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ABSTRACT 

A self-consistent model for the generation of leptonic mass is 

developed. In this model it is assumed that bare masses are zero, all 

of the (charged) leptonic masses being generated by the QED self- 

interaction. A perturbation expansion for the QED self-mass is formu- 

lated, and contact is made between this expansion and the work of 

Landau and his collaborators. 

In order to achieve a finite result using this expansion, it is 

assumed that there is a cutoff at the Landau singularity and that the 

functional form of the (self-mass) integrand is the same beyond that 

singularity as it is below. Physical interpretations of these assump- 

tions are discussed. 

Self-consistency equations are obtained which show that the Landau 

singularity is in the neighborhood of the Planck mass. This result 

implies that, as originally suggested by Landau, gravitation may play a 

role in an ultraviolet cutoff for QED. These equations also yield esti- 

mates for the (effective) number of additional point-like particles that 

electromagnetically couple to the photon. This latter quantity is 

consistentwithpresent data from e+e- storage rings. 

(Submitted to Phys. Rev. D) 
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1. INTRODUCTION 

Some time ago it was pointed out1 that due to the nonlinear nature of 

quantn?fn field theory, the symmetries which are manifest in the Langrangian 

may not be present in solutions which satisfy the field equations obtained 

from that Langrangian., Developing this idea along different lines, it has 

been proposed' that a dynamical symmetry breaking could lead to self-con- 

sistent solutions yielding a nonzero fermion mass. Following these ideas, 

Raker and Glashow3 suggested that just such a mechanism might be responsible 

for the generation of the u-e mass splitting. In second order, they note 

that the self-mass integrals for the muon and the electron are independent 

of each other and, consequently, in this order one would not expect to 

obtain asymmetric solutions. They point out, however, that in fourth 

order, the mass equations would be coupled through the fermion loop in the 

vacuum polarization graph, enabling the possibility of (self-consistent) 

asymmetric solutions, i.e., a mass splitting. Unfortunately, they did not 

actually detail the fourth (or higher) order equations, nor determine if 

they actually admitted such asymmetric solutions. 

The purpose of this paper is to develop a model for the generation 

of leptonic mass by the QED self-interaction. Only (self-consistent) 

symmetric solutions will be considered here; a study of possible asym- 

metric solutions, following the suggestion of Baker and Glashow, will be 

covered in a later paper. 

It is assumed here that the bare, or mechanical, charged lepton 

mass is zero, all of the mass being dynamically generated by the electro- 

magnetic self-interaction. The assumption of a fermion with a null bare 

mass and dynamically generated physical mass follows Baker and Johnson, 
4 

who found in their model for the dynamical generation of fermion mass, 
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that consistency required a null bare mass. Now this scheme for the 

.gene~ation of fermion mass breaks the formal y5 invariance that obtains 

a QED having fermions described by the massless Dirac equation. How- 

5 ever, it has been shown that the breaking-of this y5,symmetry is 

immune to the Goldstone boson dilemma. 6 

It is well-known that QED in general, and the self-mass in particu- 

lar, are divergent in the ultraviolet region. While Baker and Johnson 

obtain an eigenvalue equation, the postulated solution of which would 

solve this problem, 7 it is assumed here that there is a physical ultra- 

violet cutoff. 

There is precedence for this assumption. Landau and h-is collabor- 

ators 8 have shown that the polarization of the vacuum will lead to a 

divergence of QED and serious difficulty for the theory beyond a certain 

point at very high energy, which we shall call the "Landau singularity." 

And consequently they suggested that cutting QED off at the Planck mass' 

might "save" QED from this "crisis". The Planck mass is so large 

(% lOI GeV) that it is well beyond any possible conflict with experi- 

ment." Unfortunately, by the 

at this energy likewise appear 

That gravitation might furnish 

gated by others. 11,12 

More recentlylit has been 

same token, direct detection of effects 

to be precluded from future experiments. 

a cutoff for QED has also been investi- 

shown by Lautrup 13 that this difficulty 

is present as well in QED phenomena not normally considered to be diver- 

gent (after renormalization). Specifically, he has shown that there are 

gauge invariant sets of graphs for the anomalous magnetic moment of the 

electron that are not Bore1 summable, and that this difficulty is associ- 

ated with the Landau singularity. 
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We see no reason to reject the evidence that there is such a 

singuJarity in renormalized QED. For example, to assume that the exist- 

ence of a convergent renormalized QED theory (if the ultraviolet limit 

goes to infinity) depends upon fortuitous cancellations between gauge 

invariant sets of graphs at and beyond the Landau singularity seems much 

too tenuous. (Of course, the grand unification schemes offer another 

possible resolution of this difficulty, but, as mentioned below, we do 

not pursue that avenue here.) 

Thus, the existence of a physical cutoff actually would serve 

functions beyond those served in the renormalization procedure. First, 

it would save QED from the crisis pointed out by Landau 8 and further 

illuminated by Lautrup. 13 At the same time it would furnish a mass 

scale for QED, 12 which otherwise does not have one. In addition, if the 

QED ultraviolet cutoff were found to be near the Planck mass, this would 

imply a connection between the gravitational interaction and other forces 

of elementary particles, a notion offering some philosophical satisfac- 

tion and a possible avenue for an eventual unification of these 

interactions. 

It is appropriate to remark here that it is conceivable that other 

interactions could be a source for leptonic mass. For example, the 

Baker-Glashow idea has been applied to gauge theories containing chiral 

SU(n> @ SU(n) groups.14 Along similar lines, the recently developed 

unified gauge theories obtain lepton masses through a coupling of the 

lepton multiplets to various postulated Higgs fields. 15 This latter 

approach is subject to the criticism that the coupling constants are 

arbitrary and as of yet there is no experimental evidence indicating the 
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existence of Higgs particles. Or, in a more mundane approach, one 

might+onsider weak interaction self-mass diagrams involving the inter- 

mediate vector bosons. One should note, however, that if, in order to 

treat leptons and quarks on a similar footing, one assumes that the 

neutrinos are four component Dirac spinors, 
16 then one has a framework 

in which to argue that the weak interaction contribution to the charged 

lepton self-mass must be small; the neutrinos, which are assumed to 

participate in the weak interactions equally with the charged leptons, 

are observed to be massless, or nearly so. 

These considerations and a general desire to avoid undue complica- 

tions furnish motivation to keep this model ( to the extent possible) 

within the confines of QED. Consequently, the possibility of non-QED 

interactions contributing to leptonic masses (aside from a hadronic 

component of vacuum polarization) is not considered in this paper. 

As a basis for this study it is assumed (as did Baker and Glashow) 

that the Langrangian and Hamiltonian are of the standard QED form and 

are symmetric in the bare muon and electron wave functions. (The only 

known physical difference between muon and electron is their rest mass.) 

Then, a standard perturbation expansion for the self-mass is developed. 

As is well-known, there are both infrared and ultraviolet divergence 

problems associated with this expansion. Of these, the former is less 

serious. In second order, the self-mass is not infrared divergent. 17 

In fourth order there are infrared divergences in two graphs but they 

have been shown to cancel, 18 leaving the fourth-order self-mass 

calculation without any infrared divergence. A similar result has been 

found in a careful study of the fourth order calculations 19 for the 
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Lamb shift. These cancellations are, in fact, special cases of the 

general statement by Gell-Mann and Low 20 that such cancellations must 

always appear in the self-energy problem. They reason that a perturba- 

tion expansion about a null bare mass using the bare charge cannot be 

infrared divergent; the physical momentum in the problem will furnish 

an appropriate infrared cutoff. And since the renormalization program 

does not change this aspect of the solution, the dressed fermion pro- 

pagator is also not infrared divergent. Therefore the self-mass cannot 

be infrared divergent. Thus, in the self-mass problem, the renormaliza- 

tion program introduces the infrared divergences in the separate graphs 

and at the very same time the elaborate and complicated relationships 

between graphs which serve to just cancel out these divergences in the 

final result. This result has subsequently been demonstrated in 

general. 21 

Following this logic, in evaluating the contributions of the 

various graphs, infrared problems are ignored; for each graph, only the 

leading terms as a function of the ultraviolet cutoff are kept. As will 

be seen, dropping the nonleading terms leads to numerical errors of no 

more than a few percent. 

The use of an ultraviolet cutoff assures convergence of the pertur- 

bation expansion (for the sets of graphs summed here). 
22 

BY symmetry, 

this expansion is the same function for both muon and electron. The 

possibility of other point-like particles electromagnetically coupling 

to the photon is also taken into account. From this expansion are ob- 

tained equations of self-consistency for the relationship between the 

lepton mass scale and a "hard" ultraviolet cutoff, which 
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is a sharp upper limit to the momentum integration, arbitrarily put in 

by hand. 

