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ABSTRACT 

Gluon bremsstrahlung processes inside the nucleon are investigated. 

A new method of inverting the moments is used which leads to analytic 

results for the parton distributions near x = 1 and x = 0. The 3-quark 

picture of the nucleon is studied with a minimum number of parameters or 

input. An "unrenormalized" valence quark distribution peaked at x = z!- 3' 

with a width related to the nucleon radius, and subsequently "renormal- 

ized" by gluon bremsstrahlung is in good agreement with deep inelastic 

data. However the gluon distribution obtained seems too steep near x=0. 
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1. INTRODUCTION 

The first runs of low energy eN and vN deep inelastic experiments 

(E <, 20 GeV) 192 were in good agreement with Bjorken scaling. Later, more 

precise eN data3 and high energy IIN and vN experiments 4-a,15 have shown 

that there are actually small scaling violations. These violations 

appear to be in good agreement with asymptotically free gauge theories 

and more precisely with Quantum ChromoDynamics (QCD).g-14'7 

The usual way to test QCD is to start with structure functions taken 

from the data at some Qi - 4 GeV2 and then to study how QCD modifies 

these structure functions for Q2 > Qi. This scheme is in agreement with 

experiment but it involves a lot of parameters and unknown quantities, 

for example the shapes of the gluon and quark-antiquark sea distributions 

at Qi. But it may be possible to go further by considering the nucleon 

as composed of 3 quarks bounded together via gluon exchanges and postu- 

late that the glue and quark-antiquark sea actually "seen" inside the 

nucleon are produced only through gluon bremsstrahlung. This is very 

appealing because far fewer parameters and almost no data input are 

involved. In principle in this framework, using QCD, one should be able 

to predict completely the gluon and sea distributions. The only problem 

is that one has to choose the normalization point Qi in a region where 

perturbative QCD is not valid (Qi - 0.1 GeV2). This picture has been 

suggested by many people 16-19 and will be fully developed in this paper. 

The purpose of this paper is twofold. First, some general results 

on the variation of the structure functions with Q2 are derived. In 

this respect the equations which describe the variation of parton densi- 

ties with Q220 are reviewed in Section 2. It appears that given boundary 
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2 conditions (at Q,) the best way to solve these equations is to consider 

the Mellin transforms of the parton densities, i.e., the usual moments of 

the operator product expansion and renormalization group formalism. lo A 

new method of inverting the moments is proposed which is very useful in 

order to obtain analytical results. For general boundary conditions the 

solutions are studied analytically near x = 1 and x = 0 (Section 3). 

Near x = 1 the valence, glue, and sea distributions xV(x,Q2>, xG(x,Q2) 

and xqs(x,Q2) behave like (1 - x)v(Q2), (1 - x)g(Q2) and (1 - x)qs(Q2), 

respectively, 21 QCD giving some relations between the powers v(Q2), g(Q2) 

and qs (Q2) - Some of these relations have been already discussed in Ref- 

erences 22 and 23. As a result it is found that these dominant terms 

are good approximations of the exact solution only very near x = 1 and 

should not be extended on the entire 0 < x L 1 range. Moreover, the 

range of dominance of some of those terms near x = 1 is appreciable only 

for Q2 >> Qi. Whatever is the behaviour of xV(x,Qz) near x = 0 it is 

found that for Q2 > Qi, V(x,Q2> goes to infinity as x goes to zero. It 

is also found that for Q2 > Qi as x goes to zero, xG(x,Q2) and xqs(x,Q2) 

go to infinity faster than any power of log $ but slower than any xqE 

24 power. 

The second part of this paper (Section 4) is devoted to the 3-quark 

picture mentioned above. The boundary conditions are then 

G(x,Qz) = q&Q:) = 0 with V(x,Qi) taken either from a harmonic oscil- 

lator quark model of the nucleon 16,17 or from a field theory with vector 

gluon exchange. 25 The results are compared with deep inelastic data. 

As far as the valence distribution is concerned the agreement is very 

good for both the x and Q2 dependences. On the other hand, the gluon 
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distribution obtained seems too steep near x = 0. This last result comes 

mainly from a comparison with a measurement of gluon moments. 26 

Conclusions on this analysis are given in Section 5. 

2. EQUATIONS DESCRIBING THE VARIATION OF 

PARTON DENSITIES WITH Q2 

A current with square momentum transfer -Q2 < 0 which investigates 

the inside of a hadron can "see" a quark qi or a gluon G, 27 which is then 

considered as a constituent of the struck hadron. qi(x,Q2) and G(x,Q2) 

will respectively denote the densities of quark qi and gluon G carrying 

a fraction x of the total longitudinal momentum of the hadron in the 

infinite momentum frame. In any renormalizable quark-gluon field theory 

in which perturbation theory is valid, the equations describing the 

variation of those parton densities with Q2 are.2W3 . 

aq,(x,Q2) 

a log Q2 
= ell$ [pqq[F)qi(y,Q2) + Pq,JG)G(YpQ2)] 

aG(x,Q 
'$ = @{IF [pGq(&'+,Q2) + pGG(;)G(y,Q2)] (1) 

a loi3 Q X i=l 

u(Q2) is the running coupling constant of quark-gluon interaction and f 

is the number of quark flavors. These equations account for all orders 

in a(Q2) log Q2 but only for first order in c,(Q2). They are typical of 

a shower phenomena. For an electromagnetic shower we have similar equa- 

tions in which quark and gluon densities are respectively replaced by 

electron and photon densities. 29 
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In QCD where the gauge group is SU(3) color, when a(Q2) is small 

compared to 1, it is approximately given by 

dQ2) = 
12lr 

(33 - 2f) log $ 
(2) 

where A gives the normalization of a(Q2) at a fixed value of Q2 (from 

experiment A - 500 MeV). 

