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ABSTRACT 

We study the implications of non-perturbative instanton field con- 

figurations for QCD predictions in deep inelastic scattering. We find 

that large-scale configurations cannot be neglected when Q2 + ~0, and re- 

normalize the canonical Bjorken scaling functions. Studies of perturbative 

quantum fluctuations in the presence of an instanton indicate that the 

leading logarithms are identical to those occurring in conventional pertur- 

bation theory with zero background field. Thus the usual leading order 

QCD perturbative predictions for deep inelastic scaling violations are not 

altered by instanton effects. 
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At the moment most applications and tests of QCDl are made at large ' 

momentum transfers, and employ perturbation theory with the renormalization 

group uderwriting asymptotic freedom.2 It is of fundamental importance 

to justify this procedure in the presence of the non-perturbative effects3 

which are believed to be crucial in the infrared regions of small momen- 

tum transfers. 4 Such a justification is particularly necessary now that 

experiment 5 is supporting the perturbative predictions for the deviations 

from Bjorken scaling coming from the anomalous dime&ions of QCD.6 A 

start has been made on studying the magnitude of nonperturbative effects 

at large momentum transfers, by looking at the simplest "hard" process 

<e+e- -t hadrons) and evaluating (see Fig. 1) the simplest diagram (a 

single fermion loop) in the presence of the simplest non-perturbative 

field configuration (an instanton). 7,8,9 It was found that this non- 

perturbative effect vanished very rapidly at large momenta Q, 839 supporting 

, the "non-perturbative perturbation theory" prescription of ignoring more 

complicated field configurations at large Q2. In this paper we extend 

our8 previous studies by examining deep inelastic structure functions. 

First we give general arguments, supported by a simple toy calcula- 

tion, that if quantum fluctuations are ignored so that one is basically 

doing free field theory in a background instanton field, then Bjorken 10 

scaling remains valid. However the structure functions themselves, which 

are related to operator matrix elements and hence 1,2 sensitive to the 

infrared behavior of the theory, are renormalized by non-perturbative 

effects'due to instantons which are of arbitrarily large size, even at 

large'Q2. We then study quantum fluctuations using the development 11 
of 

QCD perturbation theory in the presence of an instanton. Inspection of 



the effective QCD Lagrangian shows that the leading logarithms of pertur- 

bation theory are unchanged when an instanton is present. Hence in leading 

order asymptotic freedom 2 and the usual QCD anomalous dimensions 6 are not 

affected by instantons. Thus the leading order perturbative QCD predic- 

tions for deviations from Bjorken scaling in the moments of deep inelastic 

structure functions are not modified by the non-perturbative effects due 

to instantons. We point out, however, that there are problems in the use 
. 

of factorization to make QCD perturbation theory predictions for other 

large momentum transfer processes. 

It is well-known that the functional integral for QCD is a super- 

position of contributions from sectors with gauge field configurations 

having different Pontryagin numbers.4 For a general vacuum expectation 

value (OIABIO> 

c <!wIo>p . 
(OlABlO>= p=s “,“>, 

p=-in 

(1) 

where p is the Pontryagin number, and we have exhibited explicitly the 

division by the vacuum-vacuum amplitude. Up to now, many non-perturbative 

calculations4 have used a dilute gas approximation where the contribution 

from the sector is approximated by a sum over configurations with many 

instantons and anti-instantons with net Pontryagin number p, and quantum 

fluctuations about these configurations are computed perturbatively. If 

the instanton-antiinstanton interactions are discarded, the contribution 

of each configuration is weighted be a factor exp (-:8$/g:). Since the 

coupling gg -f 0 for small instantons, the configurations with just one 
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instanton or anti-instanton should be the most important when it can be 

shown that only small-scale non-perturbative fluctuations are relevant, 

so'that" 

One might expect this to be the case in processes involving large momen- 
. 

tum transfers, and an example seems 7,839 to be the e+e- annihilation 

cross section at high Q2. One might hope that the same would be true in 
. 

deep inelastic scattering, but this is not obviously the case because 

other large scales of the order of the target hadron size are involved as 

well as the small distance (x-Y)~ s l/Q2 between the two virtual currents. 

