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ABSTRACT 

A simple relativistic expression for the structure function of a 

2-body S-wave bound state in X$ 3 theory is obtained at all values of the 

scaling variable in terms of the DGSI spectral function of the Bethe- 

Salpeter wave function in the ladder approximation. Similar result is 

given for a fermion-antifermion bound state with approximate wave function 

derived from conformal invariance. At small x the structure function has 

the expected peak broadened by binding effect and for a fermion-antifermion 

S-wave bound state it behaves like (l-xl2 as x +- 1. 
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1. INTRODUCTION 

There have been many attempts in the past to understand the behavior 

of theatructure function of nucleons measured as a function of the scaling 

variable x in deep inelastic electron and neutrino scattering experiments. 

The structure function F2(x) is peaked around x = 5 and decreases like 

(l-x)3 as x + 1. 1 The behavior near x = i seems to suggest that the 

nucleon is composite and made of 3 quarks weakly bound by some sort of a 

confinement potential which may be derived from asymptotic freedom gauge 

theory. This effect can be easily accounted for in a phenomenological way 

by using a nonrelativistic wave function for the nucleon2 and the result 

does not depend very much on the choice of the nonrelativistic wave function 

which at present is not directly known as the dynamics of the quark con- 

fined in the nucleon is not well understood. Totally unrelated to this is 

the behavior of the structure function as x -+ 1. As can be seen, this is 

related to the behavior of the wave function at large relative momenta of 

the bound constituents such that the relativistic Bethe-Salpeter (B.S.) 

wave function 3 must be used to get the correct behavior. This (l-~)~ be- 

havior is reproduced in certain model,4 for example, for a nucleon taken 

to be a bound state of a spin & and a spin 0 constituents. However the 

lack of knowledge of the relativistic B.S. wave function at all relative 

momenta prevents us from making a full dynamical calculation of the bound 

state structure function. At first sight, it seems hopeless to derive' 

the structure function from the B.S. wave function, the solution of which 

is never completely given. In fact, as will be seen below, the main 

features of the structure function at all values of x can be derived 

exactly for the simplest model describing a spinless bound state system 
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of two spinless constituents interacting via the exchange of a massless 

scalar meson in the ladder approximation. 

In-this paper we shall first present a complete calculation of the 

structure function in this model using the Deser-Gilbert-Sudarshan-Ida 

(DGSI) representation 5 of the B.S. wave function (Section II). This repre- 

sentation embodies in a simple way both the analytic properties and the 

asymptotic behavior of the wave function in the relative momentum and the 

smooth transition to the nonrelativistic limit. It is found that the 

structure function for all values of x can be written as 

x2 (-1 -x) 32 (x) 2 
F2W = 

(x -$)2 + y2 
, y2 =$,p2 =m2 -.$.p2 

(11 and m being the constituent and bound state masses respectively). z w 

is a slowly varying function of x and behaves like a constant as x + 1 

provided that the spectral function g in the DGSI representation behaves 

like f3(1-6) as B -+ 0,l. Assuming a similar DGSI representation for the 

fermion-anti-fermion (pion) bound state structure function as suggested 

by the conformal leading solution in non-gauge theory, the pion structure 

function is shown to have terms of the form 

x(1-x)2 

(x -i)" + y2 

and similar terms which go like (l-x) 
512 

and (1-x)3as x + 1 in agreement 

with previous calculations 6 . We now proceed to the calculation of the 

structure function. 
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11. STRUCTURE FUNCTION FOR BOUND STATES IN THE LADDER APPROXIMATION 
3 

A. Two-body S-wave Bound State in A$ Theory 

l% X$3 theory, Bjorken scaling is valid as q2 + 0~ and it is convenient 

to work with the bilocal operator 0 TV (0 9) in the scaling limit. In this 

limit, the hadron structure function describing deep inelastic electron 

(neutrino) hadron scattering is related to 0 l.lv(o,x) by the following 

relation: 7 

<PIe&o'x) IP> = pup,f2(p.x, x2=0) + . . . (1) 

with 
1 

f2(p*x, x2=0) = da cos(ap*x)F2(u) (2) 
0 

F2(u) is the usual deep inelastic structure function and terms not rele- 

vant to F2(.u) have been dropped. Comparing Eq. (2) with the Wilson's 

short distance operator product expansion for f2(p*x, x2=0), we have 

.n 1-11 
P,Pvf2(PX, x2=0> = c 5 x . ..xpn<p 

n even 
where 

le w’ly -4, (o)Ip> 

(PI0 I.lv’!-y . ‘1-I, (“)lP> = An+2npV’~1...~n’ n even 
and 

II llv'?J1...Pn = PuPvPp "'P1l - Track terms 
1 n 

(3) 

(4) 

The trace terms contain all possible combinations of g and do 
?i'j 

not contribute to f2(px, x2 = 0) in the scaling limit. 