Let us now discuss the various functions p ij (z: of Eqs. (1). pqq 5 
0 

is given by diagram (a) of Fig. 1: 

4 2 
pqq(z) = 3 I (1 - z>+ - (1 + z) + $S(z - l)] (34 

where tizx is the following distribution 

/ 

1 

0 
dz (If:';)+ = l'dz['('; 1 :,')I _ 

For comparison, in Quantum ElectroDynamics (QED) 

p,,(z) = (1 _' z>+ - (1 + z,) + $( z - 1) 

‘qG 7 0 x is given by diagram (b) of Fig. 1: 

pqG(Z) = + 
[ 
(1 - z)2 + z2 

1 

In QED 

p,,(z) = (1 - z>2 + 22 

is given by diagram (c) of Fig. 1: 

p 
Gq 

(3b) 

(3c) 

In QED 

P,,(Z) = 
1 + (1 - z>2 

Z 
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‘GG 7 0 
x is given by diagram (d) of Fig. 1 (plus a contribution from 

diagram (b)): 

PGG(Z) = ’ 
(33 - 2f) 

(1 : z)+ ++- 2+ z(l-z)+ 36 S(z - 1) 1 (3d) 
In QED where there is no such 3y coupling: 

Pyy(Z) = +,z - 1) 

Equations (1) can be rewritten in two steps: first by changing the 

variable log Q2 into 

lz = (33: 2f)l"g ; (4) 

second by making a separation between valence and sea quarks 

uh,Q2> = uv(x,Q2) + us(x,Q2) 

where 

d(x,Q2) = d,(x,Q2) + ds(x,Q2) . 

us(x,Q2) = %x,Q2) 

ds(x,Q2) = &c,Q2> 

Thus when n(Q2) is small compared to 1, and given by formula (2), Eqs. 

(1) read: 

& qv(x,Q2) = f'$ fqq($qv(Y’Q2) 
X 

T& 9, (~4~) = q&Q') + fqG(+Y,Q2) 1 
(5a) 

(5b) 

&Gb,a2) = / ‘$ff&$ 2 qihQ2) + fGG(+Y.Q2) 
I 

(5c) 
X i=l 
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where 

qv vordv =u 

4, 
= USC’ U), ds(= d),s,;,c,;,... 

fij (z> = $ Pij (z> 

Note that in these equations quarks and gluons are treated as massless 

particles, which means that mass effects are not taken into account. 

Equation (5a) is satisfied by 

(uv =u-u -, u - s,...). This 

because the evolution with Q2 

any difference of quark densities 

equation is decoupled from the others 

of valence quark densities is governed 

only by gluon bremsstrahlung (Fig. la). In the Operator Product Expan- 

sion and Renormalization Group formulation of asymptotic freedom effects 10 

this is known as the evolution with Q2 of valence quark densities and is 

governed only by flavor non-singlet operators. Equations (5b) and (5~) 

are coupled (in the other formulation known as mixing of flavor singlet 

and non-singlet operators) because a) sea quarks are produced by pairs 

from gluons (Fig. lb) and lose momentum by gluon bremsstrahlung (Fig. la); 

b) gluons are produced by gluon bremsstrahlung (Fig. lc), are destroyed 

when they produce qy pairs (Fig. lb), and can generate themselves 

(Fig. Id). 

Solving Eqs. (5a) th rough (5~) requires the knowledge of boundary 

conditions. If we know qv(x,Qz), q,(x,Qi) and G(x,Qi) for -some Qt such 

dQ;) that - Tr <cl, then Eqs. (5a) through (5~) enable us to know qv(x,Q2), 

qs(x,Q2) and G(x,Q2) for all values of Q2 for which Eqs. (5a) through 

(5~) are valid (i.e., for 7 dQ2) << 1) . The solutions of these equations 

are obtained by considering the Mellin transform of the quark and gluon 

densities: 
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+ 
where 

Mj(s,Q2) = 
/ 

1 
dx xs-' j(x,Q2) 

0 

j = q,,q,,G,--- 

Equations (5a) through (5~) become 

& Mqv(s,Q2) = Aqq(s) Mqv(s,Q2) (6a) 

& Mq,(s,Q2) = AqqW Mqs(s,Q2) + AqGW M,(s,Q2) 

2f 

& M,(s,Q2) = AGqW 
c Mqi(S,Q2) + AGG(s> M,(s,Q2) 
i=l 

where 

/ 

1 
Aij (s) = dz z s-1 

0 
fij (z) 

From formulae (3) we get 

AqqW = x 3 + -zjy 1 1 - 
2(s + 1) - qJ(s + 1) - c 

3(2 + s + s2) 
AqG(S) = 16s(s + l)(s + 2) 

AGqW = 
(2 + s + s2> 

2s(s2 - 1) 

(6b) 

(6~) 

(7a) 

(7b) 

(7c) 

$(s + 1) - c I (7d) 
S 

where $J(S + 1.) = Ir'(s + 1) 
T(s + 1) is the digamma function (= -C + 

c 
1 -7 if s is 
J 

j=l 

a positive integer) and C is Euler's constant, C = 0.577... . Up to a 

multiplicative factor the A's are the usual anomalous dimensions found 
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is now easy to solve Eqs. (6a) through (6~). The solution 

of Eq,(6a) is 

Mqv(s,Q2) = Mqv(s,Q&?tAqq(S) 

= Mqv(s,Q;: 

log Q 
,: 

Q2 
log -!? 

A2 

16 
(33 - 2f) Aqq(s) 

(8a) 

Solutions of Eqs. (6b) and (6~) are obtained after diagonalization and 

can be written in the following way 

M,(s,Q2) = [M,Cs,Qz) + 2f Mq,(s,Qz)] FGq(s,t) + MG(s,Q;)FGG(s,t) (8b) 

Mqs(s,Q2) = Mv(s,Q;)Fq,v(s,t) 

+ MG(s,Q;)FqsG(s,t) + Mqs(S,q;)Fqsq,(s.t) (8~) 

This is for f flavors of quarks; quarks and gluons being treated as mass- 

less particles and the sea being SU(f) symmetric: 

MJs,Q;) = M,+(s,S;) + Md,(s,Q;) . 

Fij(S,t) are known functions of t and of the A's which are given in 

Appendix I. 

Having solved the equations satisfied by the Mellin transforms, we 

have to get back to the x distributions by computing the inverse Mellin 

transforms: 

j(x,Q2) = -& ds x-' Mj (s,Q2) (9) 

where the contour (c-i=~, cfim) is at the right of all singularities of 

Mj(s,Q') in the complex s plane (Fig. 2). This method will be used to 
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obtain general results on the parton densities, assuming some general 

boundgy conditions (Section 3). There is another way of computing the 

inverse Mellin transform which will be used in Section 4 dealing with 

the 3-quark picture. This method consists in computing the inverse 

Mellin transforms of the functions F ij (', t> :  ~ij(x,t), and then using 

the convolution formula equivalent to the product of Mellin trans- 

forms, 30,31 e.g.: 

qvb,Q2) = /'$ qv(;,Q;)~vvW 
X 

(10) 

where 5 w is the inverse Mellin transform of Fvv(s,t) = e tAqq (s). Let 

us note that gij(x,t) represents the x density of parton i found inside 

a parton j for a value -Q 2 of the square momentum transfer, the parton j 

being considered as a bare particle when the transfer is -Qi. These 

functions iiij(x,t) can directly be used in processes which do not involve 

composite hadrons but quarks or gluons in the first place, e.g., e+e- 

annihilation. 