In the case of e+e- annihilation, the leading short distance singu- 

larity cancels between the two one-instanton terms in the dilute gas 

approximation (2) when one calculates the single fermion loop of Fig. 1. 

This is because the (x-Y)~ + 0 behavior of the propagator in the presence 

of an instanton is the same as that of a fermion in zero field, 12 and the 

normalization of the fermion loop is fixed so that the one-instanton 

contribution to the vacuum polarization is subtracted 798 

- .- 

Jdpd (d/-d4+ [- Y,s1(x’Y;z,P)Y~sl(Y,x;z,P)] 

+Dr YaSOCX,Y)YBSO(Y,dl 1 
(3) 

and has no l/(~-y)~ singularity.* In the case of deep inelastic scattering, 

the leading light-cone singularity in the presence of an instanton again 

has the same power of l/(x-~)~ as that in the absence of an instanton. On 

* 
d(p) is the usual instanton density function,' where p is its size and z 
its position. 
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the other hand, the coefficient of this singularity may differ, because 

it is the matrix element of a bilocal operator between two external 
* 

states,ahich may also be sensitive to the presence of an instanton. 

Consider for example the artificially simple case of scalar currents bi- 

linear in scalar quarks: 

J(x) % :$+(x)+(x): (4) 

so that the connected piece of the time-ordered product of two such . 

currents relevant to deep inelastic scattering is in free field theory 

just 

T(J(x)J+(y))lo = Ao(x,y) :$+(x)+(y):Io + (nonsingular terms) (5) 

The matrix element of the bilocal operator between physical states of 

momentum p (see Eig. 2a) is just 

<PI : ++(x)+ 67): 1% 2 f. ((x-YF, (x-y) l P) . (6) 

In a semiclassical or dilute gas approximation to non-perturbative effects, 

one would first calculate the matrix element <P/J(x)J+(Y) lp>l in the 

presence of an external (anti-)instanton field as in Fig. Zb, neglecting 

quantum fluctuations. Then the relevant operator product analogous to 

(4) can for an instanton of size p located at z 
--- 

~ be represented by 

T(J(x)J+(y)) (1 = Al(x,y;z,p):~+(X)QOT): ,clcz p) 
, 

(7) 

+ (nonsingular terms) 

* 
Here we have used the intuitively valid LSZ reduction formalism to 

extend the validity of (1) to a general matrix element involving strongly 
interacting particles on mass-shell. We hope to discuss this point further 
in a future publication. 
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The matrix element of the bilocal operator 

<PI :++(x)+(y): lP>l = fl ((x-y)2, (x-y) .p; (x-y) l z,zp,z.p) (8) 

is in general not the same as in the zero background field case (5). 

Therefore the delicate cancellation which eliminated the leading singu- 

larity in the vacuum polarization (3) will not in general apply to deep 

inelastic scattering. Hence the one-instanton correction term in (2) will 

have the same Bjorken 10 scaling behavior as the no-instanton term. Further- 

more, we note that unlike the e+e- annihilation cross section, there is 

no kinematic reason why large-scale field configurations should be irrele- 

vant at large Q2. 

To see these points explicitly, we consider the spin-zero analogue of 

deep-inelastic photon-photon scattering indicated in Fig. 3, with two 

currents (at x and y) supposed to be highly virtual, and two currents 

(at v and w) supposed essentially real. It is known13 . in QCD perturbation 

theory that, apart from a contact term which has no analogue in deep 

inelastic scattering off a hadron target, this'process is dominated by the 

light-cone singularity in (x-y). If we calculate the zeroth order scalar 

' box contribution to this process in the presence of an instanton we find 

(for convenience, we have used translation invariance to put the instanton 

at z=O): 



-& [ (x&Z 

1 1 1 
= (y-v) 2 (v-w) 2 (w-x) 2 I 

X 

P2 
t [ 

-- 
l4 W+cJ) (y4p’f w+P2) w+P2)]{ 

p4 [(x-y) z+ (y-v) z+ (v-w) z+ (w-x) 21 + 

. 

