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ABSTRACT 

Using the ring of complex quaternions, the more active view 

of weakly coupled gauge fields is formulated in such a way that, 

in the SU(.2) x U(1) model of Salam, Ward, and Weinberg, for 

example, AS # 0, AQ 2 0 effects are properly suppressed without 

the appearance of a new quark field in the Lagrangian--only p, n, 

and h. quark fields appear. Here, S is strangeness and Q is 

electric charge. The success of the more active view of the 

SLJ (2) x U(1) model in describing I'$ 

charmed particles, $/J, $', T, T', etc., in terms of p, n, and 

h quarks is not disturbed by this new formulation. Here, 

2 and ma is the mass of a. 
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1. INTRODUCTION 

In a previous work, we pointed out that,in the more active view 1 of 

the gauge theoretic formulation of weak and electromagnetic interactions, 

it was possible, in the SU(2) X U(1) model* for example, to explain, 

entirely in terms of p, n, and X quarks, the relationship between the 

rate for % -+ 511 and the FL -KS mass difference in the form (x- "K,)/"K' 

where mK = ( mKL+ m~~)/2 and ma is the mass of a, a = KL,KS. The explana- 

tion resulted from taking the hadronic Lagrangian density to be as 

illustrated in the following expression for the Lagrangian density 9of 

the SU(2) X U(1) model of Ref. 2: 

Lz?= c 
q=I, ,pA,n,A 

In 

+c 
[ 
i a ,cia + (k’/3)S)Pa R 

a={n,X) ' , 
+ aRCill - (g'./3)$)aR] 

PA 
iJ5Ln+h.c. 

where h.c. denotes the hermitian conjugate, 

with 

and 

P = P, cos ec + pA sin ec , 

i 

L; , ( 1 a=p 
La = 

n”A 

L(i) ’ a = n,X 

L = (.l-.y5)/2 , 

aR 
= (l+y5)a/2 , a = jn,A.p,.Ph/ Y 

iD = $2 
?J 1-I 

- g:."', + (:g’/6)Bp 

(2a) 

(2b) 

(?c) 

(2d) 

(2e) 
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where i are the usual SU(2) gauge fields, B is the U(1) gauge field, and 
-t+ 3 
2=0/2 where o are the Pauli matrices. As usual, g and g' are the 

respective SU(2) and U(1) coupling constants. The '... in (1) represents 

the Yukawa couplings of the quarks to the usual Higgs doublet in the 

model in the convention of Ref. 1 and the remaining part of 9. This 

remaining part of the Lagrangian (the lepton-boson part) is also taken 

in the standard form, as illustrated in Ref. 1 for example. The single 

parameter 5 was then shown in Ref. 1, in the free quark approximation, 

to be consistent with both the observed rate for KL -f yp as well as 

(mKL- %)'mKy 
to ten percent. For this reason, we do not take (1) 

lightly. 

However, the motivation for constructing (1) was to explain the 

suppression of unwanted AS # 0, AQ = 0 effects, where S is the strange- 

ness and Q is electric charge, without using new fields. Indeed, recently, 

it has been shown 3 that, in the theory of differential dispersion rela- 

tions, 4 the ratio m 
Q/J/% 

is computable to 1% in models of the hadrons 

involving only physical p, n, and X quarks. Here, m 
$/J 

is the mass of 

the IJJ/J particle5 and mD is the mass of the "so-called" charmed particles 6 

DO , D+ in the SU(3) symmetric limit. Thus, it is an interesting question 

as to whether or not the charmed physical hadrons, as defined experi- 

mentally by their decay modes and their masses, require the use of a 

charmed quark in the hypothetical underlying quark field theory. The 

Lagrangian (1) was introduced to address this question. But, even though 

physical hadrons, according to Cl), only consist of p, n, and X quarks, 

the appearance of p, and ph in cl) may lead some to believe that a new 

physical quark has heen introduced after all. Our purpose here, 



therefore, is to reformulate (1 ) in a manner in which it only refers to 

(P,n&), explicitly. 