3. GENERAL BOUNDARY CONDITIONS 

In this section we shall discuss the behaviour of the quark and gluon 

densities near x = 1 and x = 0 corresponding to some general behaviour of 

the boundary densities. 

3.1 Behaviour near x = 1 

To study the behaviour of a parton density near x = 1 is equivalent 

to studying the limit of its Mellin transform for s going to infinity. 

Therefore if we make a -$ expansion of its Mellin transform and compute 

the inverse Mellin transform of each term, we obtain an expansion of the 
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parton density near x = 1. Let's assume that the behaviour of the quark 

and glzon densities near x = 1 for Q 
2 2 = Q, are 

xV(x,Q;) - K,<l - x>v 

xG(x,Q~) - KG(l - x)~ 

xqsb,Q;) - Kqs(l - x)" 

Using formulae (7a) and (8a) and the fact that one can write 

co 

qJ(s + 1) 
1 = log s + 2s - 

c 
B2n 

n=l 2ns 
2n 

where B, are Bernoulli numbers we obtain: 

xV(x,Q2) - Kv(Q2)(1 - x)~('~) (11) 

where 

and 

v(Q2) = v + t 

3 
Kv(Q2) = Kv et z - ' I 1 T(v + 1) 

r(v + 1 + t) 

This result is also given in References 31 and 22 but let us note that 

by making a i expansion of the Mellin transform we obtain not only the 

dominant term near x = 1 but a whole expansion valid on the 0 < x I 1 

range. 

For the gluon density xG(x,Q2>, using formula (8b) and formulae 

(1.2) of Appendix I we get four dominant terms near x = 1. The first 

one corresponds to the glue produced by the valence quarks through brems- 

strahlung. Near x = 1 it is equivalent to 
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KGV(Q2) - 
(1 - x> 

(v + 1 + t) 

log& + $(v + 2 + t) + h 1 
(12) 

3 
KGv(Q2) = $Kve' ‘2; - ' ~ I 1 rev + 1) 

rev + 2 + t) 

21 - 2f A=c- 2. 

The second term corresponds to the glue radiated by the sea quarks. It 

is similar to the first term; near x = 1 it is equivalent to 

Qq,(Q2) '; 
_ x) (4s + 1 + t> 

I loi3 l-x + $(qs + 2 + t) + h 
1 

where 

r(q + 1) 
Qqs(Q2) = y Kqset + - ’ r(q i I 

S 

1 2 + t> 

The third term corresponds to the glue radiated by the glue itself. Near 

x = 1 it is equivalent to 

K;;’ (Q2) (1 _ x) (g + $1 

where 

rk + 1) 

r(g + I + $1 

The last term corresponds to a gluon which creates a quark-antiquark pair 

which itself radiates glue. Near x = 1 it is equivalent to 

K;;’ (Q2 > 
(1 _ ,)b + 2 + t) 

I 
log & + jJ(g + 3 + t) + h 2 1 

where 

K;;)(Q2) = r(g + 1) 
r(g + 3 + t> 
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Let us note that the power (1 - x)~ comes from the summation of an in- 

finite-number of ;oft gluons radiated by a quark. On the other hand, 
-t 

the power (1 - x)~ comes from the summation of an infinite number of 

soft gluons radiated by a gluon. If we leave the log & aside and 

say that near x = 1 the gluon density xG(x,QL) behaves approximately 

like (1 - x) dQ2) then g(Q2> will be the smallest power of the 4 written 

above. We then have the following inequaling: 23 

g(Q2) ( v + 1 + t = v(Q2) + 1 

Similarly for the sea quark density xqs(x,Q2), using formulae (8~) 

and (1.2), we get three dominant terms near x = 1. The first one corre- 

sponds to a qs pair produced from a valence quark through gluon radiation. 

Near x = 1 it is equivalent to 

(1 _ x) (v + 2 + t> 

Kqsv(Q2) 1 
[ log -jyy + qJ(v + 3 + t) + x 1 

(13) 

where 

Kqsv(Q2) = -$ Kvtet 

The second term corresponds to a qp pair produced from the glue. Near 

x = 1 it is equivalent to 

KqsG(Q2) "i,‘;(;(; : ; :),, + A 
1% y----- 1 

where 

Kqs~(Q2) = &KGet ? - ' rrck","2"i t> I 1 

The third term corresponds simply to a sea quark which modifies its 

momentum by radiating glue. Near x = 1 it is equivalent to 
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Kqsqs(Q2) (1 - x) (4s + t, 

Kqsqs(Q2) = Kqset : - ' I 1 Nqs + 1) Nq, + 1 + t> 
1 If we leave the log l-x aside and say that near x = 1 the sea density 

xqs(x,Q2) behaves approximately like (1 - x) qs (Q*) then q,(Q*) will be 

the smallest power of the three written above. We then have the follow- 

ing inequality: 23 

q,(Q*) 5v+2+t=v(Q2)+2 

Regarding the boundary powers v, g, and q,, we have to consider two cases. 

The first one is for g L v - 1 and qs 2 v; in this case we obtain the 

following relations32 

g(Q2) = v(Q2) + 1 

~(4~) i qs(Q2) L. v(Q2) + 2 

The other case is for g < v + 1 or q, < v for which we have 

g(Q2) = qstQ2) + 1 < v(Q2> + 1 

But usually the boundary powers are such that g L v + 1 and qs 1 v + 2. 