+ P2 [(x-y) 2 (v+w> 2+(x+y) 2 (v-w) zt-(y-v) 2 (x-b) 2t(y+v) 2 (x-w) 2-t 2 (x-v) 2 (y-w) 21 + 

+ 2[x2yqv-w)2+y2,qw-x)ztv2wqx-y)2+x2wqy-v)q 
4 

+ (crossed terms) (9) 

There is an amusing technical shortcut which reduces the calculation 

of loops of propagators to the computation of Dirac y-traces. One needs 

to evaluate the traces of Y-matrices o ' f (i,c), o+' E (-i,$, which 

always occur in pairs. Furthermore the sum over instanton and anti- 

' instanton configurations is hermitean: 

Tr (a 0 (2 +B,Y,+s . . . a%+V) + (u+"u%+y. . . uv ) 1 

But Dirac y-matrices can be represented as 

(10) 

yl-l = $ou 2 
(+) 0 
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so that 

yay6 = 
a t-6 

60 

ids 
0 u+TP 

The combination (10) can therefore be written as 

Tr(y"yByY . . . yPyv) (11) 

It is evident that the expression (9 ) does reduce to the free field 

expression 

<ol+(x)J+(Y)J+(v)J(w)) lo>o = & f (xly)L (y-;)-’ ( : )’ VW (,!,,2] 

cm 

in the multiple short distance limit x~y~v~w. Hence a cancellation 

analogous to that in (3) removes the leading non-perturbative renormaliza- 

tion of the contact term. However, Eq. (9) d oes not reduce to Eq.(12) 

when we go to the single light-cone or short-distance limit x~y # v,w, 
* 

which is the direct analogue of the kinematic region relevant to deep 

inelastic scattering from a hadron target. 
** 

It therefore seems that.instantons which are arbitrarily large re- 

normalize the coefficient of the leading light-cone singularity in deep 

inelastic scattering-in a more picturesque language, the parton distribu- 

tion can be distorted by fluctuations in the topological charge structure. 

We remark in passing that there is a logarithmic divergence when Eq. (8) 

is integrated over instanton position. An analogous divergence occurs in 

the scalar loop contribution to the scalar vacuum polarization (o/T(J(x)Jf(y)) IO>., 

In both cases the absorptive part related to the cross section is conver- 

gent when the final state invariant mass is non-zero. 

** 
For simplicity, we only discuss explicitly the short di.stanc? limit: the 

behavior near the light-cone is qualitatively similar. rir 
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This sensitivity to non-perturbative infrared effects should not surprise 

us, since we know 192 that in QCD perturbation theory the matrix elements 

of operators are infrared-sensitive and not reliably calculable. In QCD 

perturbation theory only the high Q2 evolution of the moments of the 

structure functions (or equivalently the evolution 14 of the effective 

Q2-dependent parton distributions) are reliably calculable. We should 

now ask whether these consequences of QCD perturbation theory are reliable 

in the presence of non-perturbative effects. The ab-ove analysis suggests 

that the dilute gas approximation4 is not sufficient to answer this ques- 

tion definitively. This is because nonperturbative field configurations 

which have an arbitrarily large scale, and hence an arbitrarily small 

action A > 8r2/g2 , are relevant in the large Q2 limit. On the other hand - 

it is presumably necessary for the validity of the conventional perturba- 

tive QCD analysis of deep inelastic scattering that quantum fluctuations 

in the presence of an instanton have logarithms of Q2 which are the same 

as those found in the absence of a non-perturbative background field. We 

now study this question using the recent formulation 11 of QCD perturbation 

theory in the presence of an instanton. 