Since the above formulation manifests a (Landau) singularity in the 

photon propagator at some large but finite energy, i.e., before the point 

of infinite energy is reached, the hard ultraviolet cutoff must always 

be maintained below this singularity. In order to eliminate this artifice 

and to extend the range of integration to infinity, it is naively assumed 

that by analytic continuation beyond the Landau singularity the integrand 

of the self-mass integral has the same functional form as it does below. 

At the same time the hard ultraviolet cutoff, which assured convergence 

of the perturbation expansion, is replaced by a Lorentz invariant cutoff 

acting at the point of ultraviolet divergence, i.e., at the Landau sing- 

ularity. One assumes this latter cutoff is due to physical causes. This 

leads to self-consistency equations relating the location of the singu- 

larity to the lepton masses with no free parameters (only mathematical 

uncertainties). These self-consistency equations also enable one to 

estimate the (effective) number of point-like particles which electro- 

magnetically couple to the photon. This quantity is experimentally 

accessible with e+e- storage rings. 

II. PERTURBATION EXPANSION FOR THE SELF-MASS 

Although the use of perturbation expansions is a standard technique 

in QED, for the sake of completeness and because the expansion for the 

(divergent) self-mass is less familiar, a brief development of that 

expansion is included here. Following the pioneering papers of Dyson, 23 
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24 25 
and Schwinger, the complete electron propagator S;(p) is given by 

1 
s;(P) = 

ti-m-C ($1 
(1) 

where the proper self-energy 

I($) = ieg 
/ 

-$$ D~(k)vvTp(p,P-k) S$(P-k)yv * (2) 

Throughout this paper the notation of Bjorken and Drell shall be used. 

The quantities in Eqs. (1) and (2) are the usual unrenormalized quanti- 

ties e o being the bare coupling constant. 

At this point one makes the standard substitutions, taking one 

to the renormalized quantities via the undetermined renormalization 

parameters, Zi : 

-1 -2 
e. = z1z2 z3 e 

s;(P) = Z2$(P) 

D;(k) = 
I.lV 

Z3i; (klFiv , 
(3) 

and 

TV(P', P) = +yP’, P) , 

where the tilde indicates the renormalized functions. The boundary 

condition 
26 

$P , P) = Yu 
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is also understood. Substituting Eqs. (3) into Eq. (4) yields 

I” 
cu> = z($) = ie2 

I 
-&$ 6i(k)Pv?u(p,p-k) si(p-k)Yv (5) 

where the Ward identity 
27 

Z1 = Z has been used. 2 Using Eqs. (l), (3), 

and (5), one may now write'the renormalized electron propagator as 

l/Z 
$(P) = 

2 

j-m-C($) ' 

To proceed, we note that Z($) has a -Taylor's series expansion 

about the point #=m : 

cw = ii,($) + (#-m) Cl($) + (6-m) 2 i2 (r6) (7) 

where iO a and Cl are coefficients which diverge as a function of an ultra- 

violet cutoff while i2 is "finite" (i.e., not divergent) and also is to 

include all the higher order terms. Employing the well-known Feynman 

rules, 28 the expression c(p) may be expanded in a standard perturbation 

series about the observed or physical mass in powers of the renormalized 

charge e. This expansion for 2 and Eq. (7) will then yield, order by 

order, expressions for C O, cl, and i2. 

The requirement that Si be a suitable propagator puts certain condi- 

tions upon Z2, co and 5 5; must have a pole 29 
1" at $=m which requires 

In the perturbation expansion, this is achieved by appropriately choosing 

the mass counter term 

6m = 6rnC2) + *mC4' + smC6) + . . . (9) 
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order by order; the superscripts indicate the order of e. The second 

condition, that the residue of the pole at $=m must equal unity, requires 

Z,(l-i,) = 1 or (10) 

-1 
z2 = l-i, , (11) 

a condition which can also be satisfied order by order. 30 It is welcome 

that we need concern ourselves here only with Eqs. (8) and (9), for this 

enables us to ignore the infrared problems associated with Z2 . 

It is simplest to display graphically the perturbation expansion 

derived from Eq. (8). The second order equation 

Using the Feynman rules to evaluate (in Feynman 

Fig. 1 yields 
31 

/- 

is depicted in Fig. 1. 

gauge) the graphs in 

-id (2) (p5) = i6m(2) + (-ie)2 
I 

--&$ k~-~j'+ G Y, w-i + in Yv (12) 

where x is a small photon mass to allow for proper handling of the infra- 

red divergences and E is a small positive quantity defining the proper 

contour for the integral in the complex k. plane. In accordance with 

Eq. (8), $ will be set equal to m after the integration, and 6m (2) will 

then be defined by i(2)(m)=0. While at $=m, c(2) is not infrared divergent, 

it is ultraviolet divergent. Equation (12) has been shown 32 to yield 

sm(2) = - 3ctm 
4lr i Rn g+ +) , (13) 

where A is the ultraviolet cutoff mass and cl=e2/4,x l/137 is the fine 

structure constant. 

We now observe that for A=M p, the Planck Mass (1.22 X 101' GeV/c2), 

the logarithm in Eq. (13) will dominate the factor % by a factor of ~100. 
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Similarly, in calculations of higher order graphs (2n, say), terms having 

A2 Rn z to a power less than n will be dominated by the leading 

(oQn $)Yerm. Thus to simplify the calculation, one need keep only the 

leading terms of the divergent integrals. That the resultant numerical 

uncertainties are small can be verified subsequent to the analysis. This 

step permits an enormous simplification in the evaluation of the various 

Feynman graphs. (See Appendices for details of these calculations.) 

At this point it is assumed that all of the electron mass is due to 

QED and is dynamically generated. Thus, in this second order calculation, 

(2) one sets 6rn. =m and extracts from Eq. (13) the self-consistency condition 

relating m to A. Neglecting the.% relative to the logarithm, this re- 

lationship is 

m = A exp (- 2) (14) 

where A is seen to furnish a mass scale for the lepton mass. Due to the 

exponential factor, however, m/A is a very small number. In fact, setting 

A=MP = (?c/G)' , where G is the gravitational constant, yields 

m=3xlO -97 eV/c2. 

At first glance this extremely small mass vaiue might lead one to 

conclude that this mechanism is far too feeble for the generation of a 

significant quantity of lepton mass (unless one contemplates an extremely 

high cutoff mass, well beyond the Planck mass). However, this is not 

necessarily the case. This calculation is extremely sensitive to the 

argument of the exponential. Recognizing the existence of higher order 

terms, one can inquire what fraction of the total mass shift will bm (2) 

account for, given that other contributions will self-consistently make 

up the rest of the mass. 
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This question can be quantified by changing Eq. (14) to 

c, 

m = A exp 2Tr f(2) - 3-u , (14') 

where f(2) is the fraction of the mass (self-consistently) furnished by 

the second order diagram in Fig. 1 . Self-consistency then yields 

f (2) = 0.1795 and f(2)= 0.1610, for electron and muon respectively. Thus 
e 1-I 

if the total of the contributions of the higher order terms is Only about 

five times that of the initial term, then a self-consistent formulation 

for the dynamic generation of the charged lepton mass becomes quite 

plausible. Furthermore, it is evident that the observed p-e mass 

splitting would obtain when these higher order contributions differ from 

each other by only a few percent. 

III. SELF-CONSISTENCY EQUATIONS FOR THE SYMMETRIC.SOLUTION 

By letting 6m= m in several more detailed approximations, we now 

study self-consistency equations for the leptonic self-mass. This is a 

useful prelude to an investigation of asymmetric solutions, because 

associated with asymmetric solutions, one also expects symmetric solu- 

tions.33 And one can determine appropriate mass scale relationships 

already from these symmetric solutions. 

In this section the ultraviolet cutoff is set at the Planck mass. 

This step enables contact between the analysis of Landau and his collab- 

orators and that of this work; the former uses direct functional anal- 

sis to find (approximate) solutions to the integral equations, while a 

standard perturbation approach is employed here. This contact is useful 
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because it gives additional confidence in the application of the pertur- 

batioz expansion to the self-mass problem. From both these approaches, 

one sees that vacuum polarization causes a divergence in the ultraviolet 

region before one reaches an infinite momentum. And the location of this -___ 

divergent point, the Landau singularity, is found to be the same in both 

of these approaches. 

In second order, the self-consistency equation for the mass is 

6m(2) = 3a ln -= A2 
m G-F 2 

+1, (15) 
m 

where the definition 

a A2 

E=5 aniF 
(16) 

has been introduced to replace m by the more convenient mass parameter 5. 