The An+2 are the n-moments of the structure function defined as: 
. 

(5) 

As will be seen below, it is more convenient to define a function 

f(p*x, x2) as: 
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/ 

1 
f(p*x,.x2=0) = da exp(iap*x)F2(a) 

0 
(6) 

we have then 
-cI 

PUPVf(P.X, x2) = c 
.n pl 'n 

2x . ..x <plB pv’ly.4, (4 P> (7) 

and 

f2 (P’X, x2> = Ref(p*x, x2) (8) 

Thus F2(u) can be obtained immediately once 

form of Eq. (6). 

f(p*x, x2=0) is given in the 

The problem of computing the structure function is thus reduced to 

the calculation of a set of matrix elements of twist-2 local operators 

8 l.lv'sll...Pn (0) which can be calculated in the same manner as those for 

other static quantities of hadron such as charge densities or magnetic 

moment etc . . . . 

Consider now a neutral boson bound state of two spinless charged 

constituents which interact with each other via the exchange of a massless 

boson according to the interaction Lagrangian gl. = g@$@. The twist-2 

spin n local operators 0 W'Ly.'Un (x) are given by 

f :: :: > 
e w’lQ...u, (x> = a+ cx) apavap 

1 
. ..ap wx) 

n 
C-9) 

Since the impulse approximation is valid for Compton scattering of virtual 

photons in the scaling limit,4 one needs only to calculate the matrix 

elements of 0 
W'Pl".I-ln 

(0) in this approximation. In this approximation 

these matrix elements are given by the familiar triangle diagram according 

to Mandelstam's prescription8 (Fig. 1). 

Let Fp(q1,q2) be the B.S. "vertex" function for the bound state with 

total momentum p, we have from Eq. (7) 
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PpPvf(P~x, ~2) = -a1-;3vI(pox, x2) (10) 

-h 
i 

I(p*x, x2) = QJ-4 
/ 

d"k rp(k,p-k)2eik*x exp(ik.x)?p(p-k,k) 

[Oc2- -u2-ic)2 (p-k)2-u2-ic] 

where $(p-k,k) = - I'(E,$-E)* , is the final state vertex 

function. 598 Writing I(p*x, x2=0) as 

J 
1 

I(p*x, x2=0) = da eiap-x (11) 
0 

we have 

f(p.x, &Lo) = I' da eicrp'xu2g(u) (12) 

(the trace terms do not contribute to I(p*x, x2=0)), The Fourier transform 

of f(P?.X, x2=0) which is given by cr2g(a) and is nonvanishing for 0 < c1 < 1 - - 

can now be identified with the structure function. 

The "vertex" function is defined as the B.S. wave function with the 

free propagators removed. For a neutral bound state of a particle-anti- 

particle system in a definite charge conjugation state, Tp(ql,q2) is either 

symmetric or antisymmetric under the exchange of the momenta of the two 

particles, for a S-wave C = +l bound state we have: 

rph2dl) 

and rp(ql,q2) is given by: 

rp(ql ,q2) = ($-u2) (+J2) ‘4, (41 d12) (13) 

with 

. 

1 
4.Jp(q19q2) = z J dx e iql*i<o/T$ (x)@-(o>}lp> + (+ +-+ -)] 
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satisfying the B.S. wave equation: 

. 
- ($--p2) (q;-u2) $, Cql , q2) = & / d4k’K(k’ ,W (p 1; p-k’) (14) 

Jl(P, i p-k') being $p(q1,q2) written in the relative momentum of thetwo 

constituents (ql=k, q2=p-k). The kernel K(k', k) in a generalized ladder 

approximation is given by: 9 

with the property that the asymptotic behavior for large (k'-k)2 is deter- 

mined by the behavior of o(.X2) for X2 large. In Q3 theory, a(.X2)%(A2) -1 

so K(k' ,k) 'L ck,1kj2 . To simplify the discussion we shall take the kernel 

in the lowest order ladder approximation as: 

g2 K(k’ ,k) = (k?-k) z-is (15) 

resulting from the exchange of a massless scalar meson. Eior this inter- 

action, the solution of the B.S. equation can be written in a convenient 

form as derived by Wick 10 and generalized by Ida and Maki by means of the 

Deser, Gilbert, Sudarshan (DGSI) representation. For the study of the 

structure function we shall mention some of the relevant properties of 

the B.S. wave function, taken from Wick's paper. 

