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The case of the channeling radiation for electrons was considered in 

the previous work [Il. Th e use of the electrons for producing and detect- 

ing this type of radiation has the advantage that available electron beams 

have much smaller transverse phase space than thoseof the positrons. In 

addition, the intensity of radiation of electrons is somewhat larger in 

comparison to the positrons simply due to the fact that the electron is 

captured by an attractive ion potential of the crystal and, therefore, 

it moves in a strong electric field. The positron, on the other hand, 

is captured by a repulsive potential formed by the two next ion planes. 

It moves in a rather weak field oscillating around the middle plane. This 

remotenessfrom ions increases the ratio of the channeling radiation in- 

tensity to the bremsstrahlung one making the experiment with the positrons 

easier to interpret. SO it is worthwhile to fulfill the calculations also 

for the positrons. 

Our aim is to find the full average intensity of channeling radia- 

tion. This can be done easily for any given potential. This approach 

does not give the spectra of emitted radiation (but it allows one to find 

the position of the spectra maximum). The last one can be found only for 

equivalent harmonic oscillator. The shape of the emitted line can be 

found in work [Z], where such a shape was calculated for Si in parabolic 

approximation for potential corrected for unharmonicity. Since all 
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characteristics of the radiation are of interest, the two approaches 

supplement each other and shed more light on the phenomena. 

1. The Continuum Potential for Positrons 

To find the potential for positrons we use the Lindhard's potential 

[3] for electrons and the fact that it is decreasing quite rapidly with 

the increased distance from an ion plane. Therefore, for the vicinity of 

the middle plane the average potential for positrons is simply the sum of 

the potentials produced by the two nearest ion planes: 

u(y) = A [qi&jGG -. M ++&JjGC2 -J&-q. (1) 
c 

Here y is' the distance from the middle plane: -dp/2 <y< dp/2 All other 

parameters are the same as in [I] except that A is now positive to pro- 

vide the repulsive force on the positron. 

Let us now introduce a new variable 

X = 2yldp , I4 < l (2) 

and a parameter b = ZCa/dp<i; ---~ 

Notice that the variable x differs from the one introduced in [I]. 

The continuum potential and, consequently, all other functions for the 

electrons dependsonlyon one parameter, a, while the continuum potential 

for the positrons depends on two unrelated parameters: a and do. The 

tial (1) can be rewritten now U(y) = Adp Ub(x), where 
2 

ub(x) = &pz+J&i$P -2. 

Fig.1 represents as an example Ub(x) for b2 = 0.0552 (solid curve). 

small x (x<<l) Ub(x) can be expanded into the series: 

n r\ 

u,(x) = 2&7 - 2 + 
bZ xL 

3/z: 
E u,(x) 

(l+b2) 

uoten- 

(3) 

For 

(4) 
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The function U,(x) for the same value of b2 is plotted also in Fig,. 1 

for coiparison (dashed curve). The value ( 1 - 
uow 
WV- > 

might serve as 

a measure of unharmonicity. For the b2 = 0.055 this value equals 37%. 

2 I The Intensity of Radiation 

To calculate the radiation intensity of the positrons we use the 

same approach as in [I]. For the average intensity, we now get: 

1 = Io$(Xm) , 

where I, = 2 e2y2A2/3 m2c3, and 

Fj,(xm) = 1 2 
Pb(X,Xm)dX 

J Pb (X,X,) dx 
0 

Here Xm is maximum excursion of the trapped positron from the middle 

plane (in units of the half distance between planes dp, (2)). The 

function Pb(X,Xm) is defined by: 

I 
- b* 

D- m- w 
For small xm we get: 

Pbh’xm) = (1+b2)3'4 

bp 

(5) 

(6) 

The denominator in formulae (6) is proportional to the period T of the 

positron oscillations: 

(7) 

(8) 

T(x,,) = J mYdP 2 - 
A 

Tb(Xm) (9) 
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where Jb( xm) = 
/ 

xm 
Pb (x,xm) dx. For small Xm, T is independent from 

0 

x,: 

J mYdp 3/4 
T=n - (l+b2) 

A b 

The functions Fb(Xm) and Tb(Xm) are presented in Figs. 2 and 3, respect- 

ively, for different values of the parameter b2. For Small Xm, Fb(xm) 

equals: 

FE(X,) = 
2 b4xm2 

(l+b2)3 ' 
Xm << 1 . (11) 

This value gives the estimate for the case of parabolic well approxi- 

mation. 