When one uses the (dimensionless) 5 parameter, the explicit value of the 

cutoff need not be specified. Equation (15) has the solution, 5=0.4444, 

the equivalent of Eq. (14). 

In fourth order, the self-consistency condition for the electron 

mass is derived from the equation shown in Fig. (2) (plus the second 

order equation shown in Fig. (1)). Here, the first vacuum polarization 

graph is introduced. If one assumes that there is only the electron, 

then the vacuum polarization graph only appears once in the equation. 

If one assumes that there is only a pair of charged leptons, then it 

appears twice, once with an electron loop and once with a muon loop. 

Now it is quite possible, even probable, considering the colliding 

beam results, 34 that there are other point-like objects which electro- 

magnetically couple to the photon. In this paper, these objects will 

be taken into account by assuming that there is an effective number R 
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of them. This contribution will be termed "hadronic" although it is 

recognized that it includes some heavy leptonic part. 
35 

$ing Eqs. (B-5, A-9, C-8, and D-12), the equation in Fig. 2 (at 

$=m) yields 

sm(4) : Sim +!!E2+y2)m 52+T2e52+Lg52 ) . 

where we have assumed that all mass parameters are equal. Using Eqs. (15) 

and (17),the 4th order self-consistency condition on the self-mass becomes 

&m(2) + 6rnc4' - 
m = $b y c2 + (Rt2) ; E2 + $ ~2 + g 52 = 1 , (18) 

Equation (18) leads to the quadratic equation 

(36~ - 9) t2 + 725 - 32 = 0 . (19) 

The appropriate positive root of Eq. (19) is plotted versus the (phenomeno- 

logical) parameter R in Fig. 3. 

One sees that in fourth order self-consistency requires an (R+2) of 

~115 to obtain the correct electron mass parameter (< = 5, = 0.0798 for 

A = MP> in contrast to the value of sl2 implied by the analysis of Landau 

and his collaborators. 8 The reason for this disparity, of course, is 

that only a single loop, of vacuum polarization has been taken into 

account. The self-consistency equation for the self-mass which one would 

associate with the Landau calculation would be one using a photon on which 

all concatenations of the proper photon self-mass blobs are-summed. 

Since that calculation is a "zero approximation," the appropriate (proper) 

blob approximation to use here would be the single fermion loop. This 

calculation entails the sum of (gauge invariant) graphs shown in Fig. 4a. 

Since there is a contribution to bm for each Feynman graph, one employs 

the set of counter term graphs shown in Fig. 4b, which formally sum to 
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(and define) 6m(ly), the one photon estimate of the leptonic self-mass 

including vacuum polarization to all orders. (Each 6m On) counter term is 

tacitly partitioned into its ny,(n-l)y,..., and ly pieces according to the 

topologies of its associated graphs. 6m (lY) , then, is only part of the full 

Sm summation. This expansion will be described in more detail below.) 

These expressions lead to the (one photon) self-consistency equation 

shown in Fig. 4c. An estimate using this set of graphs has been obtained 

in Appendix A. Using Eq. (A-13) the self-consistency equation for this 

case becomes 

&m(lY) 9 1 
m = ' = 4(R+2) Rn 1 l-(R+2)5 * 

The solution to Eq. (20), 

5 = me& [l-e--+2) /g-J , (21) 

(20) 

is also plotted in Fig. 3. It can be seen that in this case the self- 

consistent relationship between the electron mass and an ultraviolet 

cutoff at the Planck mass is achieved when R+2 = 12, in accord with the 

results of Landau. 

From these results one sees that in the self-mass problem the high 

order vacuum polarization graphs are quite significant and, in fact, 

cannot be ignored. Consequently, in further analysis of the self-mass, 

the photons will include estimates of the vacuum polarization to all 

orders; the perturbation expansion, then, will be in the number of 

photons rather than in powers of the renormalized electric charge. In 

following the topologies of the usual perturbation expansion, not 

including the vacuum polarization, one can see that this new expansion 

will proceed by gauge invariant sets of graphs, as does the usual pertur- 

bation theory, order by order, where order now denotes the number of 
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photons. It is evident that this new expansion (recalling that the 

photon lines implicitly include their vacuum polarization) will include 

all of the graphs employed in the usual perturbation expansion. There- 

fore, $e full summations of these two expansions are equivalent. As with 

usual perturbation calculations, we shall use low order (gauge invariant) 

summations to approximate the full expansion. 

It is assumed here that the perturbation expansion, whether expanded 

using renormalized charge or the bare charge, is convergent. As pointed 

out by Bjorken and Drell, 36 it is conventional to make such an assumption 

for QED calculations even though convergence of either expansion has never 

been demonstrated. One notes that the expansion here (by the number of 

photons, each one including its own vacuum polarization) is akin to a 

perturbation expansion in the bare electric charge, for as is well known, 

(since Z =Z 12 ) only the renormalization constant for the photon propagator 

the vacuum polarization) enters into renormalization of the . - Z3 (i.e., 

electric charge. 

Having found the parameters of the self-consistent solution for the 

one photon case, the next step is to investigate the two photon case. 

However, at this point one finds an ambiguity on how to proceed. One 

approach is to evaluate 

bm = 6m(ly) + 6m(2Y) + gm(3y) + . . . (22) 

where Eq. (22) is constructed analogously to Eq, (9)' and includes all contri- 

butions to 6m. The equation from which 6m (2Y) derives is depicted in Fig.5, 

and the higher order terms follow in the usual way. This approach leads to 

the expansion depicted in Fig.6. For a two photon calculation, one could 

(lY) then approximate 6m by bm + 6m(2Y) and derive the self-consistency 

equation from 
6muY) + 6m(2Y) 1 = . m (23) 
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This formulation, using Eqs. (B-8, C-25, and D-18), leads to 
c, 

6m - = A-f AGm(lY) A2 + A2 = A A2 
+- - -- = m m 2 3 2 1, (24) 

where the quantity A is defined by Eq. (A-14). Equation (24) is domi- 

nated by the counter term graph (second graph, Fig. 5). And since it 

has a large negative coefficient, one sees that there is no real value 

of A which'will yield a solution. 

Another approach might be called a topology summation. First note 

that any graph containing more than one 6m (nv> cross (e.g., the last 

graph in Fig. 6) will have an mj, where j>l, coefficient to the 

integral and hence will be negligible. This result may be obtained by 

a simple dimensional argument: one m factor sets the scale, but the 

additional factors of m are divided by factors proportional to I\, rendering 

the graph negligible. As a consequence, all graphs containing more than 

one factor of 6m (nr> on the right-hand side of the equation depicted in 

Fig. 6 may be neglected. One can then sum over n, topology by topology, 

all of the graphs containing a 6 m(w> to yield single graphs of each 

topology, each with its (now summed) dm counter term. See, for exam- 

ple, Fig. 7. Transferring these sum graphs to the left-hand side of the 

equation, and then factoring out the &rn leads to the equation depicted 

in Fig. 8. 

Looking at Fig. 8, one can formulate a two photon approximation to 

the self-consistency equation by 

LEL, A + 516 A2 
m 1 + 

-=l, 
413 A (25) 
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whfch has the solution A = (1 + 6) /5. The positive solution is 

A = 1.3136, not too different from the one photon solution, A =l. 

One exijects higher order approximations to 6m, in essence, to yield 

higher order polynomial equations in A, specifying other values for A, 

which would stili be on the order of unity. 

Looking more closely at the difference between these two formulations, 

one sees that in this second case the approximation 

gm = g-m(ly) + sm(2Y)/(1 + 4A/3) (26) 

has been made. Now the factor multiplying brn (2y) is just what one 

would get for the geometric sum of a series whose recursion relation is 

given by Eq. (B-8). Thus the sum of the higher order contributions of 

6 ,w> implied by Eq. (B-8) leads to an effective reduction of the 

initial (or direct) contribution. (All graphs involved.in this summa- 

tion are of the same topology; each order of o'm b-d feeds into &rn (n+2> 

via this counter term graph, and then into 6rn (n+4 > again by this graph, 

. - 

etc.) 

One notes that the condition for convergence of the geometric series, 

I I $A ~1, is not met by the solution to Eq. (25). However, it is easy 

to see that since - +A <O, it is an alternating series which is 

Bore1 summable;" the sum is just the same as that given by the formula 

for the geometric series ignoring the above restriction. This difficulty 

appears similar to other questions about the convergence of the perturba- 

tion series, and is thought to stem from the use of the perturbation 

expansion to solve the field equation problem. That is, the true solu- 

tion is some function, and the series is only a representation of that 
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function, entailing certain limitations. Such difficulties were 

recognized very early, 3% but they are not yet fully resolved. Here we -. 

shall e'inploy Eq. (25) for the two photon approximation and make the 

assumption that the use of the Bore1 summation technique is valid. 