Before turning to this reformulation, let us emphasize that the 

question of the ultimate use of a physical new quark in the problem of 

the description of hadrons by quarks will of course not be addressed 

here. But, we do wish to mention that the ability to compute7 mT from 

“UJ within 2% in the theory of differential dispersion relations, 4 with- 

out using a new quark, tends to indicate that new quarks are not neces- 

sary for the description of present day hadrons. Here, mT is the mass 

of the upsilon particle. 8 Evidently, this indication deviates con- 

siderably from the lore. ' Q't ui e independent of the outcome of the dis- 

cussions about the meaning of the new particles, we feel that our re- 

formulation of (l) may be of interest in its own right. 

Our work is presented as follows. In the next section, we give the 

desired reformulation of (1). Then, in Section III, we give a simple 

realization of the ideas in Section II. 

II. QUATERNIONIC FORMULATION OF THE SU(2) x U(1) MODEL 

Here, we proceed as follows. First, recall that, in arriving at (l), 

we looked at the one-loop Feynman diagrams in the free quark approxima- 

tion for KL -t vu and concluded that the rate for this process was so 

small that it must be very difficult for an np vertex to be reached, by 

direct propagation of p, from a PA vertex or for a xp vertex to be 

reached, by direct propagation of p, from a in vertex. This suggested 

that the n and h aspects of p were orthogonal, as illustrated by (2a). 

However, there is another way to express the empirical orthogonality 

of the n and A aspects of the p--we can use quaternions. Specifically, 
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we write zas (the E abc are the SU(2) structure constants) 

YLJZ = c 
q={p,n,XI 

i(i;qi@Lq -I- iR(i$')qR)+ cos ecsn(Cpi@Ln + h*c.) 

+ sin 8 s 
( 
< i@Lx + h.c. 

CA P 

-kaB-aB 
( 4 llv up 

2+ 
) -** ' 

where s n' 3 are members of a quaternion ring with 

(3) 

2 
s s nh + ShSn = 0, s2 = is n n' 5 = is A ' (4) 

and the covariant derivatives are, again, 

iD =ia - 
I-I lJ E&b, + k' mu (5) 

iD' 
1-I 

= ian + Qfg'B 
v 

, f=p,n,X, (6) 

with g and g' again respectively equal to the SU(2) and U(1) coupling 

constants so that QfleRl is the electric charge of fermion f; e R is the 

renormalized electron charge. Here, . . . again represents the remaining 

part of the Lagrangian involving leptons and the usual scalar fields 

(-the Higgs doublet).2 This latter part of is we will continue to take 

after the convention of Refs. 1 and 2. _ 

Thus, the space of numhers is contained in the ring of complex 

quaternions over the field of the usual complex numbers a+bi, a, b real, 

with the basis of the quaternions given by (l,j,k,E): 

j 2=k2=k2=-1 , jk=E , jk=-kj , j&=-Rj , kR=-Rk ; (7) 

the complex numbers commute with j,k,R. 

The Green's functions are most simply obtained from the Feynman 

path-integral: The generating functional iZ for connected Green's 
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functions is (.suppressing lepton and boson sources) 

(8) 

where . . . represents the measure over the remaining field variables and 

over the gauge constraint. As usual, n,, ta are the sources of 2 and a, 

respectively. 

Since the coefficients of the quaternions in the arguments of the 

exponential on the RHS of (8) are"rea?'in our path-space field theory 

formulation (and would be hermitian in the operator field theory formu- 

lation), the functional iZ necessarily corresponds to a unitary, rela- 

tivistically invariant set of transition amplitudes. It should be com- 

pared with the work of Edmonds and others on more general quaternion 

formalisms, 10 wherein one attempts to represent the Minkowski space and 

its Lorentz group on a complex quaternion algebraic structure or wherein 

one considers a quaternionic generalization of ordinary quantum mechanics. 

We do not find these more comprehensive algebraic structures necessary 

or desirable for our purposes here. Only linear combinations of sn and 

sA can occur in (81. 