In this case we have the following relations 

g(Q2) = v(Q*) + 1 

qs(Q2) = v(Q2) + 2 

or equivalently, near x = 1 the gluon and sea densities are dominated by 

the terms (12) and (13), respectively. This means that for Q* suffi- 

ciently larger than Qi the valence quarks generate most of the glue and 

sea quarks "seen" near x = 1. But let us note that this is true only in 
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the vicinity of x = 1 and the closer Q2 is to Qi the smaller is the 

region of dominance of the terms (12) and (13) around x = 1. In other 

words, we should not extend these results on the entire [O,l] interval 

by saying, for example, that for 0 < x 

tribution is (1 - x) (~(4~) + 1) . This 

that for 0 < x I 1 we have to take all 

only the ones that are dominant near x 

3.2 Behaviour near x = 0 

I 1 the shape of the gluon dis- 

is shown in Section 4 and it means 

the terms into account, and not 

= 1. 

To study the behaviour of a parton density near x = 0 is equivalent 

to studying the behaviour of its Mellin transform near its rightmost 

singularity in the complex s plane. Therefore if we compute the contri- 

bution of each singularity of the Mellin transform, starting with the 

rightmost ones and using formula (9) integrated on the contour%? of 

Fig. 2, we obtain an expansion of the parton density near x = 0. 

Let us note, as an example, that the function Aqq (s) has a pole at 

s=o:L 
2s' which leads to an essential singularity at s = 0 for the c 

function Fv(s,t) = etAqq(S): e$. 

Let us assume that the behaviour of the quark and gluon densities 

near x = 0 for Q2 = Qi are 

xV(x,Q;) - Hvxr 

xG(x,Q~) - Hg 

xs,(x,Q;) - Hq 
S 

For the valence density xV(x,Q2) we need to distinguish three cases: 



- 16 - 

a> O<r<l: 33 The rightmost singularity of Mv(s,Q2) is a pole 

at s =1-r, therefore using formula (ga), we obtain the following be- 

haviour near x = 0 

So in this case the xr behaviour is stable under Q2 variation. Regge 

pole arguments suggest r = $ which falls in this category and for 

which24y22 

xVh,Q2) - Hv exp t 
R 

--&+21og2 VG )I 
b) r=l: The rightmost singularity of M,(s,Q*) is an essential 

singularity at s= 0, therefore near x=0 for Q2 > Qi 

xV(x,Q2) - H ('I (Q2) x IO (dq) 
V 

H(l) 
_ v (Q2) _ x 

d-i 
( 

1,1,4 ..,({a) 
2t log ; 

where H:l)(Q2) = H ,d 
V 

and I,(Z) are the modified Bessel functions of 

the first kind. 

c> r > 1: The rightmost singularity of Mv(s,Q2) is also an essen- 

tial singularity at s =0, therefore near x=0 for Q2 > Qi 

xV(x,Q2) - H ;2' (Q2) 

H:*)(Q2) x ,t 

J2?r 2 log J- 3'4 
X 

, 
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where 
t 1 

H;*+Q2) = CT 
s 

$ Vb,Q;) 
0 

In cases b) and c) when x goes to zero, 2 xV(x,Q ) goes to zero slower 

than x but faster than any x '-' power (with E > 0), for Q* > Qi. There- 

fore in these cases the xr behaviour is not stable under Q2 variation. 

Even if for Q2 = Q;, xV(x,Q 2 ) has not a vertical tangent at x = 0, it 

has a vertical tangent at x = 0 for any Q2 > Qi. This may mean that 

when we compute the gluon bremsstrahlung contribution (Fig. 3a) we are 

in fact also computing a part of the p exchange contribution which creates 

the & behaviour near x = 0 (Fig. 3b). 

For the gluon density xG(x,Q2), using formulae (8b) and (1.1) of 

Appendix I, we get three dominant terms near x = 0. The first one corre- 

sponds to a gluon produced from a valence quark through all types of 

"tower" diagrams like the one of Fig. 4. Near x = 0, for Q2 > Qi, it 

behaves like 

2 h(Q2)/s I1 (34%) 

where 

h(Q2) = exp [-$i+%,)] 

Let us notice that this term does not depend on the behaviour of the 

boundary function xV(x,Qi) near x = 0, but only on the fact that 

/ 

1 
dx V(x,Q;) = 3. The second term corresponds to the glue produced 

0 

from a sea quark or antiquark through all types of "tower" diagrams. 

Near x = 0 it is equivalent to 
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F Hq 
S 

h(Q2> IO (3 {T;) 

The third term corresponds to the glue produced from a gluon also through 

all types of "tower" diagrams (Fig. 4). Near x = 0 it behaves like 

Hg h(Q2) Ig(3dq) 

For the sea density xqs(x,Q2) we also get three terms corresponding 

to pair production from valence quarks, sea and gluon respectively, 

through all types of "tower" diagrams. Near x = 0, for Q2 > Qi, those 

three terms behave respectively like 

and 

We also obtain similar behaviour near x = 0 for Q* > Qi if the boundary 

conditions are such that for any E > 0, x '+' G(x,Qi) and x1+' 4,(x,9;) go 

to zero when x goes to zero. From these results we see that when x goes 

to zero for Q2 > QE, xG(x,Q2) and xqs(x,Q2) go to infinity faster than 

1 any power of log x but slower than any x BE power (with E: > 0). 24 There- 

fore in this framework the fact that xG(x,Qi) and xq,(x,Qi) go to con- 

stants when x goes to zero is not a property which is stable under QL 

variation. If we relate these results with the limit of the total 

r*(Q2)p cross section at high energy, we find that this last quantity 
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violates the Froissart bound. This may be a consequence of the fact 

that j.,, this scheme we have ignored all high order c((Q2) terms which are 

not of the a(Q2) log Q2 type. 24 If we could take all'the higher order 

terms into account (and even nonperturbative effects), the answer might 

correspond to a saturation of the Froissart bound; i.e., xG(x,Q2) and 

xqs(x,Q2) behave like (log g' when x goes to zero. 

4. THE 3-QUARK PICTURE OF THE NUCLEON 

It is appealing to consider that all the glue and qy pairs "seen" 

in the nucleon are produced via gluon bremsstrahlung. 18,19 This means 

that for Qi 2 2 
of the order of m - 

U 
= 0.1 GeV2 the boundary conditions 

will be 

xG(x,Q;) = 0 

w&Q;) = 0 (14) 

But for such small values of Q2 Eqs. (1) are not valid (i$ - l). 