The solution- to Eq.. (25), given by 

1 
5 = R+2 1 -e -4(R+ 2)A/9 1 > (27) 

called the 2y solution, where A is set to 1.3136, is plotted in Fig. 9 

near R= 10. For comparison, the ly solution, Eq. (21), is also plotted. 

It is evident from Fig. 9 that variations in the value of A in the 

neighborhood of unity do not cause major excursions in the value of R 

required to derive the observed lepton mass scale from the ultraviolet 

cutoff mass. 

Figure 9 is evidence that a reasonable estimate of the location of 

this divergence may be determined analytically by the summation of one- 

fermion loop graphs, the simplest graphs of vacuum polarization, on but 

a single photon; the two photon calculation is not too different from the 

one photon calculation. One expects that increasingly more accurate approx- 

imations will in effect specify different values of A, and hence different 

values of R (if one knows the cutoff). However, a glance at Eq. (27) 

-1 
shows that as A +a,<-+ (R+2) , independent of A. Thus, the 

specific value of A does not influence the self-consistent-value of 5 

very much, unless higher order approximations somehow conspire in such 

a way to require that A be small, which seems unlikely. 
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On this point it is relevant to recall that the ly perturbation 

summation used here (Fig. 4) is already in good agreement with the work 
4 

of Landau and his collaborators. 8 In the latter analysis, which used 

functional represenations for Dk(k)ll\i, I'u and S;(p), the singularity 

was shown to be in the photon propagator; the renormalization effects 

in IYu and S$(p) cancelled, as one would expect from the Ward identity. 

In the perturbation expansion developed here (as well as the one 

developed by Lautrup), this singularity is also manifest in the photon 

propagator. However, it does not originate in any one graph, all of 

which diverge at infinite momentum, but rather in a sum of (a subset 

of the) graphs comprising 6' F~Jv' An analogous sum of such-graphs in 

the construction of S' F does not exhibit such a singularity (see Eq. 

(c-12)). Each term alternates in sign with successive iterations of 

theproper fermion self-energy contribution on the internal fermion 

line, and hence the series is Bore1 summable. (The Bore1 sum, of 

course, still has a divergence at infinite momentum.) This implies 

that an exact expression for Sd cannot eliminate the presence of the 

Landau singularity. The Ward identity then implies that a similar 

conclusion also applies to an exact expression for "ru. 

If we look to a more complex internal structure of the proper 

fermion self-energy contribution for relief from the Landau singulari- 

ty, we should bear in mind that the self-mass integral always remains 

of a logarithmically divergent form. Additional (internal) photons 

each add two vertices and two fermion propagators, which because of 

the Ward identity tend to cancel, leaving the vacuum polarization on 

the new photon as the major additional contribution. The effect of 
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each additional photon diminishes the contribution of the associated 

parts of the graph by the additional flow of its momentum (due to the 
4 

additional integral) in the denominators of the neighboring propagators. 

Likewise, the contribution of this additional photon is attenuated by 

the flow of momentum from other closed loop integrations. As-pointed 

out by Landau, 8 this statement is particularly relevant to nonplanar 

graphs. The initial divergence, that associated with the first photon 

(Fig. 4c), then, appears to remain the controlling quantity in the 

self-mass expansion. The additional photons, in the formulation of 

this model, just serve to enable a better calculation of the quantity 

A from the self-consistency relationship 6m/m=l; their Landau singularity 

is already under control by the cutoff assumptions. 

Similarly, to the extent that the proper self-energy insertion of 

the photon is known, 39 one sees no hint that higher order effects here 

will make a qualitative modification of the result deriving from the 

simple one fermion loop of vacuum polarization; the (known) higher 

order components have the Rn factor to a power lower than that of 

the associated ~1. One also notes that the coefficients diminish in 

magnitude with increasing powers of a, and that they are all of the 

same sign as the initial c1 Rn 2 
m2 

term, which would only serve to shift 

the location of the Landau singularity, not to eliminate it. These 

results on the higher order structure of the proper photon self-energy 

graphs also serve to substantiate the above remarks on the higher order 

structure of the proper fermion self-energy graphs. 

In this section we have made contact between a perturbation expan- 

sion and the work of Landau, which sought solutions to the integral 

equations more directly. In both approaches, one sees that due to 
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vacuum polarization, a divergence of the theory, or Landau singularity, 

will occur before the upper limit of momentum goes to infinity. And no 
4 

obvious source of relief from this difficulty is in evidence. 

In this regard, it is frequently stated that perturbation theory 

cannot be trusted because the quantity $(inth' 1s analysis the 

Q2 

q!Zn 
m2 

appropriate quantity is (R-l-2)FRn -) is getting too large. 
m2 

While it 

is true that the latter quantity does indeed become large, it is worth- 

while to point out that it has been argued that in QED even a non- 

perturbative solution for the self-mass will diverge. 
12 And we observe 

that this nonperturbative divergence is of the same nature as that 

obtained here by a self-consistent solution using the perturbation 

expansion (linear in the cutoff momentum). 

These results are strong evidence (although admittedly not a proof) 

that the problem of the Landau singularity is an enduring feature of QED 

which is not to be solved by going to higher order, employing Bore1 

summations, or even by somehow obtaining an exact, nonperturbative 

solution. We see no reason to reject this evidence. Consequently, 

the simple straightforward application of a physical ultraviolet cutoff 

to solve this problem has been incorporated into this model. Some 

aspects of this cutoff are covered in the next section. 

IV. DERIVATION OF A SELF-CONSISTENT VALUE FOR A 

The results of the last section were obtained using a hard cutoff 

on the self-mass integrals. That is, the upper limit to the divergent 

integrals was just put in by hand at A (just below the Landau singu- 

larity). This approach implies that there are two significant mass 

values in the ultraviolet region: the cutoff point and the location of 
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the Landau singularity. Furthermore, they must be close to each other 

in just the right relationship to achieve the self-consistent value for 

the szf-mass integral. 

We shall see below that this criticism, which stems from the use 

of a hard cutoff, can‘be averted. To do this, we shail merge the above 

two mass values into one by the use of a proper Lorentz invariant cutoff 

at the Landau singularity. Motivated by the results of the above section, 

this cutoff is assumed to be physical; it is not later to be taken to 

infinity but remains at the Landau singularity. (The integration still 

ranges to infinity, however.) We note that the form employed below for 

this cutoff is, of course, to be taken as a phenomenological representa- 

tion of the physical processes which the model assumes to be operating in 

the neighborhood of the Landau singularity. The results of this section 

are Cessentially) independent of the details of the form.of this cutoff 

(which are a function of the specific processes involved), other than that 

it cuts off over a finite range of momentum, which would be a general 

feature of any physical process. (The problem with the hard cutoff stemmed 

from its "abrupt" character.) 

This step leads to a self-consistency equation for the (effective) 

number R of hadronic objects which couple to the photon. From this 

equation one derives the ratio between the lepton mass and the requisite 

ultraviolet cutoff mass. Within the errors inherent in this analysis, 

the value of this cutoff is found to be consistent with the Planck mass. 

From the analysis of Bjorken and Drell 4Q one sees that the lower 

and upper cutoffs on the (logarithmically divergent) Lorentz invariant 
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self-mass integral can be cast into the form of the identity 

J 

co 

? (eiay-e 

iby) = Rn $ , 

0 

-. 

(28) 

where y is an inverse four- momentum squared parameter and a and b are 

the lower and upper cutoffs, respectively. The lower cutoff, while 

nominally at the photon mass, is effectively at the fermion mass (as 

discussed above, the self-mass is not infrared divergent). In Euclidean 

four-space, an appropriate form of the identity 41 is 

i 

00 
$ (emay-e -by) = Rn $ ; 

0 

convergence is assured by the Euclidean relation K2 =1/y> Cf. 