Let q now be the relative momentum of the two particles in the center 

of mass system, $(p,q) is given by 

$(p,q) = !I1 s 
"da mdt gCz,t) 

0 
(q2+p.qs-p2-t)3 (16) 

with g(z,t) can be chosen to be real. If the mass of the exchanged particle 

vanishes, g(Z,t)=g(z)6(t) as derived by Wick and g(z) satisfies an integral 

equation of the Fredholms's type: 
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/ 

1 

g(s) = + g2 R(&,z) 1 g(z) 

-1 ( 
dz 

-q z2PqP 2) 
(17) 

EquatiCin (17) can be converted to the following differential equation: 

g” (z> + g2 g(z) 
(l-z+ z2p2+$)= 

0 (18) 

with g(+l)=O, g(-l)=O. 

As will be seen below, the behavior of the structure function as x -+ 1 

is related to the behavior of g(z) as z -t +l. In this model, we have as 

z -f +1, 

g(z) 'L (l-22) . 

In particular for the zero energy solution (tight binding limit, 

P2 -t 0), the Wick's solution is: 

g(z) = (l-22) (19d 

and in the weak binding limit (p2/p2<< l), it is given by 

g(z) = 
The B.S. vertex function l'(p,q) is given by: 

(1%) 

(20) 

which can be easily obtained after a Feynman integration over d4k' of the 

r.h.s. of (14) using the representation (16) for G(p,q) (g(z) should not 

be confused with the quantities g(u) related to the structure function 

defined by (11)). 
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In terms of 6 = + (1+z), we have 

1 
-‘rp(k,P-k) = r(P,4) = i/ d&(B) [kz-2fip.k ;‘gpZ-~2_i~~ 

0 
(20’) 

where 

i(B) = g(B) 
(i3 - -$)2P2+P2 

The final state vertex function is given by 

~p(~-k,k) = rp (k,p-k) 

In general g(B) is not necessarily symmetric around B = i 

i.e. E(B) z i(W) * For an S-wave bound state of two identical particles 

or for an S-wave C = +l state of a charged particle-antiparticle system, 

because of Bose symmetry, Tp(k,p-k) = Tp(p-k,k) hence g(B) is symmetric 

around B = $ . In the weak binding limit p2 << p2, g(B) is peaked at 

1 1 B = - almost like 6 B - - 2 ( 1 2 and most of the contribution to Tp comes from 

this region. 

For the C = +l bound state, each particle contributes the same amount 

to I(p*x, x2). For one particle, we have 

. 

/ 
d4k ik*x 

I(p*x, x2) = (2;)4 (kz-~2-ie)2 [(p-E)2-p2-iE] rP(kyP-k)rP(P-k'k) (21) 

By means of the following identities: 

1 
/ 

co 
-= i 
A-is 

dx e-i (A-&)x 

0 (22) 

(&)’ = -L” xdxe-i(A-is)x 
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(for E>O and infinitesimal) I(p*x,.x2) can be written in the form: 

where 

I(p-x, x2) =i,' do' &3)&3')V(p*x, x2) 

co 

+-ix2 1 
4 (.x+p+o+-c > 

+ i p2 (p+B"+8'~)2 
(X+p+a+T ) -ip2(p+8a+B'T) 

+ i(h+p+d--r)u2-is I 
By means of a change of variables 

p + p’ = p+f3dB’T 

rr-tcs ’ =o 
P’ 

and inserting J6(a-h')dainto (24) we have finally: 

1 m 
da exp (i a pox) p2dp ,3 1-a 

a 

[1 - T& (Cl-B)o+(l-B')T)] x exp ip p2 - [' ( -a(1 a)p2 + i $ 
) I 

The integration over dad-c is restricted to the following region: 

l-a u(l-B) + ‘r(l-f3') 1.-y- 

(23) 