Anyway, in this section the "normalization" point Qz will be chosen in 

this region, together with 

mation will still be valid 

I intO the coefficient F 

the boundary conditions (14). This approxi- 

if the higher order corrections only modify 

a more general function f(u(Q2)) in the region 

3 
where& -1. 71 The variable through which the Q' dependence occurs is 

or more generally 

16 

16 
(15) 
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/ 

1 
From the fact that F;'(x)dx N- 0.16 for Q2 - 4 GeV2 9 which means 

0 
'that @proximately 50% of the proton momentum is carried by gluons, we 

conclude that Q2 - 4 GeV2 corresponds to t - 1.3. Using A = 500 MeV and 

~1 <Q;) 
three flavors of quarks this leads to s or ~ -1.44. 7r 

Moreover, we need to know the "unrenormalized" valence distribution 

xV(x,QE) corresponding to the diagrams included in the circled part of 

Fig. 5. V(x,Qi) must satisfy the following conditions: a> V(x,Qz) 

should be peaked at x = i, b) its width should be related to the nucleon 

1 
radius, c) 

/ 
2 xV(x,QO)dx = 1, which means that all the nucleon momentum 

0 1 
is carried by the valence quarks, d) 

J 

2 
V(x,Qo)dx = 3, which means that 

0 
there are three valence quarks, and finally e) V(x,Qi) should behave 

like (1 - x)~ near x = 1 because of a quark counting rule. 34 A harmonic 

oscillator quark model of the nucleon gives 17,16 

V(x,Qz) z N exp[-+R2d(x - i)'] 

On the other hand a field theory with vector gluon exchange gives 25 

V&Q;) " 
N’ 

1 

3 

(16a) 

U6b) 

These distributions have to be slightly modified near x = 1 in order to 

behave like (1 - x)'. s is the nucleon mass and R the nucleon radius 

which is of the order of 0.75 Fermi. As a result of the analysis done 

in this section the two functions (16a) and (16b) give almost the same 

quark and gluon densities, and this for slightly different values of R: 
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distribution (16a) with R = 0.5 Fermi, which is in good agreement with 

experimental data, corresponds to distribution (16b) with R = 0.7 Fermi. 

There may be a way of formulating this 3-quark picture of the nucleon 

without considering small values of Q2 for which Eqs. (1) are not valid. 

This is by saying that a good approximation of the nucleon for Q2 L 1 GeV2 

is the one given in Fig. 5 which consists of a factorization of a gluon 

bremsstrahlung process (Eqs. (1)) with a gluon exchange process among 

the three valence quarks (boundary conditions (14) and (16)). The solu- 

tion of this problem is obtained with the help of an "abstract" normal- 

ization point Qz or more generally, a parameter K which relates the 

scales of Q* and t. As far as the mathematics are concerned, this for- 

mulation is completely equivalent to the one described at the beginning 

of this section. And we see that the larger Q2 is, the better this 

3-quark picture should be. 
3 

In order to obtain the quark and gluon distributions xV(x,Q'), 

xG(x,QL) and xqs(x,QL) we have to solve Eqs. (1) with boundary conditions 

(14) and (16). This is done by considering the Mellin transforms of 

these distributions, which are given by formulae (8). To get back to 

the x distributions we compute the inverse Mellin transforms of the 

functions Fij(~,t) ( see Appendix II) and then use the convolution for- 

mula (10). Once we know the distributions xV(x,Q2), xG(x,Q2) and 

xqs(x,Q2) we can compare them with deep inelastic experiments (Fig. 6). 

Let us note that this comparison should be done only in the region where 

~1 (Q2) the parton model is valid (i.e., for 7 <Cl or equivalently 

Q2 L 1 GeV2). For large Q* the variable x of parton densities equals 

the experimental variable x: 
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Q2 
x = 2q(E - E') 

- 
In fact this formula has to be modified by target or quark mass effects. 35 

The valence quark distribution xV(x,Q2) can be directly compared to 

$%d?*) - Fy(X,Q2) = +X [Uv(X,Q2) - d,(x,Q*)] 

or 

x F~NhQ2) = x[u~(X,Q~) + dV(x,Q2) I 

The other structure functions involve the sea quark distributions: 

2f 

FiN(x,Q2) = 
c 

ef xqi(x,Q2) 

i=l 

+ 1 x 
(x,Q2) 9 

d 

in the case of four quark flavors. If we neglect charm production in neu- 

trino experiments and set the Cabibbo angle equal to zero: 

FiN(x,Q2) = x u + d +u+d 
I (x,Q2> 

On the other hand if we assume a full charm production (neglecting charm 

quark mass effects) and a charm sea equal to the strange sea 

(c(x,Q2) = s(x,Q2)) we also have charge symmetry in neutrino experiments 

and 
FyN(x,Q2) = x u + d + ; + d + 4s 1 (x,Q2) 

At this point let us define exactly what are our inputs for com- 

parison with experiments. Conditions (14) are used together with 
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xWx,Q;) = x u,(x,Q;, 
I 

+ d,(x,Q;, 
I 

- 
R2<(x - $)'I + N2&(1 - x)~ 

where R = 0.48 Fermi, N 1 = 4.43, N2 = 0.53.36 

As a first approximation we assume uv(x,Q2) = 2dv(x,Q2), which is 

known not to be satisfied for x > 0.4. The relation between Q2 and t is 

given by formulae (15) and (2) in which A = 500 MeV and K is determined 

by the fact that t = 1.3 for Q2 = 4 GeV2 (e.g., for f = 4, K = 4.15). 

The first step of our comparison with experimental data deals with 

the moments of structure functions, which does not involve the difficult 

task of computing the inverse Mellin transforms. The best experimental 

results on the valence moments come from a study of Gargamelle and BEBC 

data on XF~~(~,Q~).~ Comparison between experimental data and our pre- 

dictions is done in Table I and Fig. 7a; agreement between the two is 

very good. In addition the BEBC group extracts the gluon moments from 

measurements of F ;N(x,Q2). Comparison with our predictions is given in 

Table II; except for the second moment (n= 2) agreement between the two 

is not very good. But, on the other hand, if we directly compare our 

predictions with experimental results on the moments of F2 UN(x,Q2) s as 

done on Fig. 7b, we get a good agreement. This means that it is difficult 

to extract with a good precision the gluon moments from F2 uN(x,Q2). 37 

Anderson et al., 26 have also extracted the gluon moments from electron 

and muon deep inelastic scattering measurements on hydrogen and deuterium. 

