the integer processing unit, and the data is
strobed into a working register in the floating-
point processor.

The floating-point processor can manipulate
quantities in either 32 or 48 bit precision. The
32 bit precision yields results identical to the
single precision of the 370/168, while the 48 bit
length is a psuedo-double precision that has been
found to be sufficient for most calculations done
in LASS experiments. lhe precision of the float-
ing-point unit could have been extended by widen-
ing the data paths on the floating-point process-
ing unit, but since the interconnection complexity
grows rapidly above 48 bits, a compromise between
cost and precision was made. ‘Ihis 48 bit preci-
sion mode is the only place where the 168/E does
not match the 370/168 in the results it produces.

Since the floating-point processing unit is
constructed separately from the integer processing
unit, its inclusion in a users 168/E processor is
optional.

4.2 PRCXXSSCR SOFTWARE.

Important aspects of the processor’s structure
will becane apparent by comparison of the program
code generated to perform the K%OOP described
above. Table II shows the DO-LOOP implemented on
the IBM 370/168 and the 168/E processor. ‘Ihe
first instruction on the 370/168, cf. Table II,
is a COMPARE between the contents of a memory
location and register 0. The memory address is
formed by the sun of register 9 (the index regis-
ter) , register 10 (the base register), and 12 bits
from the instruction (the displacement ED). The
168/E performs the same operation in three micro-
instruction cycles. In the first cycle, the
slices execute an instruction which places the sun
of registers 9 and 10 at its output. In the sec-
ond, the displacement from the data field of the
program menory is added to the outputs of the
slices and loaded to the memory address register.

’ In the same cycle, the memory is switched to the
read mode and the data is strobed into a working
register of the floating-point unit. In the third
cycle, the comparison is made in the floating-
point unit between
register.

register 0 and the working
If the instruction had been an integer

compare instead of a floating-point ccmpare, then
the integer processor would have operated on the
data memory contents. As shown in Table II, the
remaining three instructions on the 370/168 can be
implemented in one cycle each on the 168/E, using
the integer CPU only. Thus one sees that the
structure of the IASS processor allows it to efnu-
late the IBM 370 efficiently. Emulation is possi-
ble because both the 370/168 and the 168/E have
the same nunber of working registers, can perform
the same arithmetic and logic operations, and have
the same form of data menory addressing and
branching.

TABLE II.

Canparison of Program Code Generated for 370/168 and 168/E

Fmgram Step Code for 370/168

CCNpare Xi and Xp LOOP CE O,ED(9,10)

Action of code for 168/E

Slice: Reg. 9 + Reg. 10 -> Slice-out
t$zrp: ED + Slice-out -> MAR, and.

. . : Data Memory -> Working Register

BRANCH-

DECrement i

BRANCH Greater

BLaYrE Branch: If less than 0, GOTE -> P.C.

SR 9,l Slice: Reg. 9 - Reg. 1 -> Reg, 9, and
Cord. Code -> C.C. Register

BNIIxlP Branch: If greater than 0, LOOP -> P.C.

A translator has been written which takes important aspect of this process is the splitting
object code produced by the IBM Fortran H

“p
timiz- of program instructions and local data constants

ing Compiler, and converts it to relocatab e pro-
gram and data modules in 168/E format. An

and variables into separate areas, ready for load-
ing into the 168/E’s separate program and data

memories. When possible, advantage is taken of
the 168/E’s direct program memory addressing
scheme by changing IBM BRANCH instructions from
their dispI%cenent plus base-register addressing
format to absolute 168/E program memory address-
ing. Execution time saved by direct addressing
applies also to the first BK Bytes of local con-
stants and variables in data memory, where fixed
base registers may be dispensed with entirely.

After translation a linker program is used. It
functions exactly like the IBM Linkage Editor, in
taking all the 168/E object modules needed to corn-
pose one complete load module, and linking them
together. Address constants and direct addresses
are filled in or adjusted at this time. By means
of control statements, the user may if he wishes
position common-blocks, local data constants, and
program code in specific locations, according to a
predefined plan.

