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The problems of data analysis with hardware 
processors are reviewed and a description is given 
for a programmable processor. ‘Ihis processor, the 
168/E, has been designed for use in the IASS mul- 
ti-processor system; it has an execution speed 
comparable to that of the IBM 370/168 and uses the 
subset of IBM 370 instructions appropriate to the 
LASS analysis task. 

1. INTRODUCTION. 

In the interest of performing systematic stu- 
dies in high energy nuclear physics, several large 
spectrometers have been constructed at CEXN, BNL, 
and SLAC [l]. ‘i’hese spectrometers are capable of 
taking data at such a rate that the amount of com- 
puting time required for the data analysis is 
becoming a major problem. At SIAC, for example, 
the Large Aperture Solenoid Spectrometer (LASS) 
has the capability of recording events on magnetic 
tape at an average rate of an event every 10 
milliseconds [2]. However, the mean time required 
for processing an event at the SLX computer cen- 
ter is of the order of 100 milliseconds.** The 
goal of the LASS processor project is to process 
the events so as to cut down significantly the 
amount of computer time required to support a LASS 
experiment. With the advent of large detectors 
and relatively inexpensive read-out electronics, 
the problem of computer support for the data anal- 
ysis in LASS is fast becoming a familiar one faced 
by many experimenters in high energy nuclear phys- 
ics [3]. 

Section 2 of this paper discusses the criteria 
imposed on hardware processing in general tiile 
section 3 reviews the components available for 
implanentation. Section 4 describes the 
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system with tw IBM 370/168’s and one IBM 360/91. 
the programming time. 

Since the intention is to duplicate in hardware a 

. programmable processor designed for use with tASS. 
Finally, section 5 is a summary. 

2. CRITERIA. 

In order to specify the criteria for the LASS 
hardware processor, a study was made of the data 
analyis task. It was quickly realized that the 
inherent structure of the task lent itself natur- 
ally to a multi-processor system since the overall 
task can be broken down into distinct sub-tasks 
such as unpacking the raw data, finding space 
points, finding line segments, etc. These sub- 
tasks generally try all ccimbinations of a pair of 
coordinates in tm planes and search for a match 
with coordinates in the remaining planes. *is 
search leads to a nested loop structure of the 
sub-tasks which accounts for the considerable 
amount of ccmputer time required for execution. 

The question remained, however, as to what set 
of criteria one should use in selecting the indi- 
vidual processors. ‘Ihe criteria used for LASS, 
outlined in the following sections, are similar to 
those one might use in other projects whether they 
be single or multi-processor systems. 

2.1 SPEED OF EXECUI’ION. -- 

The effective execution speed of the overall 
system must be about an order of magnitude faster 
than a large scale computer such as SIAC’s IBM 
370/168. Such speeds are difficult to achieve 
since the 370/168 has a cycle time of 80 nanose- 
conds and can do a memory to register ADD in 4 
cycles. 

2.2 SPEED OF FWXXQWING. -- c 
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ccmplex algoritbn which normally requires a 
considerable effort in software on a large compu- 

- ter, the means by which one will understand, 
wr itb, deb$f, and support the program in a hard- 
ware processor is an important consideration. 

2.3 FLEXIBILITY. 

Progran algoritbns frequently change as one 
gains experience, encounters unforeseen problems, 
or changes the focus of the experiment in light of 
preliminary data. The programs may also change as 
new or modified detectors are brought into the 
apparatus, or different experiments are run on the 
same apparatus. It is important therefore that a 
processor’s program can be easily modified. 

2.4 RELIABILITY. 

‘Ihe processors and the system in which they are 
contained should be as simple as possible in order 
to achieve a high degree of reliability. A modu- 
lar system would allow easy replacement of faulty 
modules or the introduction of upgraded ones. l’he 
modules should be made of ccmponents which can be 
replaced, if faulty, by parts readily available 
from stock. 

2.5 SPEED OF FABRICATION. -- 

‘Ihe fabrication time, which includes the time 
it takes to design, build and debug the processing 
system, must take into account the talents of the 
people involved in the project. To be practical 
one should make maximum use of technologies which 
are already well known. 