(24) 

(25) 

(26) 
Bo + f3I-r < 1 - 
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Carrying out this integration we finally obtain the expression for 

I(p*x, x2): 

da exp(iup=x)/'p2 dp exp 
0 

p2-a(l-a)P2)+ i $ 
1 

x (1-a) 32 (a) (27) 

with 

(1-a)3Z(a) = a3(~)/ldBg(B)/ld8'g(B')~~dr p - -&((l-8)o+(l-f3').~)](28) 
0 0 

and 

Z(a) = $ 

1 
dB'&B')(o-+) 

(l-a) (8'-f3) 

The integration over dp can be written as: 11 

with 

m 

J 
p2dp exp ip p2-a(l-a)p2 

0 [ ( 
+ i.$ I a2 

= 
a (K2> 2 

G(x2 K2) , 

and 

G(x2,K2) =lm dp exp -ip (-K2 -is) X2 

0 [ 
+ i4p I 

K2 = $-a(l-cX)p2 . 

(29) 

(30) 

(30') 

The structure function can now be obtained readily by setting x2=0 

in (30). The result is 

F2(x) = N2(&)2 x2(1-x)3Z(x) (31) 
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The normalization constant N is determined by the condition 

which eves 

-iBHI(p+x, x2) = p 
Y 

, x=0 

/ 

1 
F2 Cd 
- dx=l 

x (32) 

0 
This is essentially the Adler sum rule4 in the two-body bound state 

approximation. The presence of multi-particle configuration in the wave 

function will reduce the two-body contribution to the sum rule and the 

normalization constant N can be most simply determined by comparing with 

experiments the expression (31) for F2(x) at x 1; where gluons and multi- 

parton contributions are negligible. Equation (31) is the complete relati- 

vistic expression for the structure function at all values of x. 

Note that in the impulse approximation, the parton distribution func- 
F2 (x> 

tion p(x) = ~ 
X 

is not symmetric around x = L 2 ,(i.e. P b> # P (l-x)), although 

g(8) is symmetric. Because of the lack of this symmetry property, in the 

2-body ladder approximation (i.e. only valence quarks in the wave function) 

each parton in general does not carry half the total momentum. This can 

be easily seen by looking at Eqs. (28) and (31) for p(x). Writing 

P(X> = p,tx) +- PAcx) 

with P,(X) = &P(X) + PO-x)-J 

??,(x) = +[P(x)-p(l-x)] 

We obtain after substitution x + l-x in (28): 

P(l-d = p (x> - 2PA(X) (33) 
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where 

P,(x) z (+)N2(+-) [p2 fx -xt$+ p2~~1d~~(~~'d8'~(~'~~d; [(8-~)a+@'-x)r] 

(33') 

which is nonvanishing (&ad-r is extended over the region given by (26)). 

Hence p(x) is not symmetric. 

Since p,(x) is antisymmetric under x -t l-x, it does not contribute 

to the Adler's 

approximation. 

now depends on 

which does not 

sum rule and to the normalization of the charge in the ladder 

However the fraction of the momentum carried by each parton 

p,(x) and given by: I 1 

F2(x)dx 

0 1 2 1 

/ 1 

x pA(ddx 

<> x = z--f 

i 

0 1 
p (x> dx 

/ 

ps (xl dx 

0 0 
amount to 50% of the total momentum. Obviously in the 

2-body ladder approximation with no neutral boson component in the wave 

function, the matrix elements of 8 
l%Ul".lJ, 

(0) and Buv(0) (the energy 

momentum tensor) cannot be evaluated by the lowest order impulse approxi- 

mation. Radiative corrections and off-shell effect of these matrix ele- 

ments between virtual parton states must be included. Also the inter- 

action energy which provides the binding energy for the constituents must 

also be included. Because of the radiative corrections due to the emis- 

sion and absorption of gluon by the same constituent, the constitutents 

can no longer be treated as elementary and the factor e ik=x in Eq. (21) 
1 

for I(p-x, x2) must now be replaced by / dy g(y,k2)exp(iyk*x): 
0 
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. 
-- I(P*X, x2) - &4 -iE rp(k,p-k)Tp(p-k,k) (21') 