Not all of the 370 instruction set can be emu-
lated by the 168/E, but all those instructions
needed for track reconstruction have been emu-
lated. In fact, the IBM FCRTRAN compiler requires
about the same subset of 370 instructions as those
implemented in the 168/E. Those instructions not
implemented deal with decimal arithmetic, charac-
ter manipulation, system interrupt, and I/O. By
not implementing all the instructions of the 370
one has reduced the cost and complexity of this
processor while increasing its speed. The goal of
this project is to build fast programmable proces-
sors for physics applications and not to build a
general purpose computer with the entire instruc-
tion set of the IBM 370.

4.3 WHY EMULATE? --

Cne could have built a processor with its own
unique instruction set, tailored to ones needs.
Instead, the 168/E is based on the architecture of
the 370 for several important reasons. First of
all, the writing and debugging of programs for the
168/E can be done on the 370/168 at the SLAC com-
puter center. Once a program is running on real
or simulated data, it is easily translated to the
instruction set of the 168/E. Secondly, program-
mers who are famililar with the 370 do not require
any special understanding of the 168/E processor
in order to produce fast and efficient code. Even
the experimenters can write programs for the 168/E
because of its FCNRAN capability. In addition,
the programs do not need to be debugged on a hard-
ware box with limited I/O capabilities.

4.4 SPEED AND CCST ---

Emulation of the 370 has greatly reduced the
burden of programming the LASS processors. The
question remaining, however, is how much emulation
of the 370 has cost us in execution speed and the
dollar cost of the processors. The cycle time of
the 168/E is 150 nanosecorxls, which is slower than

the 370/168, but, as Table I shows, the executing
time of the 168/E is actually competitive with the
370/168. Fast execution of the 168/E for LO-LOOP
shown ccmes mainly from the fact that BFUUCH
instructions can be done in one cycle. The
370/168 operates in a multi-programming environ-
ment so that it spends many cycles calculating the
absolute address of the BRAXCH. The basic LO-LOOP
of Table I is biased in favor of the 168/E because
of the two BRANCH instructions. A better canpari-
son was made with complete programs. Programs
were written on the 370/168 using FCRlRAN H OPT=2
Compiler. With real data the execution time for
the program on the 168/E is no wtzse than a factor
of 2 slower.

-7-

lvbst of the cost of the 168/E is in the program
and data memories for the processor. The cost of
16K bytes of data mmory is about $1000, while 8K
bytes (equivalent) of program menory cost around

‘$750 at current memory prices. The integer and
floating-pint processor cost about $500 and
$1000, respectively. These prices include ccmpo-
nents, circuit boards, and power supplies, but
exclude labor for assembly. Thus a complete 168/E
with both processors, 96K bytes of data memory,
and 32K bytes (equivalent) of program menory
(rollghly the largest amount needed for LASS exper-
iments) would cost about $10,000. The important
point is that the speed-cost ratio of the 168/E is
sufficiently high that a multi-processor system
that meets the needs of LASS is economically fess-
ible.

5. SLMMARY.

‘Ihe computer support for the data analysis in a
high data rate physics experiment is becoming a
familiar problem. ‘lhe fact that the analysis task
can be broken down into many simple sub-tasks has
led many experimenters to thinking about using
hardware processors. The processors should have,
however, both high execution speed and programma-
bility. Bardwired processors can be extremely
fast but take a considerable effort to design and
maintain. Commercially available programmable
processors are either too slow or too costly to
meet our needs, even in a multi-processor system.

‘lhe hardware processing system in LASS will be
based on an array of fast programmable processors.
Each processor has an execution speed comparable
to an IBM 370/168 and emulates a subset of the 370
machine instructions. The programs for the pro-
cessors can thus be written and debugged on an IBM
370 before translation and loading to the hardware
processors. The task of programming the proces-
sors appears to be no more difficult than that of
programming a large computer since programs can be
written in FORTRAN. Only a small number of pro?
cessors are needed to meet the goal of executing
at speeds an order of magnitude greater than a
large computer such as the IBM 370/168.

Acknowledgements

We muld like to thank D.W.G.S. lceith for his
- support and encouragement.

BIBLIOSRRPHY

1) Michelini, A., Int'l. Conf. on Instrmenta-
tion for * her -- g$%+iG, Frascati,

Italy, May 1973.

2) Armstrong, G., et. al., IEEE Trans. Nucl. Sci.
NS-20, NO. 1, Februarym3.7 - - * --

3) Dhawan, S., et. al., Report of the NIM/CAMPIJ
Committee on Data Rate RecrGnts for

November 1975 - Physics Jq$%i~ons,
(unpublished).