2.6 COST AND SIZE. --- 

‘Ihe cost and size are important criteria if one 
is going to have many parallel processors. 

2.1 CCMPATIBILITY. 

Cne would like to have a system which has maxi- 
mun ccmpatibility with existing equipment includ- 
ing the format in which the data is presented by 
the detectors and the physical configuration of 
the apparatus. 

extremely fast processor. For exrmnple, one can do 
the calculation 

XP = A X(i) + B Y(j) 

in the time it takes to do one multiplication and 
one addition by building two parallel multipliers 
and separate memory banks for X and Y. Further- 
more, 16 by 16 bit multiplication time can be 
reduced to under 200 nanoseconds by using special- 
ized integrated circuits. ‘Ihis approach has been 
made considerably easier in recent years with the 
availability of MS1 and LSI integrated circuits. 
But since the program is effectively contained in 
the point-to-point wiring, it suffers from certain 
severe disadvantages. For example, the writing of 
a program takes a considerable logic design effort 
and the debugging or changing of the program usu- 

‘ally involves rewiring sections of the circuit. 
Consequently, these processors take a long time to 
build and debug. Flexibility is limited when the 
algorithm one would like to use has been simpli- 
fied in order to be implemented in hardware and 
only a limited range of program changes are 
allowed without a major reworking of the cir- 
cui try. Also, reliability is impaired by the fact 
that the circuits are one of a kind and hence can- 
not be easily replaced and must be repaired by an 
expert when faulty. Cost and size of such proces- 
sors may be reasonable but frequently they are not 
compatible with existing equipment. For the above 
reasons it was decided that hardwired processors 
were undesirable for a large spectrometer facility 
such as LASS. 

Ihe required fast effective execution speed can 
also be achieved by an array of programmable pro- 
cessors. There are many inexpensive programmable 
processors commercially available today which one 
might consider as elements in a multi-processor 
system. Since in recent years the cost of mini- 
computers has dropped considerably and their speed 
has increased ( one might also consider their use 
in such a system. 

In order to compare various processors, a study 
was made on the execution time of a simple DO-LOOP 
which frequently occurs in the data analysis task 
as the innermost LO-LOOP of many of the sub-tasks. 
Cur studies show that for a spacepoint or line- 
finding subroutine, the repeated execution of this 
W-LOOP can account for about half of the total 
execution time. The execution time for this DO- 
LOOP gives us a rough idea of the execution speed 
of various processors without running benctrnark 
programs. 

3. REVIEW OF AVAILABLE CCMPO~NEMTS. -- 

A frequently used approach to hardware process- 
ing is to build hardwired boxes with point-to- 
point logic.* It allows one to design an 

* For an excellent review with a large bibliogrb 
my see C. Verkerk, “Special Purpose Processors”, 
Proc. 1974 CEXN School of Computing, G&ysund, 
Norway, August 1974. 
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lhe equivalent FCRlRAN statements for the Do- 
_ LOOP studied are: 

- 
W 100 I=l,N 
IF (X(1) .LT. XP) GO TO 200 

100 CONTINUE 
. 
. 
. 

200 CONTINUE 

In machine code the W-LOOP consists of only four 
operations: 

1) a CCMPAHE of a measured coordinate 
with a predicted coordinate in 
memory; 

2) a BRANCH if the compare was low; 

3) a DECrement of the coordinate index 
and; 

4) a BRANCH to the top of the loop if 
one has not exhausted the coordinate 
list. 

Table I shows the execution time of this simple 

Manufacgtuzf 

Program Code 

CCMpare Xi and Xp 16.0 us 
BRANCH LOW 5.0 
DECrement i 2.5 
BRANCH Greater 5.0 

Total Time 28.5 

Relative Cost 

loop for various programmable processors. For 
each processor except the right-most two, the code 
was optimized in assembly language with 16 bit 
integer data. ‘Ihe approximate cost of each pro- 
cessor, relative to the Intel 8080, is also given. 