Amati and Rouet 11 show that in the presence of an instanton the QCD 

+Lagrangian can be written as 

LZ?= - $ FPv(AC1+ Aqu)F’Iv (A'l-l- Aqu) - +u(oV~zu)2 

(13) 

-I- c DnUn + (,j, + xV~)FclU 
w LJ 
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In Eq. (13) AC1 is the background instanton field, Aqu is the quantum 

fluctuation, a, B, and y are gauge-fixing parameters, c the usual Faddeev- 

Popov aost, 

(14) 

Dp is a gauge-covariant derivative, and $ and $, are ghost fields corres- 

ponding to the translation and dilation zero modes of the instanton, just 
. 

as c corresponds to the gauge zero modes. To study the leading logarithms 

of the perturbation theory developed using the Lagrangian (13), we need 

only look at the pieces in it which have operator dimension 4. Inspection 

reveals that most of the extra terms in (13) compared with the normal QCD 

Lagrangian are of dimension less than 4, and so do not affect the leading 

behavior as Q2 -+ m. The only new terms of dimension 4 are 

A94 5 cDn 
I 
(3, + xV$)DVAy + Ay T 1 (15) 

Since there are no kinetic terms in the JI and $ "propagators", they are 

proportional to 84(k). Hence the contributions to the Callan-Symanzik 

fi function which involve $ and Q, have no logarithm at lowest order in 

a 
S’ 

Therefore the coupling constant as(Q2) % l/Rn Q2 as Q2 -+ 0~ in the 

presence of an instanton , just as in the absence of a background field. 2 I 

Similarly, the new ghosts J, and $, clearly do not contribute to the O(as) 
. 

calculation of the anomalous dimensions of leading twist operators. These 

two observations imply that the standard QCD perturbation theory pre- 

dictions for the powers of Rn Q2 in the deviations from Bjorken scaling 

of moments of the deep inelastic structure functions also apply to contri- 

butions from one-instanton background fields. As emphasized above this 
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* 
result is necessary, though not sufficient, for the usual QCD perturba- ' 

tion theory results to survive non-perturbative phenomena. 

We recall that the identity between (8) and the free field box in 

the multiple short distance limit x"+~'N means that subtraction (2) re- 

moves the leading singularity from the non-perturbative contribution to 

the contact term. This implies that the leading order QCD prediction 13 

for deep inelastic scattering off a photon is also unaffected by non- 

perturbative effects. . 

Given that the leading Q2 behavior of non-perturbative instanton 

configurations to deep inelastic scattering is identical to, and hence 

indistinguishable from, contributions with no background field, how 

suppressed are subasymptotic corrections in deep inelastic scattering? 

A recent paper 15 ' argues formally that all non-leading logarithms in the 

. presence of an instanton are also identical with those in zero background 

field. On the other hand, it is clear from the analysis of the first 

part of this paper, and in particular from Eq. (8), that there will in 

general be non-perturbative corrections to deep inelastic scattering which 

are O(l/Q2)" times some power of log Q2. They arise, for example, from 

instantons of size P >> l/Q which are located a long distance (x-z) >> 

(x-y) ti l/Q from the deep inelastic currents. Hence their coefficients 

are not reliably calculable with our present understanding of nonpertubative 

. 

* 
We are encouraged that it is obviously possible to generalize this result 

to multi-instanton configurations. 
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QCD.* They will correspond to the lower twist operator contributions of ' 

normal QCD perturbation theory. There will also be 'contributions from 

p, x-z =0(1/Q) analogous to those we found8 in the e+e-+ hadrons total 

cross section which will show up in the coefficient functions of the 

operator product expansion. However they will be O(Q-12) and hence not 

the dominant non-perturbative effects in deep inelastic scattering. 