] 

g(y,k2) is defined as the structure function for the constituent off the 

mass shell. In particular g(y,k2) can be calculated to any order in per- 

turbation theory. If these radiative corrections arise from the emission 

and absorption of the same gluon which is exchanged between the consti- 

tuents in the ladder approximation then part of the gluon component in the 

B.S. wave function can be included in g(y,k2). The free field approxima- 

tion for g(y,k2) is thus only consistent with the valence parton approxi- 

mation for the B.S. wave function within the ladder approximation and one 

will not obtain a consistent result without going beyond the ladder approx- 

imation. We note in passing that these corrections give nonleading terms 

to the parton structure function as x -t 1 since the gluons are radiated 

from the valence parton and due to phase space limitation, the correction 

terms behave at least as (l-x) relative to the leading term as x -t 1. 

Consider now the weak binding limit (p2/p2 << l), &3)~6 (!3 - 3)) 

p(x)G x -; 
( ) 

and the second term is zero. p(x) is then symmetric and since 

there is no interaction each parton carries half the total momentum of the 

bound state. The deviation from the zero binding limit (d-function approx- 

imation) is proportional to the binding which is of the order O(g2), for 

g2 small. In fact a straightforward calculation gives <x> = 3 - 
8 
3 Y2* 

(y2 = pqp2 << 1). It is necessary to calculate the radiative corrections 
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(off-shell effect, interaction energy etc...) to O(g2> for 
< plfj 

PV 
(0) 

to check the momentum sum rule. 

lP> 

I-the tight binding limit, using the solution (19a) for g(z) w- 

obtain the following expression for the structure function: 

e 

F2(x) = N2x2(1-x)3Z(x) 

+ x4 + f x2(1-x)2 + 

(34) 

2 
+ l-x - (enx + l-x + + (1-xyj + x3 

X2 Rnx + l-x + 2 
(l-x) 3 + 3 x4(11+12) + 213 

1 

where, putting , 

(35) 

- $2 l+h+ 

4 
12 = 3x 

4 
I3 = 5 (1-x) + (lxx)3 + l-x + $(1-x)2 + 

1 - -- 
10 

1 -- 
30 

- $ x2(1-x) + (35’) 
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It is clear that the structure function behaves like (l-~)~ as x -+ 1. 

The full expression for F2(x) however is rather complicated. There are 

also terms like x Rn x and (l-x) Rn(l-x) which go to zero as x -f 0,l. 

The'result of a numerical calculation is given in Fig. 3 with F2(x), 

p(x) and Z(x) calculated as functions of x. As can be seen, p(x) is not 

symmetric around x = $- and it turns out that each parton carries only 47.5% 

of the total momentum. The missing momentum therefore must be due partly 

to the interaction energy between the constituents. 

In general, the solution of Eq. (18) will give g(B) and the structure 

function is then completely determined. Since g(B)sB(l-8) as B + O,l, the 

integral Z(x) is well defined. As x -+ 1, only the first term on the r.h.s. 

of (29) survives, hence Z(x) -f C (a constant) as x -t 1. It is interesting 

to note that the expressions for g(8) and F2(x) look similar if one iden- 

tifies x with B. Both g(x) and F2(x) are peaked at x = i due to the 

presence of the factor 

(p2(x :y+J ' 

The physical meaning of g(B) can be seen by looking at (20') for rp(k,p-k). In 

the Bjorken's limit k2 -t a, p;k -t m,< k2 = - fixed 2p.k , we have: 

rp(k,p-k) - & rp@) 
where 

(36) 

(37) 
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is defined as the "structure function" for r-p in the scaling limit. From 

this integral representation we see that the behavior of Tp(E) depends on 

that o+ g(c) as 5 + 1. It follows then that the behavior of Tp(S) deter- 

mines the behavior of the structure function as x -f 1. This connection 

between g(S) and the short distance behavior of the B.S. wave function 

can be established in a more general manner by means of the operator product 

expansion and has been studied by Callan and Gross, 12 by Ciafaloni and 

Menotti, 13 Menotti 14 and more recently by Goldberger, Soper and Guth. 15 

These analyses show that the behavior of g(B) as B -f 0,l is determined 

by the Bjorken limit of the B.S. wave function which is given by the 

leading light cone (x2=0) singularities and by the region 5 -t 1. 

The behavior of the electromagnetic form factor F(q2) at large momen- 

tum transfer q2 is also determined 16 by the behavior of g(B) as B -+ 0,l. 