3. The Position of the Spectra Maximum 

For the interesting case of small ratio of trajectory angle to the 

radiation characteristic angle, l/r, the maximum of the spectra occurs 

at the frequencies [l] : 

ii = 23-y2/Tbm) (W 

As can be seen from Fig. 3 the function Tb(Xm) has rather slow dependance 

on x, at least for not very small values of parameter b2. So the value 

for T(o)from (10) which is the valueforthe corresponding -harmonic 

oscillator is a good approximation: 

For very small b2 and for large xm, the values of Tb(Xm) should be taken 

from Fig. 3. 
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4. DIscussion and Numerical Example 

The dependance of Fb on Xm suggests an interesting conclusion: 

the intensity of the channeling radiation for the positrons grows very 

rapidly with Xm , which means that the main part of the radiation is pro- 

duced by positrons with large angles in the plane of the channel. One 

must remember, of course, that this angle should not exceed the limit at 

which the energy of oscillations will be greater than the barrier energy 

of the potential [I] . Or, in other words, the maximum excursion xm of 

the particle from the middle plane should be less than 1. This conclusion 

is exactly opposite the one for the electrons where the main part of the 

radiation comes from electrons with small amplitudes. 

Such features of radiation once again stress that the-calculations _ 
of the-i_ntensit.y of radiation in the parabolic approximations are too 
rough and can underestimate the effect. 

Let us again, as in [l] , take an example of the crystal with para- 

meters: A = 2.13 x 104 MeV/cm, d = 3.75 x 10-8 cm, Ca = Q.42 x 10-8 cm. 

Then b = 0.235, I, = 1.5 x 1013 y2 eV/sec. 

For any given y and the trajectory angle a with the crystal axis. in 

the plane of oscillation one can find first the value of xm from the 

equation: 

(14) 

Then it is easy to find the corresponding values of Fb(xm) and Tb(Xm). 

Table 1 gives the function xm = fl(-y,a) for different values of y and a and 

for b2 = 0.0552. Table 2 contains values of Fb for the same values of y 

and CX. Dashes for big values of y and CC mean that for these parameters 

there is no channeling. 

Table 3 presents the comparison of radiation intensities and the 

spectra maximum for different y and cx calculated by means of formulae (6) 

and (9) ("exact") and (12) and (13) ("harmonic oscillator'), respectively. 

One can clearly see that the bigger x,is,the bigger is the differ- 

ence between results which one gets by means of exact solution and in the 
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approx-imation of the parabolic well. This is especially true for the 

whole intensity of radiation where the discrepancy can be two orders of 

magnitude. On the other hand, the spectra maximum frequency, if corrected 

for unharmonicity, is determined by approximate solution quite well. 

Acknowlegements 

I am grateful to T. Knight for the numerical calculations and for 

the preparation of graphs. 

References 

1. Kheifets, S., "The Radiation of the Electrons Channeled between 

Planes of a Crystal", SLAC-PUB-2137, PEP Note-270, July 1978. 

2. Pantell, R-H., Alguard M.J., "Radiation Characteristics of Planar 

Channeled Positrons", Dept. of Electrical Engineering, Stanford 

University, Stanford, CA 94304 (unpublished). - 

3. Lindhard, F., Mat. Fsy. Medd. Dan. Vid. Selsk., 34, no. 14, (1965). 



I 

-7- 

4. TABLE 1 

xm for Different y and c1 (b2 = 0.0552) 

lo3 
L 

104 

I 2x104 

I 4x104 

10 -3 

.79 

o.3x1o-3 

.33 

.77 

.lO 1 

--tit-t+ 

I .51 

TABLE 2 

Fb for Differentyand c1 (b2 = 0.0552) 
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Fig. 1 - The Potential U(x) for the Channeled Positron (Solid Curve). 

The dashed curve represents corresponding parabolic well. 
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Fig. 2 - The intensity of the channel radiation of the positron in the 
units 2 e2y2A2/3m c 2 3 for different values of the parameter 
b = 2 Ca/dp. 



I 

Tb 

I5 

IO 

5 

0 

a -78 

-- 

\ 

b’ = 1.0 

0 0.2s 0.4 0.6 0.8 1.0 
Xmax 3457A2 

Fig. 3 - The period of oscillations of the channeled positron in the 

units 2,/Ffor different values of the parameter b = 2Ca/dp. 