What of other hard scattering processes' and the applicability of 

QCD perturbation theory? The perturbatlve analyses 1.7 indicate that the 

leading logarithms in the cross sections for such processes can be 

factorized in terms of universal Q2 evolution equations for parton distri- 

butions14 interacting through QCD Born graphs written in terms of 

a, (Q2) l The identity of leading logarithms in the presence of an instan- 

ton means that the usual Altarelli-Parisi 14 Q2 evolution equations still 

apply to the parton distributions measured in deep 

As usual, we introduce effective q2-dependent 

qi(x,q2), g(x,q2). Their moments 

q;(s2) El 'dx xn-1qi(x,q2) . 
0 

inelastic scattering. 

parton distributions 

(16) 

' (and similarly for gluons) obey the evolution equations 18 

. - q2 6 q2(q2> = YIj i2 $ 
( ( )I 

(2; (q2 > (17) 

* 
These effects will complicate analyses 16 of subasymptotic quark mass 

corrections to Bjorken scaling in the case of very light quarks with 

masses m ; O(A), whose A is a typical strong interaction scale of a few 

hundred MeV. On the other hand, perturbative corrections for very heavy 

mass quarks are probably still reliable. 



-13- 

As we saw above, at first order in g (q2/p2>, yyj is insensitive to the 

vacuum structure of the theory. Therefore to this order the evolution 

equatic%s are unchanged when we take into account non-perturbative effects, 

at least in a dilute gas approximation--only the infrared sensitive initial 

boundary conditions qy(qi),qn(qi) are affected. Presumably the logarithms 

for other hard scattering processes calculated in background instanton 

fields will also be identical with those found 17 in QCD perturbation 
.I 

theory. In this case the same Q2 evolution equations would apply to the 

parton distributions "measured" in these hard scattering processes. But 

it is not obvious that the infrared-sensitive initial conditions will 

factorize in the manner necessary for the normal ansatz of universal 

* 
effective parton distributions to be applicable. Stated in another way: 

an instanton or other nonperturbative field configuration may affect 

simultaneously the parton distributions in two colliding hadrons as in 

Fig. 4, so that they are not independent of each other, and the cross 

sections do not factorize. Schematically, in deep inelastic scattering 

one measures 

qbl (x,q2) + (18) 

whereas in (for example) a Drell-Yan collision the cross section is pro- 

portional to 

which contains no term of the type 

q(o) bbq2P (E,q2)exp =$E 
i 1 

(20) 

* 
We note that this has not been demonstrated in the usual perturbative w 
analyses, 17 either. 
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as would be required if the cross section were to factorize into two ' 

terms of the form (18). It is perhaps possible that more sophisticated 

non-perhturbative effects may restore factorization, but this is a more 

complicated question requiring further study. 

We should re-emphasize that our results were obtained in the context 

of a dilute gas approximation, and that the persistent relevance of large 

instantons at high Q2 indicates that this approximation is invalid. 

Therefore our findings that QCD perturbation theory'results survive non- 

perturbative effects are at best indicative and partial, and the problem 

cannot be fully resolved until more sophisticated non-perturbative calcu- 

lational schemes are developed. 

ACKNOWLEDGEMENTS 

We would like to thank U. T. Cobley, S. Coleman, R. J. Crewther, 

A. Din, J. Finjord, L. Maiani and G. Parisi for useful discussions. One 

of us (L.B.) would like to thank the CERN theory division for its 

hospitality, while two others (J.E. and M.K.G.) would like to thank the 

FNAL and SLAC theory groups for their hospitality. 



-15- 

REFERENCES 

1. G. Altarelli, 'Partons and Quantum Chromodynamics," Lectures pre- 

sented at the 9th Summer School of Particle Physics, Gif-sur-Yvette, 

Fiance, Rome preprint INFN-ROME-701 (-1978); J. Ellis, "Applications of 

'QCD", SLAC-PUB-2121, to appear in 'Current Trends in the Theory of 

Fields," to be published by the APS; H. Georgi, "The use and abuse 

of the parton model", Harvard preprint HUTP-78/A003 (1978); C. H. 