‘Ibe two popular MC6 micro-processors suffer in 
this comparison because of their B-bit word size, 
thus the LSI-11 has a clear advantage over them. 
The execution time of a typical mini-computer is 
represented by the PDP-11/40 while that of an 
advanced mini-computer with MCS memory by the 
PDP-U/45. ‘Ihe PDP-11’s are both micro-programmed 
processors, so they also represent roughly the 
kind of performance one could achieve by designing 
a mini-computer with an IS1 bipolar micro-proces- 
sor slice such as the 2901 series. The execution 
time on an IBM 370/168 is shown for comparison. 
One should bear in mind that to meet the real-time 
data rate of IASS one needs a system which is an 

* order of magnitude faster than the 370/168. ‘lhus 
in a system of parallel processors one would need 
10 370/168’s, 30 PDP-11/45’s, 70 PDP-11/40’s, 160 
LSI-11’s or 280 Intel 8080’s. None of these 
options is within our budget and even if it here 
it is deemed extremely difficult to organize the 
interconnection of so many processors into a work- 
able system. 

TABLE 1. 
C@lPARISCN OF PHa%AMMAB LE FR~ESCRS 

Intel 
8080 

I 
“%Fa 

I LEll 

1 

16.0 us 
4.0 

4.0 

1 
4.0 

28.0 

1 

4.9 us 
3.5 

4.2 
3.5 

16.1 

1.2 

I 
2.5 us 0.9 us 
1.4 0.5 
1.0 0.5 
1.8 0.9 

6.7 2.8 

10 30 

370%8 

0.32 us 0.45 us 
0.24 0.15 
0.08 0.15 
0.36 0.15 

1.00 

3000 2 

SAC 
168/E 

0.90 

Another aspect of this ccmparison of processors 
is the difference in their instruction set. For . 
example, the 6800 matches the performance of the 
8080, in spite of its longer cycle time, because 
it requires only 7 instructions, rather than 9, 
for the DC-LOOP. ‘lhe LSI-11, PDP-11’s and IBM 370 
require only 4 instructions. In general, an aver- 
age programmer can produce faster and more effi- 
cient code with a processor that has a more flexi- 
ble instruction set. ‘Ihe IBM 370/168 has a 
certain advantage of the processors considered, 
having 16 working registers which can be used 
either as accumulators or index registers. 

None of the available inexpensive processors 
are fast enough nor do they have a sufficiently 
powerful instruction set. Consequently a program- 
mable processor has been designed which would meet 

our needs. ‘Ihe remainder of this paper discusses 
the features of this processor. 

4. THE LASS PR- LE PR~ESSCR: -- 
168/E 

‘Ihe LASS hardware processors have been designed 
so that they are very fast, easily programmed, and 
relatively low in cost. Each processor has the 
execution speed comparable to an IBM 370/168 and, 
in order to minimize the programming task, the 
processors have been designed to efficiently emu- 
late a subset of the 370 machine instructions. 
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4.1 FRaxssal -ARE. 

The processors, which have been given the name 
168/E, are divided into four parts: a program 
memory 24 bits wide, a data manory 32 bits wide, 
an integer processing unit, and a floating-point 
processing unit. lhe separation of program and 
data memories, which allows simultaneous access to 
them, is an important feature for the speed of 
execution. Figure 1 shows a block diagram of the 
processing unit, and the following paragraphs dis- 
cuss its various features. 

The integer processing unit is contained on one 
circuit board. Its basic sections are the micro- 
processor slice array with its associated control 
logic, the branch control logic, and the data 
memory control logic. The most significant bits I 
of the program memory (the control field) deter- 
mine the control section within the integer pro- 
cessing unit which will execute the instruction, 
with date for the instruction in the renaining 
bits (the data field). 