Hence the relation between the form factor at large q2 and the structure 

function as x += 1 is clearly visible through the behavior of g(B) as 

B -+ 0,l. 

So far we have presented a detailed relativistic calculation of the 

structure function of a S-wave bound state system of two spinless bosons 

interacting via the exchange of a massless boson in Q3 theory. If the 

exchanged particle has a non-vanishing mass, the expression for F2(x) is 

now rather complicated and no simple form can be found. We have: 

F2(x) = N"(h)' x2(l-x)3/mdtdt' z(x;t,t') 
0 

(38) 
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where 
1 

Z(a;t,t'> =I1 aSg(8.t)~ 
0 

1 - & @3)0+(1-8')T)] 

(38’) 

(integration over dadr is carried out in the region defined by Eq. (26)) 

and 

akw) = g(B,t) 
[Pql - q+f?+tj 

and g(B,t) satisfies 16 

co 

/ 1 
gCg,t) Idt % BO-~1 

0 

(for a regular solution in h$3 theory). 

The resulting integration over dt dt' is then finite-and 

F2(x) s (1,~)~ as x -t 1. 

Assuming the DGSI representation is valid for a spin $ bound state, 

similar results can also be obtained for a composite nucleon considered 

to be a bound state of a.spin $ and a spinless constituent. However for 

all realistic physical problems, where the nucleons and mesons are con- 

sidered to be bound states of quark and antiquark due to the exchange of 

massless vector gluons in Quantum Chromodynamics (QCD), such features for 

the structure function cannot be easily derived as the interaction is 

singular and the non-zero energy solutions for the B.S. equation are not 

known at present. The zero energy solution is useful for the study of 

some of the low energy aspects of the pion wave function (e.g. the pion 

decay constant fx etc...) but not suitable for use in the study of the 
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structure function. It is hoped that a similar DGSI representation could 

be derived for all the independent amplitudes in the decomposition of the 

fermiopantifermion B.S. wave function by Feldman, Fulton and Townsend. 17 

Innon-gauge theory, since the light cone limit (x2 -f 0) determines the 

behavior of the structure function as x -+ 1, expression for the pion B.S. 

wave function obtained by Callan and Gross 12 and by Menotti 14 can now be 

used to calculate the pion structure function. In the following we shall 

limit ourselves to non-gauge theory for a fermion-antifermion bound state 

and give a calculation of the pion structure function using this wave 

function. 

B. Structure Function for a Fermion-Antifermion Bound State 

Let ql, q2 be the momenta of the two particles, the fermion-anti- 

fermion B.S. wave function in momentum space is defined as: 

4Jp(clpq2) = 
I 

d 4x e iq”X<OITIII(~)~(0)IjP)Yg . (39) 

The pseudoscalar character of the bound state has been explicitly displayed 

by the factor y5. ~p(4p92) satisfies the B.S. equation: 

/ 
4 1 rpklpq2) = -dJlp(42-d = $- (kt-E)2-ic epck’) (40) 

X is the coupling constant (squared) and pp(ql,q2) is the B.S. vertex 

function. (ep(ql,q2) has to be symmetrised for ‘So,C = +l state.). Also the 

final state wave function $p(q2,ql) is defined as: 

(41) 

which can be shown to be related to JI (q ,q > using PT invariance. 
P 12 We have 



-2o- 

for a negative parity state: 

$(q2,q1) = - (CY5) 
T T 

JI (41.42)(CY5) (42) 

where C is the charge conjugation matrix. 

The DGSI representation for $ 
P 

is not known at present, however, it 

has been shown by Callan and Gross 12 and by Menotti 14 using Conformal 

Invariance, that this representation is valid for q: -+ a, qs + m and in a 

theory with massless particles. Following Menotti we have 

rp(q1,q2) = *l~2~1du[q~u + qY$(l-u>3 1-d'-a'2[ucl-ui] a'2-1'2 

/ 

1 
+ d'-a/2-2 

du [q:u + q;(l-u)] 2-d'-a/2 ~(l-u)~ a/2-1/2 (43) 
d'+a/2-2 

0 

for the y5-even term (even number of Yu); d' and ;i being respectively the 

dimensions of the fermion and the composite fields. In the following we 

shall assume the fermion and the pion fields to have canonical dimension 

(in the limit of small coupling constant A) and put d' = +, d' = 3. In 

terms of ql=k and q2=p-k, one can then write Tp(k,p-k) as follows (includ- 

ing the nonleading term 4, and 4,): 