Llewellyn Smith-1978 Schladming Winter School Lectures, Oxford Uni- 
. 

versity preprint 47/78 (1978). 

2. D. J. Gross and F. A. Wilczek, Phys. Rev. Lett. 30, 1343 (1973); 

H. D. Politzer, Phys. Rev. Lett. 3, 1346 (1973, H. D. Politzer, 

Phys. Rep. !&, 129 (1974). 

3. A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, 

Phys. Lett. 59B, 85 (1975); A. M. Polyakov, Nucl. Phys. B121, 429 

(1977). 

4. G. 't Hooft, Phys. Rev. e, 3432 (1976); C. G. Callan, R. Dashen 

and D. J. Gross, Princeton Institute for Advanced Study preprint 

COO-2220-115 (1977); S. Coleman, Harvard University preprint 

HUTP-78/A004 (1978). 

5. P. C. Bosetti et al., Oxford University preprint 'Analysis of Nucleon 
_.. 

Structure Functions in CERN Bubble Chamber Neutrino Experiments" 

(1978). 

6. D. H. Gross and F. A. Wilczek, Phys. Rev. E, 3633 (1973) and E, 

980, (1974); H. Georgi and H. D. Politzer, Phys. Rev. I& 416 (1974). 

7. N. Andrei and D. J. Gross, Princeton University preprint 'The Effect 

of Instantons on the Short Distance Behavior of Hadronic Currents' 

(1978). 



-16- 

8. L. Baulieu, J. Ellis, M. K. Gaillard and W. J. Zakrzewski, CERN 

preprint TH 2482 (1978), to appear in Phys. Lett. B. 

9. T. Appelquist and R. Shankar, Yale University preprint "A General 

Approach to the Computation of Instanton Effects"- (1978). 

10. J. D. Bjorken, Phys. Rev. 179, 1547 (1969). 

11. D. Amati and A. Rouet, CERN preprint TH-2468 (1978). 

12. L. S. Brown, R. D. Carlitz, D. B. Creamer and C. Lee, Phys. Lett. 

E, 180 (1977). * 

13. R. L. Kingsley, Nucl. Phys. s, 45 (1973); T. F. Walsh and P. Zerwas, 

Phys. Lett. 44B, 195 (1973); E. Witten, Nucl. Phys. B120, 189 (1977); 

C. H. Llewellyn Smith, Oxford University preprint 56/78 (1978). 

14. G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977). 

15. A. Rouet, Marseille preprint 78/P.l009, (1978). 

16. H. Georgi and H. D. Politzer, Phys. Rev. @, 1829 (1976). 

17. The most complete analyses are contained in Yu. L. Dokshitzer, 

D. I. D'yakonov and S. I. Troyan, "Inelastic Processes in Quantum 

Chromodynamics" in Materials of the 13th Winter School of the 

Leningrad B. P. Konstantinov Institute of Nuclear Physics, Leningrad, 

p. l(.English translation available as SLAC-TRANS-183); R. K. Ellis, 

_-- H. Georgi, M. Machacek, H. D. Politzer and G. G. Ross, MIT preprint 

"Factorization and the Parton Model in QCD" (1978), and paper in 

preparation; A. Mueller, Columbia TJniversity preprint (1978). For 

reviews and references see the papers listed in Ref. 1. 

18. L. Baulieu and C. Kounnas, Ecole Normale Supgrieure preprint 78-4, 

.to be published in Nucl. Phys. B. (1978). 



-17- 

FIGURE CAPTIONS 

1. The single fermion loop contribution to the hadronic vacuum polarization 

calc^ulated in the presence of an instanton. 

2. The "handbag diagram" contribution to deep inelastic scattering calcu- 

lated (a) without, and (b) with an instanton present. 

3. The box diagram for photon-photon scattering in the presence of an 

instanton. 
. 

4. A hadron-hadron hand scattering process in the presence of an instanton. 
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