PROGRAM 
16 MEMORY 

BUS 

24 BIT MEMORY 

DATA 
?v$TORY *‘I6 .‘32 

MSHW LSHW 

MULTIPLEXOR 

ACORESS 

32 BIT MEMORY 

Figure 1 : Block diagram of the 168/E 

16 

The heart of the processing unit is an array of 
8 bipolar LSI micro-processor B-bit slices, the 
2901A. As shown in figure 2, it comprises an 8 
function Aritbnetic Iogic Unit; 16 adressable 
registers with dual port readout; an auxiliary 
register Q which is used for double precision 
shifts and multiplication; and a shifting network 
at the register file input ports. In addition 
there are status out uts to indicate CARRY or 
OVERFLOW conditions an 8 ZERO or NEGATIVE results. 

lhe micro-processor slices require 18 bits of 
information to execute an instruction: 3 bits to 
define the source operands, 3 bits to define the 
function, 1 for the CARRY input, 3 bits to define 
the destination, and 4 bits each to define the two 
read addresses of the register file. A register 
is used between the program memory and the micro- 
processor slices so that the instruction fetch 
cycle can be 

IF 
ipelined. lhe simultaneous fetch 

and execution eature of this processor is another 
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of the reasons for its high execution speed. 

External-to the slice array is a 15 bit binary 
program counter. Normally, the processor clock 
steps the processor sequentially through the pro- 
gram memory. An unconditional BRANCH instruction 
is executed by a parallel load to the counter from 
the data field of the program memory or the data 
output of the slices. 

A ADDR 
(READ) 

B ADDR 
(READ/WRI 

CLOCK 

The status bits from the slice are not bit for 
bit the same as the 370/168 condition code bits, 
but with a few logic gates the 2901A status bits 
can be changed to match those of the 370/168 
exactly. ‘these modified status bits can then be 
loaded into the condition code register in the 
integer processor. A conditional BRANCH instruc- 
tion is executed by placing the counter in the 
parallel load mode if the status bits of the slice 
match those in the current processor instruction. 

“AM+, rRA% - 

I 

Ul 
SHIFTER 

Q-REGISTER 

DIRECT 
DATA 

INPUT 

MULTIPLEXER MULTIPLEXER 

CARRY 
IN &FUNCTION ALU 

_- 

I’ 

OUTPUT 
ENABLE 

I I 

MULTIPLEXER 
I I 

i 

DATA OUT FLAGS 

‘ihe progrmns for these processors can almost 
always be written is such a way that the BRWCH 
addresses are known at load time, and this address 
can be in the program memory data field data. 
TnUS, most BRANCH instructions can be executed in 
one machine cycle. 

A hardware multiplication and division algo- 
rithm has been implemented in the 168/E proces- 
sors. It is done by momentarily stopping the pro- 
gram counter clock while cycling the slices 
through conditional ADD and SHIFT instructions. 

Figure 2 : 
Block diagram of the 2901A 

CARRY - OUT, OVERFLOW 
ZERO, NEGATIVE, c, P 

In order to allow for efficient indexing of the 
data memory, the data memory address is formed by 
an ADD of bits from the data field of the program 
memory and from the outputs of the slices. Data 
may be written to the memory from the slices and 
similarly data may be presented to the direct 
inputs of the slices from the data memory or from 
the program memory. 

All of the 168/E instruction that manipulate 
floating-point quantities are executed by the 
floating-point processing unit (not shown in 



figure 1). This unit comprises a two-port 
_ register file, an ALU, a control unit, and a hard- 

ware shifting-etwork. 

*en a floating-point instruction is encoun- 
tered by the 168/E, the clock to the integer pro- 
cessor is stopped, and the floating-point proces- 
sor is allowed to execute the instruction. If the 
instruction is one that calls for a setting of the 
condition codes, the appropriate information from 
the floating-point processor is strobed into the 
condition code register in the integer processing 
unit. If the floating-point instruction requires 
multiple clock cycles, the floating-point control 
unit stops the clock to the integer processor for 
as long as is necessary. In the case of floating- 
point instructions that require data memory 
accesses, the data memory address is generated by 
the integer processing unit, and the data is 
strobed into a working register in the floating- 
point processor. 

The floating-point processor can manipulate 
quantities in either 32 or 48 bit precision. The 
32 bit precision yields results identical to the 
single precision of the 370/168, while the 48 bit 
length is a psuedo-double precision that has been 
found to be sufficient for most calculations done 
in LASS experiments. lhe precision of the float- 
ing-point unit could have been extended by widen- 
ing the data paths on the floating-point process- 
ing unit, but since the interconnection complexity 
grows rapidly above 48 bits, a compromise between 
cost and precision was made. ‘Ihis 48 bit preci- 
sion mode is the only place where the 168/E does 
not match the 370/168 in the results it produces. 