Their results are more precise than those in neutrino experiments and 

appear to be of the same order of magnitude as BEBC results. Agreement 

with our predictions is good for the second moment (their result for 
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Q2 = 5 GeV2 is approximately 0.43, to be compared with 0.45 of Table II), 

but it is bad for the 4th and 6th moments (our predictions are approxi- 

mately an order of magnitude below the data). On the other hand, if we 

directly compare our predictions with the experimental results on the 

moments of the electromagnetic structure functions F 2 for hydrogen and 

deuterium we also get good agreement for the second moments, but for the 

4th and 6th moments our predictions are systematically 10 to 20% below 

the data. 38 The conclusion of this analysis is that the shape of the 

gluon distribution obtained in this paper is much steeper near x = 0 than 

the real one. 

Let us now compare our prediction for the second moment of the quark- 

anitquark sea with Gargamelle, BEBC and CDHS data. An analysis of Gargamelle 

data2 which neglects charm production gives 

1% + M;i)(*,Q*) 

MU + Md + M-u + M;I (2,Q2) I 
= 0.054 ?I 0.026 

This number has to be compared with our prediction for Q2 = 4 GeV2 : 0.069. 

An analysis of CDHS data8 gives 

[ 5 + % + 2% C&Q21 1 

I 
MU + Md + MS + 5 + M;i + Ms- (2,Q2) 

I 

= 0.16 f 0.02 

which is in good agreement with our prediction for Q2 - 20 GeV* : 0.18. 

Results from BEBC7 assume charge symmetry which is not satisfied if there 

is substantial charm production. Their result is v 
(9 + q) 

= 0.113 rt: 0.030. 

If we neglect charm production, our prediction for this quantity is 0.10 

for Q2 - 20 GeV2. On the other hand, if we assume charm production with 
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a strange sea equal to the charm sea in order to have charge symmetry, 

our psdiction for this quantity becomes 0.17 for Q2 - 20 GeV*. The con- 

clusion of this analysis is that we obtain very good results as far as 

the second moments of the quark-antiquark sea are concerned. 

The second step of our comparison with experimental data deals with 

structure functions as functions of x and QL. First, using the results 

of Section 3.1, let us investigate the behaviour of these functions near 

x= 1. Near x = 1 the valence, gluon and sea distributions behave like 

(1 _ x)(3 + t> (1 - x)(4 + t, and (1 - x)(5 + t, 
' poEa - x>J , log (1 _ x) , , respectively- For 

Q2 = 4 GeV2 the powers are respectively 4.3, 5.3 and 6.3, which are good 

values. But let us recall that this result is valid only near x = 1 and 

should not be extrapolated for 0 < x 5 1. Near x = 0 the results are 

those of Section 3.2, i.e., a vertical tangent for xV(x,Q') and gluon 

and sea distributions xG(x,Q2) and xqs(x,Q2) which go to infinity. Fig- 

ure 8 shows the shape of xG(x,Q2) for Q* = 4 GeV2 and 20 GeV2, respec- 

tively. It also shows a function Cst(l - x)~ normalized to the same 

area as xG(x,Q2 = 4 GeV*) for x between 0 and 1. So, even if 

xG(x,Q* = 4 GeV2) behaves like (1 - x)5.3 
llog(l _ x) 1 near x = 1, it is a much 

steeper function than (1 - x)5 on the entire 0 2 x 2 1 interval. Figure 9 

shows the shape of xqs(x,Q2) also for Q2 = 4 GeV2 and 20 GeV2, respec- 

tively. Comparison of xqs(x,Q2 = 4 GeV*) with a function Cst(l - x)~ 

normalized to the same area for x between 0 and 1 shows that the sea 

distribution is steeper than (1 - x) 7 on the 0 I x i 1 interval, even if 

near x = 1 it behaves like (1 - x)6*3 
poEA - x> [ * 
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Let us now compare Gargamelle data2 on quark and antiquark distribu- 

tions inside an isoscalar target, with our predictions of 

xQ(x,Q2) = x[u(x,Q2) + d(x,Q*)] and xG(x,Q2) = x[u(x,Q2) + d(x,Q2)] for 

Q* = 4 GeV2. This is done in Fig. 10. Agreement is good for the quark 

distribution. For the antiquark distribution it is difficult to draw a 

definite conclusion because of poor statistics. Comparison of the BEBC 

data7 on quark distribution with the curve which agrees with the Gargamelle 

quark distribution shows that there is definitely a shrinkage of this dis- 

tribution when Q2 increases (Fig. 11). There is good agreement between 

BEBC data and our predictions of xQ(x,Q2) = x[u(x,Q2) + d(x,Q*)] or 

du(x,Q2) + d(x,Q*) + 2s(x,Q 
2 39 

>I for Q* = 20 GeV*. For the antiquark 

distribution it is difficult to draw a definite conclusion because of 

poor statistics. We investigate now SLAC3 and FNAL4 data on electron 

and muon deep inelastic scattering on hydrogen. These data refer to the 

structure function F;'(x,Q2). They are more precise than those in neu- 

trino experiments and are given for various Q* bins which is better for 

comparison with our predictions. Figures 12, 13 and 14 show this com- 

parison for three different Q2 bins. Our predictions are shown for 3 and 

4 quark flavors 4o (a fifth bottom quark does not change appreciably the 

4 flavor curves because of its $ electric charge). Agreement is good 

for x < 0.4 and suggests appreciable charm quark production (note that 

for x = 0.1 and Q* = 4 GeV2 2 : w = 37 GeV2 , which is well above the charm 

threshold). The relative poor agreement for x > 0.4 may have two causes. 

First, we did not account for target mass effects, which means that we 

should have used the scaling variable 5 instead of the variable x. 35 And 

above all, we have used the relation uv(x,Q2) = 2dv(x,Q 
2 

) which is known 
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not to be satisfied for x > 0.4. Finally let us notice that from com- 

parison of our predictions with data at low x there is no indication that 

the sea distribution obtained in this paper is too steep near x = 0. 