Indeed, the suppression of unwanted AS # 0, AQ = 0 effects at the 

one-loop level is now an immediate consequence of the fact that 

s s nh +ss =o . hn (9) 
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For, to second order in the flavor changing interactions in (3) one has 

&~A~X,[COS ecsn(~p(xl)i@Ln(x,) + h.c.) 

+ sin e c A(~p(xl)iJJLAbl) + h.c.)] s 

jd4x2[cos ecsn(i;p(x2)iP)Ln(x2) + h-c.1 

+ sin 0 s 
( 
< 

Cl P 
(x2)i@Lh(x2) + h.c. 

iI 

= +&4xld4x2[si cos2 ecj'ip(xl)i@Ln(xl) -f- h.c.) (Ep(x2)i@Ln(x2) + h.c.) 

+ 

+ 

2 
9 sin 2 f3c(~p(xl)i$Lx(xl) -I- h.c.)(<p(x2)i@Lh(x2) + h.c.) 

sin 8 c cos e I 
CISnSA p ( 

z (xl)i$Ln(xl) + h.c. 1 

cp(x2)iJ4Lx(x2) +- h.c. zp(xl)i@Lh(xl) + h.c. 

. (10) 

Interchanging the labels 1 and 2 on the xi in one of the two terms pro- 

portional to sin ec cos ec in (10) shows that the possible second order 

AS # 0, AQ = 0 interaction is contained in 

1 2! sin ec cos ec (sns~+shsn)[d4xl~d4x2[(~p(xl)i@Ln(x1) + h-c.) 

( ~p(.x2)i$Lx(x2) + h.c. 

= 0 . (11) 

Thus, there is no unwanted second order AS $1 0, AQ = 0 -transition. 
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Looking at fourth order, we have, using (10) and (ll), 

& 
/ 

d4x1d4x2d4x3d4x4 cos . 2 ec(<p(xl)i@Ln(xl) + h.c.) (Ep(x2)ilLn(x2) + h-c. 
) 

+ s.: sin2 ec(~p(xl)i@Lx(xl) + h.c.)(Lp(x2)i$Lh(x2) + h.c.)] 

cos 2 ec(Ep(x3)i@Ln(x3) + h.~.)(~~(Xq)i$L~(x~) + h.c.) 

+ s; sin2 eC(~p(~3)i@LX(~3) + h.c.)(<n(x4)i@Lh(x4) + h.c. 

= & d4x1d4x2d4x3d4x4 .J cos 4 ec i; (t (x.)i$Ln(sj) + h-c.) 
j=l P J 

+ s; sin 4 ec J~l(~p(xj)iBLi(xj) + h.c.) 

+ s;s; 2 cos ec sin 2 ec (tp (xl) i$Lnbl> + 

(Lp(x3)i$Lh(x3) f h.c.) (cp(x4)i@Lh(x4) 

22 .2 + sAsn sin ec ~0s~ ec(Ep(x1)i15Lh(x1) -t 

i 
<p(x3)i@Ln(x3) + h.c. Ii Lp (x4> i@Ln (x4> 

h.c.)(<p(x2)i$Ln(x2) + h.c. 

f h.c. 1 

h.c.)(<p(x2)i$LX(x2) + h.c.) 

+ h-c. )I . (12) 

However, interchanging the labels on the x. in one of the two terms in 
3 

(12) proportional to sin2 ec cos2 Bc shows that the possible AS # 0, 

AQ = 0 interaction at fourth order is proportional to 

s;s; + s;s; = isnis . * A + iShlSn = (-) (SnSh + SASn) = 0 - (13) 

Thus, there is no fourth order AS # 0, AQ = 0 interaction. It follows 

that there are no unwanted one-loop AS # 0, AQ = 0 interactions. 

The absence of A,S # 0, AQ = 0 transitions to all orders is easily 

established by induction from (4) and (11). This, as we pointed out 

earlier, is too restrictive, since, for example, the mass difference 

Y-X 
is not identically zero--rather, it is suppressed. However, just 
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as we showed in Ref. 1, the additional interaction density Sr given by 

h 

with C2 + 4 X 10 -6 allows one to relate r(KL -+ tP) to 
(y mKs)'% to 

ten percent, where I'( KL + CP) is the rate for 
5 -f ib. 