Including the vacuum polarization factor, i.e., the denominator, 

l-+ (R+2) ln K2/m2 
I 

, 

and setting the lower limit equal to m2 (the use of the exponential 

form for the lower limit is not essential) in a logarithmic integral 

which is equivalent to that employed in the calculation of Eq. (A-14) 

yields 

A’ = 3a 
-G 

dK2 

K2 a(R+2) Rn K2 
l- 3a - 2 m 

, (30) 

where the prime denotes the physical cutoff modifications are employed 

in this calculation of A. Setting 

a(R+2) K2 
3Tr Ln - 2 'Y 

m 
(31) 
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obtains 
m 

A’= g 
-cI / 

dy 
4(R+2) 1-Y 

0 

-A2 -. 
2 31~y/cl(R+2) (32) . me 

Now to merge the divergence at y=l (the Landau singularity) and the 

cutoff at K2=A2 , one may set 

eliminating A2 from Eq. (32). 
00 

9 
A' = 4(R+2) 

/ 

dy 
1-Y 

0 

A2 2 3n/a(R+2) , =m e (33) 

Thus 

\ -,3~(1-y)/a(R+2) 
/ - I 

(34 > 

NOW the value A of the self-consistency integral is a function of R 

(and a) alone. 

. 

Equation (34) has been numerically integrated and the principal 

value of d(R) is plotted in Fig. 10. One observes that these 

calculations for A' are not particularly sensitive to the value of 

a(R+2) in the cutoff factor; the major functional dependence of A' upon 

R derives from the denominator of the fraction in front of the integral. 

We note here that whereas the principal value prescription would 

solve the problem pointed out by Lautrup in connection with "convergentlt 

quantities (it would furnish a definition of the otherwise improper 

integral), the self-mass integral, which is logarithmically divergent, 

needs more. Without' a cutoff, the negative integrand above y= 1 would 

lead to a divergent, but negative self-mass. One possible approach, 

that of subtracting away the pole 
42 at the Landau singularity, would 

still leave a logarithmically divergent self-mass. Thus, in this model, 

the use of a physical cutoff at the Landau singularity is necessary to 

render the self-mass integral finite. 
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From the prior sections, we suppose the appropriate self-consistent 

value of A' to be in the neighborhood of unity. From Fig. 10, it can be 
A 

seen that A'= 1, as given by the one photon self-consistency relation, 

calls for R=9.5, while A'= 1.31, the 2y value, yields R=7.1. From 

Eq. (33), then (using m=me and A'= 1) one deduces the required QED 

cutoff mass to be at 1.24~ 10 21 GeV/c2; quite close, considering the 

sensitivity of exponential functions to their arguments, to the Planck 

mass of 1.22X10 19 GeV/c2. It should be noted that Eq. (33) is to some 

extent arbitrary. While variations in the details of Eq. (33) will not 

affect the deduced value of R very much, because of its exponential form, 

the deduced value of A is affected by the form of Eq. (33). Thus, until 

one has a better understanding of the physics associated with the Landau 

singularity, the analysis of this model can only indicate that the 

Landau singularity is in the neighborhood of MP (probably on the high 

side). 

Aside from questions of the details of Eq. (33), a discrepancy 

between MP and the self-consistent solution for A is not a philosophical 

problem. It should be kept in mind that while these two mass values may 

be associated (and hence forming a link between QED and gravitation), 

they need not actually be identical; the QED cutoff mass [which we shall 

denote as the "Landau mass" (g>l could entail factors in addition to the 

quantity defined as the Planck mass. In fact, in studying the relation- 

ship between the self-mass problem in QED and in classical mechanics, it 

has been suggested that gravitation will furnish a QED cutoff l2 at 

A = 2M.J3, which we note is in better agreement with the results of this 

section than is Mp. 
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It should be pointed out that in this derivation, the functional 

1 form - 
-cI 1-Y 

of the integrand in Eq. (32), which was obtained from 

perturbation theory and which is valid below y=l, is naively assumed 

(by analytic continuation) to be the appropriate functional form to use 

throughout the range of integration, including the region beyond y=l. 

While not explicitly noted, this step is tacitly taken by other authors 

as well. 13,42 

V. SUMMARY AND DISCUSSION 

Th is paper has stud .ied a model based upon the idea that all of the 

(charged) leptonic mass is due to QED self-interactions. A perturbation 

expansion for the electron QED self-mass is developed, and it is shown 

that this expansion gives results in agreement with the functional 

analysis of Landau and his collaborators. To obtain this agreement, 

the key feature which must be contained in the perturbation expansion 

is the one loop vacuum polarization graph summed to all orders. 

This functional form for the self-mass integrand dictates that for 

K2 > 4 the contribution to the lepton mass by the (renormalized) photon 

depicted in Fig. 4a is negative, which in turn implies that there is a 

reversal in the sign of the effective coupling constant associated with 

photons having K2 > $" It thus follows that the assumption concerning 

the functional form of self-mass integrand entails a novel physical 

consequence: at distances less than the "Landau length", like charges 

would attract and unlike charges would repel. Some comments on possible 

physical aspects of this notion will be made in the next section. 
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The fact that inclusion of higher order proper vacuum polarization 

graphs, vertex insertions, or fermion propagator corrections does not 

- app&r to be essential or to significantly alter the simple one photon 

results, is taken as an argument in favor of the permise that - as 

originally suggested.by Landau - there exists a divergence of. the photon 

propagator (the Landau singularity) before the upper limit of photon 

momentum is taken to infinity. It is also noted that Lautrup has 

recently shown that this divergence at the Landau singularity is 

manifest in the anomalous magnetic moment as a non-Bore1 summable set 

of graphs. Lautrup's result is significant because it shows that the 

question of the Landau singularity is found also in "convergent" QED 

quantities as well as the divergent self-mass. 

It is relevant to observe here that the perturbation sums obtained 

in the appendices offer a possible resolution to the conflict between the 

apparent Bore1 summability 43 of the general high order QED term in the 

perturbation series (the general term evidently alternates in sign with 

increasing order) and the non-Bore1 summability of the graphs of con- 

catenations of vacuum polarization loops. It is simply that the Bore1 

summable components of the QED series [e.g., Eqs. (B-8) and (C-lO)]have 

larger "recursion coefficients" than does the non-Bore1 summable vacuum 

polarization component. Thus, with increasing order, the Bore1 summable 

terms will exceed the non-Bore1 summable terms by an ever increasing 

amount. This being the case, it is not surprising if the approximation 

methods presently used to derive the general term in the QED series 

would miss this (smaller) non-Bore1 summable component residing in the 

general higher order perturbation term. Of course, a non-Bore1 summable 

component, even if small, must still be reckoned with. 



-29- 

In this model the resultant singularity (in the photon propagator) 

is controlled by employing a physical cutoff at the Landau singularity 

and the assumption that, by analytic continuation, the mathematical form 

of the self-mass integrand above this singularity is the same as that 
44 

below. A principal, value prescription is then employed to evaluate 

the self-mass integral. These assumptions will not affect the pertur- 

bation theory calculation of "convergent" quantities. If the other 

divergences of the perturbation series are Bore1 summable, as may well 

be the case, then, indeed, this model yields a convergent self-consistent 

formulation for the QED self-mass. 

This model also leads to a self-consistency prediction with no free 

parameters that the Landau singularity is in the neighborhood of the 

Planck mass. From this, one may infer, as suggested by Landau, that 

gravitation plays some role in furnishing a cutoff for QED. 

There are additional physical interpretations which one may associ- 

ate with the assumptions used in this model. For example, one supposes 

that the assumption of a physical cutoff implies that the point-like elec- 

tronic charge would be actually characterized by the Landau length, an 

idea also explored by Landau, 8 while the analytic continuation of the 

self-mass integrand implies a reversal of electromagnetic coupling at the 

Landau singularity. This reversal of the electromagnetic coupling might 

be ascribed to the finite size of the point-like electronic charge as 

follows. We first note that the vacuum polarization component of the 

renormalized electromagnetic coupling exceeds that of the Coulomb part 

when y > %, and completely dominates it as one approached the Landau 

singularity. Keeping in mind a finite sized electronic charge, one 

imagines that the vacuum polarization cloud would form "around" a pair 
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of (test) charges (i.e., the interaction points of the photon propagator) 

which are closer than the Landau length, rather than "between" them as 

one Rormally expects for larger separations. Since this change, or 

"reversal", in the geometrical distribution of the vacuum polarization 

cloud relative to two, interaction points will take place on a scale 

characterized by the Landau length, one is furnished with a physical 

rationale for the reversal in the electromagnetic coupling. 

If the ideas explored in this model are relevant to the physical 

description of leptons, then it is appropriate to point out that some 

other approaches cannot be employed to investigate the question of 

leptonic self-mass-- at least in their present form. In particular, the 

use of the renormalization group for this purpose is precluded because 

a basic assumption of that approach, that the leptonic masses may be 

neglected in the functional form of the propagators in the ultraviolet 

region, 45 is not fulfilled. In the perturbation theory result, the 

location of the Landau singularity is a direct function of the (mean) 

leptonic mass. Similarly, analyses of this question using the spectral 

representation are cast into doubt. If the leptonic charge has a 

structure characterized by the Landau length, then the notion of the 

light cone on this scale is undefined until that structure is better 

understood. As a consequence, a crucial step in the derivation of the 

spectral weight function 46 for this region is on uncertain ground. 