5. CONCLUSIONS 

The 3-quark picture of a nucleon certainly seems to have something 

to do with reality. It is found in this paper that an "unrenormalized" 

valence quark distribution peaked at x = -$ and whose width is related to 

the nucleon radius with a value R - 0.5 - 0.7 Fermi, and which is subse- 

quently modified by QCD gluon bremsstrahlung processes, gives in first 

approximation a good fit of the experimental valence quark distribution 

xV(x,Q2) for Q2 L 2 GeV2. Moreover, this model gives the right partition 

of momentum between quarks, gluons and antiquarks. This last fact was 

already pointed out in References 18 and 19, but the shap.e of the glue 

x distribution predicted in this model seems to be slightly different 

from the observed one. 41 It appears too steep near x = 0, a fact already 

noted in Reference 14. This last point is certainly related to the be- 

haviour of those distributions near x = 0 which is found to violate the 

Froissart bound, a consequence of the intrinsic nature of Eqs. (1) and 

not of the 3-quark picture. So an improvement of this model probably lies 

in taking account of higher order terms like a(Q2>(a(Q2)log Q2)n. There 

may also be an appreciable contribution from diagrams which are not spe- 

cifically of the gluon bremsstrahlung type, like the ones in Fig. 15. 

Moreover, quark and gluon mass effects should be studied. 

Let us emphasize that good agreement with deep inelastic data has 

been obtained with a minimum number of parameters or data input; in fact, 
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only three: the nucleon radius R, the parameter K of formula (15) which 

relatzs the Q* and t scales and finally A which controls the Q2 variation. 
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APPENDIX I 

F&tions Fij(s,t) of f ormulae (8) are functions of t and of the 

%1(s) given by formulae (7): 

tA (s) 
F&S& = e qq 

FGq(s,t) = AGq(s) f(s,t> 

FGG(s,t) = 5 (Act(s) - Aqq(s)) f(s,t) + $ g(s,t) 

F 
/ 

tAqq(S) 
qv(.s,t) =& -e -+( A&s)-Aqq(s)) f(s,t) + + g(s,t> 1 S 

Fq q (s,t> = s s -5 (AcG(s) - Aqq(s)) f(s,t> f $ g(s,t> 

F q &t) = AqG(S) f(S,t> 
s 

where 
O+(s) th- (s) 

e -e 
f(s,t) = x+(s) - A-63) 

th+W the(s) 
g(s,t> = e +e 

h,(s) = + 
F 

AGG(s) + Aqq(s) + dF1 Aqq(s))2 + 8fAGq(s)AqG(s) 

I 

(1.1) 

There is another way of writing the functions F 
ij (s,t>, using the 

following formulae: 
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n (t-vp 
un(s) $- n! (t-v)AGG(s) + vAqq(s) 

tAGG(s) 
FGG(s,t) = e 

/ 

t 
+ dv 

0 

J 
t 

Fqsv(s,t) = & dv 
0 

m 
c n (t-v) (n-1) u%> 5 (n-l)! 

I 
exp 

n=l 
vAGGW + (t-v> Aqq(s) I 

m 
c n (t-v) 6-l) 
n=l 

u%> 2 (n-l)! 
1 [ 

exp (t-v) A GG (s) + vAqq(s) 

tAqq (s) 
Fqsqs(s,t) = e + 2f Fqsv(s,t) 

where 

U(s) = 2fAGq(s) AqG(s) . (1.2) 

In these expansions the Un(s) term corresponds to a gluon produced from a 

gluon through the production of n quark-antiquark pairs (Fig. 4). This way 

of writing the functions F ij (s,t> is very useful when studying the behaviour 

of the parton densities near x=1 (Section 3.1). 
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APPENDIX II 

h 

To solve the inverse Mellin transform problem with boundary conditions 

(14) and (16) and the use of formula (10) requires the computation of the 

inverse Mellin transforms of functions Fvv(s,t), F 
Gq 

(s,t) and Fqsv(s,t) 

given in Appendix I. 

Writing 
$ (s + 1) = log (s + 1) - 2(s l+ 1) - 2 

B2n 

n=l 2n(s + 1) 
2n 

we obtain 
t+-c 

I I 

t 

Fvv(s,t) = e 
e2’ 

(s + l>t 
ew 

I 

m 
c 

B2n t 
n=l 2n(s + 1)2n 

t2-c 
=e 

I 1 4 ApW 

(S + ljct + p) . 

Then we can write its inverse Mellin transform as 

“Fw(x,t) = e Ap(t)f(t + P, $, x) 

U 

s 

where f(r,u,x) is the inverse Mellin transform of e 

(s + lf * 

f(r9UyX) =z $ (log if' -I-' - ') r(,: p) M(r, r + p, log x) 
p=o. 

where M(a,b,z) is a confluent hypergeometric function. 

m 
c 

k 
M(a,b,z) = 1 + z a(a + l)...(a + k - 1) 

k! b(b + l)...(b + k - 1) 
k=l 
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These expansions correspond to the vicinity of x = 1, but they converge 

so welkthat it is possible to use them to compute Fw(x,t) even near x = 0 

(e.g., for x = 0.01). Summing the various terms of these expansions is done 

by computer. Let us note that the different confluent hypergeometric 

functions involved are connected via a recursive formula: 

ymM(t, t+m+l, - y) = (t + m) 
-i 

(t+m- 1) M(t, t f m - 1, - y) 

+ (y - t - m + 1) M(t, t + m, - y) 
1 

2) FGqb,t) 

To get an expansion of its inverse Mellin transform y Gq(x't) near x = 1 

we use formulae (1.2) of Appendix I. A 1 
(s - 1) 

expansion of the integrand: 

m 
AGq (s) c 

(t - v> AGG(s> + vAqq(4 
n=O 1 

is then done. Using the fact that the inverse Mellin transform of 1 

(s - 1)' 
we obtain the Mellin transform of each term 

of the expansion. Finally ?,,(x,t) is obtained after integration over v. 

This method is used on the interval 0.6 G x Gl. 

For small values of x we start with formulae (1.1) of Appendix I that 

we rewrite as a t expansion: 
42 

co 
FGq(S,t) = c 

n AGq(S) 5 h?(s) - h!!(s) 
h+(s) - h-(s) 1 

n=l 

co 
= c AGqW $ L,(s) 

n=l 

We compute the contributions of all the singularities of F Gq(s,t) in the 

complex s plane: s = 1, 0, -1, -2 ,*.-, the various contributions being 
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computed in this order. This is done using the t expansion written above 

togethgr with the following recursive formula 

L,(s) = (AcG(d + Aqq(s) Ln _ l(s) 

- A&) Aqq(4 - 2fAGq(s) 

with Lo(s) = 0 and Ll(s) = 1. Knowing that the inverse Mellin transform of 

1 

(s + P)r 
is +&- (log $) (' - 1) a computer is used to sum all the terms. 