+dl du i 1 

+J) [U(l-ud % + $ u(l-u) [&l-u)%J' 

0 b2-2up*k+up2-ie] 3/2 

1 +u) E(l-u)]'i- 5 u(l-l) b%l-u)+]' 

+ 4, / 
d” 

0 [k2-2up*k+up2-iE] 3/2 (44) 
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where the notation [ 1' means the derivative with respect to ur This is 

precisely the DGSI representation for the B.S. wave function. Notice that 

expres%ion (44) is similar to that for a bound state of two spinless parti- 

cles in Eq. (20') with u(l-u) replaced by g(u). This suggests a represen- 

tation for Tp(k,p-k) can be approximately given by: 

/ 

1 

rp(ql,q2) = dB 
81(B) 

[kL-2Sp*k+Sp"-m2-ic] 
0 

/ 

1 

+ +f, d@ 
i2 (6) 

[kz-2f3p*k+L3pL-m2-ie]L 
0 

/ 

1 

+ 4, dB 
i3 (B) 

[k2-2@p*k+@p2-m2-ie] 312 
0 

/ 

1 

+ (4,-4,) dB 
wi3 (8) 

312 [k2-28p'k+Bp2-m2-is] 
0 

1 
2 

+ 7 <d,;Q,) I dB (l-28)g3(8)+(l-S)g$(B) 

[k2-2f3p*k+Bp2-m2-ie] 3/2 
0 

with 

ii,(B) = 81(B) 
( ) B - $ 2p2+p2 

i,w = g2 (6) 

( ) B - ; 2p2+p2 

G,(B) = 
f+(B) 

B - + ( )' p2+p2 

and g,(B), g2(B)Q(1-B), g3(B)Qp(1-fi)]' as given by conformal invariance. 

This is also the solution for g(B) obtained by Wick for the spinless case 

in the tight binding limit. 
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This should be a good approximation to the B.S. vertex function for a 

pseudoscalar fermion-fermion bound state as it satisfies conformal invari- 

ance inhthe limit of large qt/m2 and qg/m2 and it exhibits all the binding 

effect and the nonrelativistic limit for a weakly bound system. 

The structure function can now be calculated from the quantity 

f(p*x,x2> defined in Eq. (10) in terms of I(p*x,x2). 

We have: 

P~Pvf(P*x,x2) = - 
Tr{~p(@m)y,kv(l&-m)rp (K-#+m)) 

[(p-k)2-m2-ic] 

For the scalar term (no y matrix), the trace is given by 

Tr{ . ..I = pukv(k2 -m2) + kPkv(k2-m2-2p*k+4m2) 
I 

S2 

where 

/ 

1 

S 
g1 (6) 

= 

0 
dB [k2-2Sp=k + @p2-m2-ie] 

(46) 

(47) 

(48) 

The first term in Eq. (47) g ives rise to a structure function proportional 

to x, it is obtained from the quantity Il(p*x,x2) defined as 

11(p*x,x2) = * & 
/ 

&k eik-x $2 
(k2-m2-ic) [(p-k)2-m2-ic] 

Using (48) for S, we obtain: 

11 1 
. 

Il(p.x,x2) = $,Q ITS 
/ 

I “f-y dB’&3)~(~‘) 
J 

da exp(iapyx) 

0 0 0 

(49) 

XL-~ dp/-dodT u2 exp fip(m2-u(l-cc)p2) + i $1 
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Carrying out the integrations over dpdqd-r in the same manner as before, 

we obtain a contribution to F2(x) a term: 

-h 

Al(x) = N2($)2 x(1-x)2 Zl(X) (50) 

where 

zl(o) = :[(I$ W3' + (&)(i'i &(,5 

a 

+ (lfay- 
I / 

1 

dB dB' 
81 (B&l (8') a(B'-a) 

(B'-B) B' 
+ (1-a) (crf3) 

l-8 
(51) 