The perturbation theory results obtained with this model, therefore, 

cannot be obtained (or.refuted) by derivations based upon the renormal- 

ization group or the spectral function. A selection among them must be 

made on the basis of external criteria. While one may favor one or 
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another of these approaches based upon one's view of "reasonable" 

physical assumptions, ultimately the decision must be made by 

expeFi.mental test. 

Unfortunately, the prospects of direct tests of elementary 

particle theory at the Planck mass are very remote; we shall-have 

to be content with other less direct predictions of the models, 

or theories, in question. 

We have seen that vacuum polarization, including hadronic contri- 

butions, plays a crucial role in this model. The amount of vacuum 

polarization is described by a phenomenological parameter R which sets 

the scale of the mean lepton mass relative to cutoff mass. R is the 

(effective) number of point-like objects which electromagnetically 

couple to the photon, and is essentially the same R as characterizes 

the e+e- hadronic cross section. R is determined by a self-consistency 

equation with no free parameters, A calculation using a one photon 

approximation for the fermion self-mass indicates that R is on the 

order of ten while the two photon approximation yields an R of about 

seven. 

The error in these numbers due to variations in the form of the 

assumed physical cutoff should be no more than a few percent. This is 

because there are -20 orders of magnitude between the leptonic mass 

scale and MI, while on physical grounds one expects the cutoff to become 

effective in one order of magnitude of momentum range, or less. 

However, since one is uncertain in the ultimate value of A' which a 

full perturbation sum will prescribe (higher order estimates of the 

value of A' are well defined in this model, but tedious to calculate), 

one cannot yet estimate the error resulting from the truncation of the 
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perturbation series. But the fact that the value of A' changes by only 

30% in going from the ly to the 2y solution is cause for optimism. 

-The experimental value of R is on the order of five at 10 GeV in 

the center of mass34 and will soon be extended to higher energies by 

PEP and PETRA.. Thus, at the present time; the self-consistency 

evaluation of R by this model does not conflict with experiment. In 

fact, it predicts the existence of (a limited number of) additional 

point-like objects beyond those presently indicated by the experiment- 

ally determined e+e- hadronic cross sections. 
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APPENDIX A 

Leading Contributions to the Vacuum Polarization Graphs 

I+ this Appendix estimates of the vacuum polarization contributions 

(fermion loops) to the one photon fermion self-mass graph are made. 

These estimates are relatively simple once one exploits the simplifying 

assumptions: 1) only the leading terms, i.e., those proportional to 

n 

( 1 
clRn - ;; ' 

are required for order Zn, and 2) the infrared problem may be ignored. 

(The rationale for the latter is discussed in Section I.) The approach 

is simply to effect a Wick rotation 47 on the energy variable of inte- 

gration, converting the Minkowsky space to a Euclidean space where, 

using symmetry, the integrals are simple to estimate. 

To show the details of this approach we start with the second order 

self-mass integral, (obtained from Eq. (12)), 

fw* ---p 
i(zK)4 k2 + i& 'u (p-k)2-m2 + ic/' 

l -2$+2bC+4m = 
i(Zn)4 k2 + ie (p-kj2-mL + is' ' 

where the first two of the identities 48 

(A-1) 

YpY ’ = 4m 

v,dyP = -2d 
(A-2) 

Y,dtiYP = 4 a-b 

Y,WCY~ = -2ClM 
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have been employed to eliminate the gamma matrices. In accordance with 

Eq. (8) the value of 6m (2) will be determined when $=m. 

En order to understand the effects of the Wick rotation, one must 

know the disposition of the poles of the integrand in the complex k0 

plane. For convenience we shall locate them in the rest frame-in which 

pO=m, One now sees that the poles of the integrand are distributed in 

the complex kO plane as shown in Fig. lla. That is, in the right half 

of the plane, the poles are below the real axis, while in the left half, 

they are above. The kg integrals over the range - O" 2 kg 2 co may be 

evaluated by means of a contour integration. For large kg' the kO inte- 

grand goes like dko/k:, where n=3 or 4, which means that the hemispherical 

contour (closing either above or below the real axis) can be added at 

infinity making no contribution to the integral. A contour closing below 

the real axis is also shown in Fig. lla. One now sees that the contour 
. - 

of this integral may be rotated counterclockwise 90° as shown in Fig. lib 

without changing the value of the integral (no poles are crossed). Thus 

one effects the Wick rotation, and converts Eq. (A-l) to a Euclidean 

integral over d4K with the substitutions 

k. = iK4, kj = K., and k2 = -K2 
J (A-3) 

where j=l, 2, 3. It is now easy to evaluate these integrals in (the 

symmetric) Euclidean space; the contour integration and the is in the 

denominators are no ;longer required. 

Now using $=m and p2=m2, the integrals proportional to (the numerical 

factors) -2$ and 4m may be combined to yield 

/ 

A2 
s dX 2am ----."= 
47r x z !Ln$ (A-4) 

m2 

where X=K2 and d4K = 2F2K3dK = r2K2dK2 have been employed. 
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Note that since we are ignoring the infrared problem, the lower 

limit has simply been set equal to m2. Stopping the integrations at a 

specific value of A2 is called in the text the use of a "hard" cutoff. 

(The upper limit is discussed in more detail in Section IV.) These 

approximations will lead to no errors to the accuracy to which we are 

working. Further, one notes that the term,, 2p*k, in the denominator of 

the fermion propagator has been dropped because by symmetry it averages 

out (to the accuracy of this estimation) to zero. 

To evaluate the remaining integral, the one proportional to 2ti, one 

symmetrizes the denominator by the substitution k=k'+ p/2. This yields 

a new denominator, (k' + p/2)2 (k'-p/2)*, which -f kN4 within the accuracy 

to which we are working. The effect of this substitution is felt in the 

numerator, in which 2g=2#' + $/2). One now drops the integral propor- 

tional to K' as averaging to zero, and we have the effective substitution 

21c + $ = m in the numerator. Thus the integral deriving from the 2% is 

am 
-i$ X' 

I 

A2 
dX 

m2 
and the final result for the three integrals is 

(A-5) 

6m(2) 3clm A2 
=-En2 ' 4Tr 

in agreement with Eq. (13). 

In order to determine the contribution of the single loop of vacuum 

polarization, one can simply make the appropriate changes in the photon 

49 
propagator 

(A-7) 
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in Minkowski space, or equivalently 

1 --+- l+$Rn$ X ( ) (A-8) 
-cI 

in Euclidean space. Using Eq. (A-8) to modify the integrals in Eqs.(A-4) 

and (A-5) yields 

(A-9) 

This expression evidently is appropriate for the sum of the first two 

graphs shown on the right hand side of the Eq. in Fig. 4a. The second 

term clearly is due to the single fermion loop graph and is in agreement 
18 

with the leading term of a more detailed calculation. Using Eq. (16), 

the one fermion loop contribution may be written as 

(A-10) 9mC2/8 

for each fermion. 

It is now a simple matter to extend this estimation, summed to all 

50 
orders, using the substitution 

. 
$2 1 

I 
1 

2 L 2 
- + Rn $-- - + ,LLn $ + . . . 1 ' (A-11) 

One now notes that the a2 term in the denominator (associated with the 

vertex and fermion self-mass insertions in a single fermion loop) has a 

log to a power less than the power of c1 and hence will not contribute to 

the leading terms. Thus the leading terms to all orders, are evidently 

associated with concatenations of single loops rather than more complica- 

ted structure in the single loop itself. The graphical summation is 

shown in Fig. 4a. Again, using the Euclidean space equivalent of 
51 

Eq. (A-11) the integration is easy, yielding 
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(A-12) 

It is straightforward to include in this estimate the loops due to 

muons, and other point-like particles. We shall assume that there are 

(an effective number) R other point-like particles, in addition to the 

two leptons. Taking all masses (the two leptons and others) to be equal, 

Eq. (A-12) generalizes to 

9m 1 I~ 
4(R+2) Rn 2l l-(R+2) $ Rn $i 

. 
For the purposes of subsequent analysis, it is useful to define the 

dimensionless quantity 

9 
A = 4(R+2) Rn 

1 
1-(R+2)~ Rn A2 ' 

3lT i-7 1 

(A-13) 