Since the floating-point processing unit is 
constructed separately from the integer processing 
unit, its inclusion in a users 168/E processor is 
optional. 

4.2 PRCXXSSCR SOFTWARE. 

Important aspects of the processor’s structure 
will becane apparent by comparison of the program 
code generated to perform the K%OOP described 
above. Table II shows the DO-LOOP implemented on 
the IBM 370/168 and the 168/E processor. ‘Ihe 
first instruction on the 370/168, cf. Table II, 
is a COMPARE between the contents of a memory 
location and register 0. The memory address is 
formed by the sun of register 9 (the index regis- 
ter) , register 10 (the base register), and 12 bits 
from the instruction (the displacement ED). The 
168/E performs the same operation in three micro- 
instruction cycles. In the first cycle, the 
slices execute an instruction which places the sun 
of registers 9 and 10 at its output. In the sec- 
ond, the displacement from the data field of the 
program menory is added to the outputs of the 
slices and loaded to the memory address register. 

’ In the same cycle, the memory is switched to the 
read mode and the data is strobed into a working 
register of the floating-point unit. In the third 
cycle, the comparison is made in the floating- 
point unit between 
register. 

register 0 and the working 
If the instruction had been an integer 

compare instead of a floating-point ccmpare, then 
the integer processor would have operated on the 
data memory contents. As shown in Table II, the 
remaining three instructions on the 370/168 can be 
implemented in one cycle each on the 168/E, using 
the integer CPU only. Thus one sees that the 
structure of the IASS processor allows it to efnu- 
late the IBM 370 efficiently. Emulation is possi- 
ble because both the 370/168 and the 168/E have 
the same nunber of working registers, can perform 
the same arithmetic and logic operations, and have 
the same form of data menory addressing and 
branching. 

TABLE II. 

Canparison of Program Code Generated for 370/168 and 168/E 

Fmgram Step Code for 370/168 

CCNpare Xi and Xp LOOP CE O,ED(9,10) 

Action of code for 168/E 

Slice: Reg. 9 + Reg. 10 -> Slice-out 
t$zrp: ED + Slice-out -> MAR, and. 

. . : Data Memory -> Working Register 

BRANCH- 

DECrement i 

BRANCH Greater 

BLaYrE Branch: If less than 0, GOTE -> P.C. 

SR 9,l Slice: Reg. 9 - Reg. 1 -> Reg, 9, and 
Cord. Code -> C.C. Register 

BNIIxlP Branch: If greater than 0, LOOP -> P.C. 

A translator has been written which takes important aspect of this process is the splitting 
object code produced by the IBM Fortran H 

“p 
timiz- of program instructions and local data constants 

ing Compiler, and converts it to relocatab e pro- 
gram and data modules in 168/E format. An 

and variables into separate areas, ready for load- 
ing into the 168/E’s separate program and data 



memories. When possible, advantage is taken of 
the 168/E’s direct program memory addressing 
scheme by changing IBM BRANCH instructions from 
their dispI%cenent plus base-register addressing 
format to absolute 168/E program memory address- 
ing. Execution time saved by direct addressing 
applies also to the first BK Bytes of local con- 
stants and variables in data memory, where fixed 
base registers may be dispensed with entirely. 

After translation a linker program is used. It 
functions exactly like the IBM Linkage Editor, in 
taking all the 168/E object modules needed to corn- 
pose one complete load module, and linking them 
together. Address constants and direct addresses 
are filled in or adjusted at this time. By means 
of control statements, the user may if he wishes 
position common-blocks, local data constants, and 
program code in specific locations, according to a 
predefined plan. 