0 a 

Since gl(B)sg(l-B) as B + O,l, as a + 1, Z1(o,) + C (a constant) hence 

Al(x)~(l-x)2 as x + 1. The second term on the r.h.s. of (47), being pro- 

portional to kpkv gives a contribution to the structure function a term 

proportional to x2 as in the case of a spinless bound state. This contri- 

bution is obtained from the quantity 12(p*x,x2): 

r ik*x 
d4k (E2-m2-iE) 

4(m2 - $ p2 
' 1 (p-k)2-m2-ic) J (52) 

The second term in the integral of (52) contains the same denominator as 

that of I(p*x,x2) in Eq. (10') and gives F2(x) a term 

4p2x2(1-x)3 Z(x) (53) 

which is much smaller than Al(x) for x + 1 in the weak binding limit 

P2 << m2 and gives the nonleading (l-x) 3 behavior for F2(x) as x -f 1. It 

may be however quite comparable to Al(x) as x +$- . It is clear then 

that the mass terms cannot be neglected in the nonrelativistic limit. 

Similarly, the first integral in (52) gives F2(x) a term: 
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A2(x) = N2(&)2 ~~(1-x)~ Z2(x) 
[(X - ;2p2+p2] 

(54) 

where 

(55) 

The contribution from the terms with 4, d2, dl and d2 can be obtained in 

a similar manner. The calculation is quite complicated and will be given 

elsewhere. In addition to terms with (l-~)~ and (l-x)3 behavior, there 

are also terms which behave like (l-x) 512 which come from the 4, and 4, 

term. 

Thus in a rather simple manner we have been able to calculate the 

deep inelastic structure function for a pseudoscalar fermion-antifermion 

bound state in non-gauge theory with the help of the DGSI representation 

and conformal invariance. The result is a structure function F2(x) for the 

pion which displays all the features of relativistic and nonrelativistic 

limit. The leading (l-x) 2 behavior as x -+ 1 agrees with that obtained 

previously6 by Ezawa, Farrar and Jackson and by Soper. We have not dis- 

cussed the case of anomalous dimension in the ladder approximation. This 

case has been studied by Gross and Callan and by Menotti and.Ciafaloni. 

Using their results and carrying out a similar calculation as above, we 

found that F2(.x) behaves like 1 

Cl-x) 
2+2Ye 

with y 
e 

the anomalous dimension of the mass insertion term (in the lowest 
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order approximation -g2 
Yp-qp' for g small) 

(The (l-~)~ behavior, with.D=2 + -$- ygcomes from the inte- 

grals of the form fdodT o D-2~D-2 in I(p=x,x2)). It is not known how the 

factor 
((f3-$+P2) 

should be replaced by some similar factor with anomalous dimension. For 

this reason we have suggested that in the limit of small coupling constant 

factor 
1 

( ) $ - + 2p2+ p2 

is not modified by the anomalous dimension, hence the structure function 

can still be proportional to 1 . 
12 

(-) l-3 2 p2 +P2 

III" CONCLUSION 

In the ladder approximation the structure function for a bound state 

system can be expressed in a simple manner in terms of the spectral func- 

tion in the DGSI representation of the solutions of the B.S. equation. 

We have found the remarkable result that the structure function bears 

some resemblance to the spectral function and the behavior of the struc- 

ture function as x + 1 is related to the large q2 behavior of the electro- 

magnetic form factor by the spectral function. The relativistic expres- 

sion obtained is useful as a guide to the nonrelativistic limit and should 

be used in any experimental fit with data. Though conformal invariance 
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is useful as a means of getting an approximate solution, more work on the 

DGSI representation for different amplitudes in the fermion-antifermion 

bound ?tate is needed before any rigorous calculation of the structure 

function in both non-gauge and gauge theory. 
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Note Added 

After completion of the paper we became aware of a similar calculation 

of the structure function using the DGSI representation by P. Fishbane 

and I. Muzinich (P.M. Fishbane and I. J. Muzinich, Phys. Rev. D&, 4015 

(1973)) and similar results obtained by R. Blankenbecler, S. J. Brodsky 

and J. Gunion. (R. Blankenbecler, S. J. Brodsky and J. Gunion, Phys. Rev. 

%,3469 (1975)). 
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FIGURE CAPTIONS 

1. The matrix element of 6 (0) in the impulse approximation. 
llV,Ul”“la 

2-. Tl?e same with radiative corrections. 

3. The structure function F2(x) and the parton distribution function 

p(x) in the tight binding limit (p2 -t 0). 
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