(A-14) 
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APPENDIX B 

The Leading Contribution to the Counter Term Graphs 

After the single photon graph, the next simplest graph is the 

(fourth order) counter term graph (second graph, Fig. 2). The contribu- 

tion of this graph is 

where 

($) = J d4k -i 
m4 k2 + iE 

N _ i6m(2) 

+ is2 1 
(B-1) 

N = y,, ($-ti+d (r6-W-~-Y’ . (B-2) 

In the single photon graph, we have seen that a linear factor % in the 

numerator (the denominator is even), upon integration, gives a contribu- 

tion proportional to m. Hence only the @k" term in Eq. (B-2) need be 

kept; the k2 term goes like A2 upon integration and hence will dominate 

any term proportional to m. Thus 

N & y k2yv = 4k2 (B-3) 
1-I 

where -L is used to mean "equivalent to". Now, since the distribution 

of singularities for the integrand of Eq. (B-l) is the same as it was 

for that in Eq. (A-l), a Wick rotation in the complex k. plane may 

again be performed 
C 

see Eqs.(A-3) 1 . As with the second order integral, 

only the K2 factors in the denominator need be kept, dropping the p and 

m factors. With these simplifications, the leading counter term contri- 

bution becomes 

(B-4) 

where X=K'. As with the second order integral the upper limit was set 

to A2 2 and the lower to m . (We have argued that the infrared contribu- 

tion will cancel in the total of all of the graphs and hence may safely 
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be ignored in the individual graphs.) Using Eq. (13) for the leading 

term of &m(2) yields 

- $4) = 27m 2 
CT =--J--< , (B-5) 

which is in agreement with Frank. 18 
5 is defined by Eq. (16). 

It is now a simple matter to include the effect of vacuum polari- 

zation to all orders to obtain the appropriate contribution to 6m (2Y) . 

The first step is to note in Eq. (B-4) one makes the substitution 

&m(2) 3 6m(ly) (B-6) 

where the equations yielding 6m (1-Y) , the one photon self-mass contribu- 

tion, are depicted in Fig. 4. Then by making use of the similarity in 

the form of the integrand in Eq. (B-4) and that in Eqs. (A-4) and (A-5), 

one can make the substitution: 

+ Rn (2) 4 +--A , 3 (B-7) 

where A is defined by Eq. (A-14). Combining the substitutions in Eqs. 

(B-6) and (B-7), one has the result 

i (2Y) = -$A&m (1Y) 
CT . (B-8) 

The result, given in Eq. (B-8), is now in a form amenable to the factor- 

ing out of 6m factor as is employed in Fig. 8. 
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APPENDIX C 

The Leading Contributions to the Rainbow Graphs 

The contribution of the fourth order rainbow graph (fourth graph, 

Fig. 2) is 
1 Y (Fw+d 

2 
YP (C-1) 

-(p-k)2-m2 

where 

is a dimensionless factor, 

wkm) 

(p-k)2-m2 

p E ; (2) + (3mw 
FP 

, 

, 

and the function c(2) is defined by Eq. (12). As indicated by 

- (2) 
'FP is just the second order fermion propagator graph without 

(C-2) 

(C-3) 

Eq. (C-3). 

the &m(2) 

term, which is accounted for separately. (Recall that 6(2) includes the 

graph for 6m(2). Therefore, ii;) as defined by Eq. (C-3) does not in- 

clude the i;m(2) graph.) The E and h factors have been omitted, as the 

resolution of the k 
0 contour of integration and the photon mass 

same as in Appendices A and B. The integration of this graph 52 

- (2) upon knowing the function X 53 
E'P off the mass shell, which is 

is the 

depends 

(C-4) 

where the region -k" >> mL is assumed, Using Eq. (C-4) in Eq. (C-2) 

yields 
1+ 3d 

(p-k)2-m2 
(C-5) 

2 
where terms proportional to p , pm or m2 in the numerator of the fraction 

in the square brackets have been dropped as insignificant relative to rnlk. 

(That d must combine with the % in the numerator of the first fermion 
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propagator to be significant.) RG $4) may now be evaluated in the same 

way as C(2) in Appendix A. 

xhe first term in Eq. (C-5) leads to the integral 

The second term leads to 

Combining Eqs. (C-6) and (C-7) gives the result 

, 

(C-6 > 

(C-7) 

(C-8) 

where Eq. (16) h as been used to introduce the parameter 5. 

It is of some interest to extend this result to include the more 

general diagram shown in Fig. 12 with n photons on the fermion propagator. 

To do this one simply makes the substitution (1 -t IIn in.Eq. (C-l). This 

step leads to 

n 

11 . Lx n A2 = -- 
4-K [ 

' + (pf!;!-m2 1 Rn -k2 (C-9) 

in place of Eq. (C-5); terms with more than one factor of m have been 

dropped (see Section III of the text). Equation (C-9) in Eq. (C-l) yields 

i(2+2n) cm) = (-l)n+l 
RG 

which for n=O can be seen to equal CFp W(2)(m). The (-l)n+l factor wil 

assure convergence of the sum over n of these graphs provided 

(C-10) 

(C-11) 
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Equation (C-11) shows that the "recursion coefficient" of the series 

associated with the diagrams of Fig.12 is less than those in Fig. 4. 

Thus,-in some sense a summation of these graphs is less divergent than 

the photon propagator summation; the criterion for summation of the former 

remains valid to momen,ta above the Landau singularity.' And further, as 

remarked in the text, the Bore1 summation technique may be applied (the 

terms of the series alternate in sign) relaxing the requirement imposed 

by Eq. (C-11). It is straightfdrward to sum over 0 2 n 2 ~0 the graphs 

represented by Eq. (C-10). This sum is simply54 

12Y - 1+y + 15 Rn (l+Y) . (C-12) 

Because of the alternating sign with each iteration, there is no 

analogue to the Landau singularity in Eq. (C-12). 

To enable an estimation of 6m (2-y) and hence obtain the two gamma 

self-consistency equation, it is also of interest to obtain the appropriate 

expression for EizY), which would be associated with the third graph in 

Fig. 5. As in Appendices A and B, this is effected by using the substi- 

tution 

, (C-13) 

-1 . 

which for equal mass fermions is -1 a(R+2) 
k2 1 

- 
Rn 

2 3Tr 1 m2 ' for the photon 

propagators. This step has the effect of modifying the logarithm factors 

in a way analogous to Appendices A and B. 

Looking first at cFp w(2) (+lo, we see that the integral from which 

Eq. (C-4) is derived55 may be approximated in the region A2 > -k2 > -p2= m2 

iC2) ($-K) = -$ (4m- Cd-lt)] 
FP 

a 

(C-14) 
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where a=m2/A2 and b=m2/-k2 . For the equal mass case, the substitution of 
h 

Eq. (C-13) into Eq. (C-14) leads to 

fa 
$Y)(p(-K) =.$ [4m-($-k)] $ ' . _ 

J 1-(R-t2) $ !&n X 
(C-15) 

b 

Setting y=Rn X and dy=dX/X yields 

[4m-($-K) 0 
l-(R+2) $ y 

where a'=Rn a and b'=Rn b. Eq. (C-16) may be integrated 56 to yield 

where 

1 

(C-16) 

(C-17) 

(C-18) 

One verifies that as c1 -+ 0, one retrieves Eq. (C-4) from Eqs. (C-17 and 

18). 

Using Eqs. (C-17 and 18) in place of Eq. (C-4), i.e., making the 

substitution 

: Rn $ 3 
-R+2L ' 

converts Eq. (C-5) to 

. 3 =- 3d 
4(R+2) ' ' (p-k)2-m L ' 

(C-19) 

(C-20) 
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In place of Eqs. (C-6 and 7) we must now evaluate 

(C-21) 

Rn - 1 1 
cx(R+2) 

l- 3Tr 
l- cl(Rf2) 

3n 1 
The first term integrates as before yielding 

81m 
16(R+2)2 

(C-22) 

Using the substitution Z=l - cl(R+2) 3T Rn -$-- enables an elementary integration 

I  -  
of the second term: 

2 
81m 1 

32(R+2>2 QJI 1 _ a(:3 
. 

The final result is 

Rn 
1 

a(R+2) , 

l- 3.r 

which as IY. -f 0 retrieves Eq. (C-8). 