At this point, the reader may wonder if there exist two quaternions 

S n and sx which have the properties (4). We construct them as follows. 

Writing 

S = n ( 
'aoi + alj + a2k + a,%)/2 

(15) 

SA = hoi + b,j + b2k + bg!2 
i 

where a a' bu are real numbers, we see that 

SnSX + SXSn = 0 

* 

$ aubu= 0 , bOal+aObl = 0 , boa2+b2ao = '0 , boa3-i-a0b3 = 0 . 
a=0 

(16) 

Further, ,, 

S2 = is 2 
TX = is n n' x 

a2/2a0 = a0 , a0 = 1 , b2/2bo = b. , b. = 1 , (17) 

where 

a2 = 2 a&au , b2 = i bubu . 
a=0 a=0 

Solving (.16) and (.l7) we find 

a = (1,;) , b = (1,-i;) , 

where fi = (al,a2,a3) is a unit 3-Vector: 

(18) 

(19) 
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The reason for the choice (,lS) for sn and sx is that we wish to 

maintain, for example, the time reversal property that the pure imaginary 

number i goes to -i under a time reversal transformation so that the more 

general pure imaginary "numbers" sn and sA will be taken to have the same 

property: sa -+ -sa, a=n,h, under time reversal. The norms of sn, sx may 

be taken to be 

II s*l/ = II “A II = 1 

with the agreement that 

II z() + zlj + z2k + ~3~1~ = 2 )zu12 , 
a=0 

(20) 

(21) 

where z c1 are ordinary complex numbers and lzol is the usual norm on com- 

plex numbers. Obviously, the norm (21) is not a morphism of multiplica- 

tion. But, this appears to be of little consequence, physically. 

In closing this section, we note that, like i, sn and sx satisfy the 

equation 

2 Z =iz . (22) 

This appears to be sufficient to make the quantum field theory sensible. 

This last remark is made more manifest by the explicit construction in 

the next section. 

III. EXPLICIT REALIZATION 

We wish now to be more explicit about effecting computations with 

S and s n A' Specifically, it is well known that (.l,j,k,R) may be realized 

by (1, iol, io2, -io3), where oi are the Pauli matrices. Taking, for 

example, 
?. 
n = (0,0,-l) (23) 
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in (18) we see that, in the repre.sentation 

we have 

(24) 

S n = +(i+io3) =i $(l+03) = i(i i) , 

3 
0 0 = +(i-io3) = $1-0,) = i o 1 f 1 . 

(25) 

(26) 

To make the connection with. transltion amplitudes we replace the usual 

plane waves 

ua = 

with 

u; = u,(Y) , for a=n,h 

and 

(27) 

cos e 
u; = ua C 

i ) 
, for a=p , (29) 

sin 8 C 

where, in choosing (29), we have made the replacements cos 0 s -f s Cn n' 

sin BCsh -t sA in (3) for convenience. The analogous definitions hold 

for the antiparticles. Eere, 

k. = ((? + mt)1'2/ (.30) 

and u(k) is the usual positive energy spinor solution of the free Dirac 

equation for a particle of mass m and four momentum k in the convention a 

of Bjorken and Drell, 11 for example, a=n,h,p. The obvious scalar product 

is then understood on the space of s s : n' X For n, for example, defining 
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-1 U 
n = in(O 1) in the standard notatfon of Ref. 11 for En, we have 

4r 

f$~,: = iinun(o 1) (y) = TyJ, , etc. (31) 

The tree and one-loop phenomenology associated with (14) and (25)-(31) 

is not unequivocally inconsistent with observation, as one can see from 

Refs. 1 and 12. We would like to emphasize that this rather simple 

realization of sn, sA may not suffice for the ultimate description of 

nature, although it appears to be sufficient for present day observations. 
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