This method is used on the interval 0 < x G 0.6. We check that the two 

types of expansions described above give the same results for x - 0.6. 

3) FqsV(s, t> 

To get an expansion of its inverse Mellin transform Fqsv(x,t) near x = 1 

we use formulae (1.2) of Appendix I and the same method as for F Gqb ,t> * 

For small values of x we start with formulae (1.1) of Appendix I which 

we rewrite as a t expansion: 

Fqs&,t> = &z 
n=2 

where Pn(s) is given by 

pn(s) = u(S) A;;2W + (AGG(s) + Aqq(s) pn-l(s) ) 

- A&) Aqq(s) - u(d) Pnv2 (S) 

with PI(S) = 0, Pz(s) = U(s). Then we proceed exactly as we did for F Gq(s't) * 
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38. Let us notice that the data do not cover the entire 0 L x I 1 range 

fz a fixed value of Q2. In particular it is impossible to know 

the exact limit of F2(x,QZ) when x goes to zero. 

39. The difference between the two expressions consists in respectively 

not taking and taking account of charm production. In using the 

second expression we assume that the sea is SU(4) symmetric. 

40. In each case the sea is respectively SU(3) and SU(4) symmetric. 

41. This may also be true for the sea distribution. 

42. A t expansion corresponds to a pertubative expansion in quark-gluon 

and gluon-gluon vertices. 
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TABLE 1 

Compar_j,son of BEBC results [7] with our predictions for the first five 

moments of the valence quark distribution for Q2 = 5 GeV2 (t = 1.35). 

Valence 

n Mv(n,Q2 = 5 GeV2) 

BEBC t = 1.35 

1 22.5 f 0.5 3 

2 0.45 2 .07 0.41 

3 0.12 Ik .02 0.12 

4 0.045 f .OlO 0.047 

5 0.027 + .007 0.022 
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TABLE 2 

Compazson of BEBC results [7] with our predictions for the moments 

n=2- 5, of the gluon distribution for Q2 = 5 GeV2 (t = 1.35). Errors 

in parentheses come from uncertainty in the value of A used by BEBC. 

The number in brackets (n = 2) has been deduced by BEBC from the nucleon 

momentum sum rule. 

n 

Glue Glue 

MG(n,Q2 = 5 GeV2) MG(n,Q2 = 5 GeV2) 

BEBC BEBC 
I 

t = 1.35 
I 

0.62 0.62 + + .15 .15 (.03)[0.45 -t (.03)[0.45 -t .03] .03] 0.45 

0.12 0.12 t .05 (.02) t .05 (.02) 0.026 

0.03 0.03 f .02 (.015) f .02 (.015) O.dO49 

0.02 0.02 It .Ol (.02) It .Ol (.02) 0.0014 
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FIGURE CAPTIONS 

1. D?agrams leading to functions pi, x involved in equations (1). 
( 1 J Y 

2. Complex s plane. 

3. Diagrams showing the analogy between gluon bremsstrahlung (a) and ,P 

exchange (b) contributions. 

4. "Tower" diagram involving n quark-antiquark pairs. 

5. A 3-quark picture of the nucleon. 

6. Deep inelastic scattering of lepton R (energy E) off nucleon target 

N; E' is the energy of outgoing lepton R'. 

7. a) Comparison of BEBC results [7] with our predictions (solid lines) 

for the first Nachtmann moments of xF3 VN(x,Q2> versus Q 2 . 

b) Comparison of BEBC results with our predictions (solid lines) 

for the first Nachtmann moments of F2 VNkQ2) versus Q2. For n = 2 

the upper line takes account of charm production whereas the lower 

one does not. The higher moments are not appreciably modified by 

charm production. 

8. Gluon distribution xG(x,Q2) as a function of x for Q2 = 4 GeV2 

(t = 1.3, -) and Q2 = 20 GeV2 (t = 1.6, . ). The dashed curve -- 

(---) is a function Cst(l - x)~ normalized to the same area as the 

solid curve for 0 I.x 5 1. 

9. Sea quark distribution xqs(x,Q2) as a function of x for Q2 = 4 GeV2 

(t = 1.3, -) and Q2 = 20 GeV2 (t= 1.6, . ). The dashed curve 

(---) is a function Cst(l - x)~ normalized to the same area as the 

solid curve for 0 < x 1. 1. 

10. Comparison of Gargamelle results [2] on quark ($-) and antiquark 

(*) distributions with our predictions (solid lines) of these 
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quantities for Q2 = 4 GeV2 (t = 1.3) x' is the effective scaling 

variable used by Gargamelle and is considered equal to our variable 

X. 

11. Comparison of BEBC results [7] on quark (+) and antiquark (4) distri- 

butions as functions of x for Q2 = 3 - 100 GeV2 with out predictions. 

The dashed dotted curve (-.-) is x[u(x,Q2) + d(x,Q2)] for 

Q2 = 4 GeV2 (t = 1.3). The two upper solid lines are respectively 

x]u + d] and x[u + d + Zs] for Q2 = 20 GeV2 (t = 1.6). The two 

lower solid lines are respectively x[s f a] and x[u + 2 + 2s] for 

Q2 = 20 GeV2 (t = 1.6). 

12. Comparison of SLAC (4)[3' and FNAL (+)[4] data on FzeP(x,Q2) and 

F2"(x,Q2) respectively, wJth our predictions. SLAC data are for 

42 = 3 GeV2 and FNAL data for 2 GeV2 5 Q2 2 4 GeV2. Only statisti- 

cal errors are shown. The lower solid curve does not include the 

charm quark sea whereas the upper solid curve does; both curves 

correspond to Q2 = 3 GeV2 (t = 1.23).' 

13. Same as figure 12. SLAC data are for Q2 = 6 GeV2 (except the point 

at x = 0.25 which is for Q 2 = 5 GeV2) and FNAL data for 

4 GeV2 5 Q2 5 8 GeV2. The curves are for Q2 = 6 GeV2 (t = 1.39). 

14. Same as figure 12. SLAC data are for Q2 = 12 GeV2 and FNAL data for 

8 GeV2 5 Q2 2 15 GeV2. The curves are for Q2 = 11.5 GeV2 (t = 1.51). 

15. Some diagrams which have not been taken into account in the computa- 

tion of sea quark and gluon distributions. 
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