One may write this result as 

j$y’ (m) = F A2 

(C-23) 

(C-24) 

(C-25) 

where A is defined by Eq. (A-14). 
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Although we do not do it here, this result may be extended in a 

straightforward way to describe the graph analogous to that in Fig. 12 -c, 

but with all photons dressed. As with the "bare" photons, the terms 

in the summation .of these graphs alternate in sign, and the (Borel) 

summation converges. Again there is no Landau singularity associated 

with this sum other than the original singularity associated with the 

photons themselves. 
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APPENDIX D 

Leading Contributions to the Vertex Insertion Graphs -- 

TTe contribution of the fourth order vertex insertion graph (fifth 

graph, Fig. 2) is 

-i ii;)($) = (-ie)4 
/ 

& $ '.-$$ $!j X 
J 

where 

’ = ‘1-l ($-G-m) ‘, (p(-Ktqf-m) ” ($-i-m) ” ’ 

(D-1) 

(D-2) 

As in Appendix C, the photon mass and the is factors in the propagators 

have been omitted. Equations (D-l) and (D-2) simplify at once to 

'$"I' = e4/i (2ty:k' /i(2iyzq2 [(p-k)2-m2] [(p-!-q)'-m2] [(p-q)2-m2] 

where (D-3) 

N = yu ($-tiW yv @-ti--q+d y’ (b-q+d y’ . (D-4) 

While the point of view of this paper is that infrared divergences 

may safely be ignored, it is relatively easy to see by power counting that 

Eq. (D-3) has no infrared divergences, even in the term going like m3 in 

the numerator. First consider q large. Then for small k the integral 

over d4k becomes (for p on the mass shell) proportional to id4k[k2p*k]-' 

which converges for small k. By symmetry the same result for large k but 

small q obtains. Now if we imagine that both k and q get small together, 

we'll have an integral proportional to J"d4k d4q [k2p-kp.(k+q)p.q q']-l. 

This form still has one more power of the momentum variables in the numer- 

ator than in the denominator, and therefore also converges in the infrared 

region, as was found by Frank. 18 
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We now return to the region of interest: the ultraviolet. The 

18 
relation , 

y,(P+a)yv ($+b)yNC@+c)yv 

= -8A.C$+4a &'$+4b $?h+4c $P+4ab$ (D-5) 

+ 4ac$+4bc& - 8abc , 

is useful. We shall employ 

a=b=c=m and 

A=p-k 

B=p-k-q (D-6) 

c=p-q * 

The last four terms of Eq. (D-5) (proportional to m2 and m3)-may be 

neglected yielding 

N& -8A.C$+4m$$+4m$~+4m$~ . (D-7) 

Equations (D-6) may be substituted into Eq. (D-7) and multiplied out to 

give a sum of simple polynomials. Of these polynomials, those containing 

2 ap, mp, mqk or pqk may also be neglected. This leaves 

N + -8[p*q$+pskk-k.q(k+4)] + 4m(q2+k2) , (D-43) 

which can be seen to be symmetric in k and q. Employing $ + m and antici- 

pating the use of the Wick rotation into a Euclidean 4-space, and noting 

that <Qt>= l/4 <Q2>by symm etry in Euclidean 4-space (this result, while 

not intuitively obvious, also obtains in Minkowsky space) reduces 

Eq.(D-8) to 

N G 8 k.q(lt+gf) + 2m(q2+k2) " (D-9) 
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The integral associated with the first term may be evaluated by the change 

of variables k=c+p/2, q=;+p/2 which 1' e iminates the linear terms like 

- ~' pfq fram the denominator. We then may drop all terms odd in q' and k' 

after this change of variable and obtain (dropping the primes) 

N.=+ + 4p*(kK+q4) + 2m(q2+k2>, _ (D-10) 

which in the rest frame is equivalent to +3m(q2+k2). Thus the integral 

of Eq. (D-3) may now be written simply as 

c$)(m) = e4 
/ 

d4k d4q 3m(q2+k2) 
i(2r)4 i(2m)4 k4(k+q)Lq4 * (D-11) 

As with the rainbow graph we know that we can perform a Wick rotation 

on both d4k =id4K and d4q = id4Q and perform a symmetric Euclidean inte- 

gration. Since we have seen that the graph associated with -i;;) has no 

infrared divergence, it is legitimate to employ a lower cutoff at the 

fermion mass m for the Euclidean integration. To the accuracy of this 

analysis, the term (k+q)2 in the denominator may be replaced simply by 

-(K2+Q2), the effect of the product 2K.Q averaging to zero.57 The symmetric 

Euclidean integral then reduces to 

Cc4) (m) = $ ( VI 

_ 27m 52 
16 , 

(D-12) 

where 5 is defined by Eq. (16). 

While this leading term disagrees with that of Frank 18 this analysis 

has the advantage of being simple and straightforward; his analysis, while 

intrinsically more accurate, was long and arduous and consequently more 

subject to mathematical error. One obtains further confidence in the 
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above result by noting that if one discards the infrared divergent part 

of the vertex insertion calculated by Bjorken and Drell, 58 replacing yl-l 

-0) in thahsecond order graph, C , by its one photon approximation 

A2 Al" = g yFI Rn x , (D-13) 

one obtains for the log2 contribution 

, 

the same result as Eq. (D-12). 

At this point, we note that the photon propagator modification, 

Eq. (A-11) which applied prior to the integration, converts 

fc2)(m) -f 2(ly)(m) , 

i$)(m) + E:;')(m), and 

may also be effected by the substitution 

(D-14) 

(D-15) 

(D-16) 

after the integration. Contact between these two forms was seen to exist 

by letting CI -t 0 which eliminates the higher order effects of the vacuum 

polarization. Using this same rule obtains 

1 
2 

1 
a(R+2) an * 

l- 37-r mz 

(D-17) 
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Equation (D-17) may be written simply as 

h 

(D-18) 

where Eq. (A-14) defines A. 
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FIGURE CAPTIONS 

The diagrammatic form of the equation which specifies the second 

order quantity 6m (2) . In accordance with Eq. (8), $=m is under- 

stood. The signs of the mathematical expressions represented by 

the graphs -are determined by the Feynman rules. 

The diagrammatic form of the equation which specifies the fourth 

order quantity 6m (4). As in Fig. 1, $=m is understood. 

Plot of the (appropriate positive) root of Eq. (19), the second 

order approximation, and of the 5 of Eq. (21), the ly approximation, 

versus the parameter R. For orientation the value of 5, is shown 

when A is assumed to equal the Planck mass, 1.22 x 10 IL9 GeV/c2. 

a) The diagrammatic form of the equation defining a leading approxi- 

mation for the photon propagator including (the one loop estimate 

for) vacuum polarization to all orders. The summation loop is hatched. 

b) The appropriate fermion self-mass counter term associated with 

(a). On the right hand side the superscripts denote the order of 

e and the subscripts indicate that the counter term is in the ly 

expansion. 

c) The diagrammatic form of the equation which specifies dm (ly) , 

the one photon approximation for the fermion self-mass. As with 

the equations depicted in Figs. 1 and 2, $=m is understood. 

The diagrammatic form of the equation which specifies 6m (2-y) , the 

two photon contribution to the fermion self-mass. As before, $=m 

is understood. 
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6. First terms of a general expansion for 6m, where the expansion is 

by the number of photons. As before, #=m is understood. (Note 

That the sign of the 6m standing alone will be properly determined 

by the Feynman rules.) 

7. Summation of the‘graphs of simplest topology which contain counter 

term factors. This subset of graphs has been extracted from the 

general summation shown in Fig. 6. The sum graph on the right hand 

side of this equation corresponds to the first graph in the denomi- 

nator of the expression in Fig. 8. 

8. Graphical expression for 6m in which all non-negligible graphs con- 

taining 6m counter terms have been transferred to the left hand side 

of the equation, combined by factoring the 6m out, and then divided 

out, becoming the denominator on the right hand side. The small 

open circles indicate the prior location of the 6m factors. 

9. Plots of the one photon, Eq. (21), and two photon, Eq. (27), approx- 

imations for mass parameter 5 as a function of the parameter R. 

The electron mass parameter se, muon mass parameter 5 
u 

, and mean 

lepton mass parameter t (assuming that A=?$) are indicated. 

10. Plot of Al, the value of the one gamma self-consistency integral, 

Eq. (34) , cutoff by a (phenomenological) Lorentz invariant cutoff 

located at the Landau singularity (at y=l) as a function of the 

parameter R. 
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11. a) Disposition of the poles in the complex k 0 plane due to the zeros 

in the denominator of the integrand in Eq. (A-l). The integral - 

along real axis over - 03 < k <: 00 may be calculated using a contour - o- 

integral as shown. 

b) The contour of a) may be rotated counter-clockwise by 90°, con- 

verting the Minkowsky space for the integral in Eq. (A-l) to a four 

dimensional Euclidean space in which the integrals are easy to evalu- 

ate; e.g., Eqs. (A-4, A-5, and A-9). 

12. Fermion self-mass graph containing a sequence of n internal one 

photon sub-graphs on the fermion propagator. 
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