Not all of the 370 instruction set can be emu- 
lated by the 168/E, but all those instructions 
needed for track reconstruction have been emu- 
lated. In fact, the IBM FCRTRAN compiler requires 
about the same subset of 370 instructions as those 
implemented in the 168/E. Those instructions not 
implemented deal with decimal arithmetic, charac- 
ter manipulation, system interrupt, and I/O. By 
not implementing all the instructions of the 370 
one has reduced the cost and complexity of this 
processor while increasing its speed. The goal of 
this project is to build fast programmable proces- 
sors for physics applications and not to build a 
general purpose computer with the entire instruc- 
tion set of the IBM 370. 

4.3 WHY EMULATE? -- 

Cne could have built a processor with its own 
unique instruction set, tailored to ones needs. 
Instead, the 168/E is based on the architecture of 
the 370 for several important reasons. First of 
all, the writing and debugging of programs for the 
168/E can be done on the 370/168 at the SLAC com- 
puter center. Once a program is running on real 
or simulated data, it is easily translated to the 
instruction set of the 168/E. Secondly, program- 
mers who are famililar with the 370 do not require 
any special understanding of the 168/E processor 
in order to produce fast and efficient code. Even 
the experimenters can write programs for the 168/E 
because of its FCNRAN capability. In addition, 
the programs do not need to be debugged on a hard- 
ware box with limited I/O capabilities. 

4.4 SPEED AND CCST --- 

Emulation of the 370 has greatly reduced the 
burden of programming the LASS processors. The 
question remaining, however, is how much emulation 
of the 370 has cost us in execution speed and the 
dollar cost of the processors. The cycle time of 
the 168/E is 150 nanosecorxls, which is slower than 

the 370/168, but, as Table I shows, the executing 
time of the 168/E is actually competitive with the 
370/168. Fast execution of the 168/E for LO-LOOP 
shown ccmes mainly from the fact that BFUUCH 
instructions can be done in one cycle. The 
370/168 operates in a multi-programming environ- 
ment so that it spends many cycles calculating the 
absolute address of the BRAXCH. The basic LO-LOOP 
of Table I is biased in favor of the 168/E because 
of the two BRANCH instructions. A better canpari- 
son was made with complete programs. Programs 
were written on the 370/168 using FCRlRAN H OPT=2 
Compiler. With real data the execution time for 
the program on the 168/E is no wtzse than a factor 
of 2 slower. 
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lvbst of the cost of the 168/E is in the program 
and data memories for the processor. The cost of 
16K bytes of data mmory is about $1000, while 8K 
bytes (equivalent) of program menory cost around 

‘$750 at current memory prices. The integer and 
floating-pint processor cost about $500 and 
$1000, respectively. These prices include ccmpo- 
nents, circuit boards, and power supplies, but 
exclude labor for assembly. Thus a complete 168/E 
with both processors, 96K bytes of data memory, 
and 32K bytes (equivalent) of program menory 
(rollghly the largest amount needed for LASS exper- 
iments) would cost about $10,000. The important 
point is that the speed-cost ratio of the 168/E is 
sufficiently high that a multi-processor system 
that meets the needs of LASS is economically fess- 
ible. 

5. SLMMARY. 

‘Ihe computer support for the data analysis in a 
high data rate physics experiment is becoming a 
familiar problem. ‘lhe fact that the analysis task 
can be broken down into many simple sub-tasks has 
led many experimenters to thinking about using 
hardware processors. The processors should have, 
however, both high execution speed and programma- 
bility. Bardwired processors can be extremely 
fast but take a considerable effort to design and 
maintain. Commercially available programmable 
processors are either too slow or too costly to 
meet our needs, even in a multi-processor system. 

‘lhe hardware processing system in LASS will be 
based on an array of fast programmable processors. 
Each processor has an execution speed comparable 
to an IBM 370/168 and emulates a subset of the 370 
machine instructions. The programs for the pro- 
cessors can thus be written and debugged on an IBM 
370 before translation and loading to the hardware 
processors. The task of programming the proces- 
sors appears to be no more difficult than that of 
programming a large computer since programs can be 
written in FORTRAN. Only a small number of pro? 
cessors are needed to meet the goal of executing 
at speeds an order of magnitude greater than a 
large computer such as the IBM 370/168. 
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