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ABSTRACT 

General relativistic gravitational theories are constructed from suitable intransitive 

continuous groups of transformations. A minimal invariant variety forms the unperl 

turbed universe. The formalism of the group is generalized to have the symmetry of 

its action on this manifold broken by gauge potentials. The theory is expressed in 

these potentials and it is shown how the present symmetry breaking is-related to a 

general metric. The physical interpretation of the formalism is outlined. 

I. INTRODUCTION 

The generalization of Weyl's gauge formulation of electrodynamics by YANG and MILLS 

[l] to a non Abelian invariance group inspired Utiyamas method to obtain the general 

theory of relativity as a gauge theory of linear representations of the Lorentz 

group [2] and subsequently Kibbles generalization using the Poincare group p], 

LUBKIN [43 and later YANG [5] p resented an integral formulation of gauge theory for 

gravitation;the Ciiristoffel connection is the gauge potential of the linear group of 

transformations of parallel transported vectors. LUBKIN [4] had already defined a 

general dual charge analog of the magnetic monopole of which the gravitational case 

was analyzed by CLARKE k]. The present author [7] obt ained the electromagnetic and 

gravitational fields, simultaneously in the same form, from the parallel displace- 

ment of the spinor of Dirac's electron equation. The gauge group is GL(4C) in BARG- 

MANN'S [8] covariant formulation of Dirac's equation with the electromagnetic gauge 

&roup as.the invariant subgroup of the traces, or in case of the Vierbein formulation: 

U(l)XSL(2C). Because of these features, the combination of the two gauge groups 

appears artificial rather than a true unification. Subsequently the same formalism 
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was also applied [9]to Dirac's DeSitter covariant spinning electron equationpo] and 

it was shown that general relativity with minor modifications can be based on groups 

other !&an the Poincare group in the local limit-especially on the DeSitter group [9]. 

In the mentioned work of YANG [53, and of the present author (73 the gauge fields are 

related to the Riemann curvature tensor. YANG [5] varies the gauge potentials independ- 

ent of the metric and obtains field equations of the third order in the metric tensor, 

whereas in [7] th e metric tensor is varied together with the potential, resulting in 

field equations-with fourth derivatives of the metric. The latter method seems justi- 

fied because of the universal coupling of the gravitational field and the resulting 

conservation laws. Both types of equations yield all the vacuum solutions of Ein- 

stein.'s theory. 

The approach presented here introduces inhomogenous gravitational fields by break- 

ing the symmetry of the invariance group of space-time [11]. A general space-time 

metric appears only as a secondary result of the gauge formalism which is applied to 

generalize the mathematical apparatus of the group of transformations rather than the 

physical entities. 

A minimal invariant variety of the manifold on which the group acts forms the uni- 

verse of unperturbed space-time and the gauge group is a group of linear transforma- 

tions of the base vectors of the first group. I have chosen here the general linear 

group rather than the adjoint group as the gauge group. A special gauge exists then 

for every coordinate system, which allows to express the formalism in terms of the 

physical potentials and thus to formulate a field theory of gravitation. 

The notation used is that of Eisenhart's classical book n2]. 

II. GENERAIIZATION OF DIRAC'S METHOD TO OBTAIN GROUP COVARIANT FIELD EQUATIONS 

We consider a continuous group of transformation with r essential parameters acting 

on a n-dimensional space V,. The rank of the matrix of base vectors.(5:) (i=l...n, 

a=l.... r) of the group be q<n<r so that the group is intransitive. There exist then 

q-dimensional minimal invariant varieties. 

One can in general find a metric of the n-dimensional space such that Gr is a group 

of motions in it and each of the q-dimensional invariant varieties is a Riemannian 

subspacc i:bedded in the n-dimensional space. We are interested in the cast q=4 and 
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signature +2 when one minimal invariant variety V 
4 

forms a universe with group of 

motion G,. 

On-an then introduce a coordinate system such that everywhere in the Vn: 

P 
a 

= 0, ghi = 0 (ifh), ghh = d 
1 

(a-1 . . . r, h=q&l . . . n, i-1 . . . n) 

as follows from the Killing equations: 

agik a 
-5, + ge-e+ 
ax’ ax 

A nonsingular metric can be formed in group space if Gr is semisimple and the 

metric: 

g 
ik i a$ Sk 

=5Ay 8 
(3) 

with 

Y ‘C # 
ac ‘EB$ and Y,,Y E@ 

a$ 
= g 

a 

(1) 

(2) 

(34 

fulfills the Killing equations (2). Group invariant Lagrangians can therefore be 

formed out of the Lie derivatives of tensor fields on Vq and Y 
a8 . . For example the 

Lagrange density of a scalar field $ is 

(4) 

Such expressions are also covariant w.r.t. coordinate transformations. A Lie 

derivative of spinors has also been defined Dl] in this context. 

III. THE LIE DERIVATIVE OF A SPINOR 

The metric derivative of a spinor covariant w.r.t. general coordinate and spin trans- 

formation is: 

1C;k = uQ -I- r,+ 
axk 

(5) 

where the metric spinor connection P k is defined by the relation: 

(54 

in the Vierbein notation: 
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Yk = h$ v"" , h;,$, gab = gkR 

j y,jb\ = 2gab , {yk, yy = 2gk" 

'k 'h mh ocd 
=G cl dlm;k' (uGd = $ [YC, Yd]) 

(6) 

(64 

On a space where Gr is's group of'motion, I define the Lie derivative of a spinor 

i w.r.t. 5,: 

(7) 

with the connection I: defined by: 

ayl cE _ agl yE _ lyi, $1 = 0 
ax’ a a2 

(74 

One can supplement F,: by q-l linear independent symbols of the group and form their 

algebraic complements 6:: 

for the remaining symbols we have: 

One can now form the nonsymmetric connection: [12] 

and finds the integrability condition for Eq. (7a): 

ark ar”, 
- - - + [ri, $1 = arsArsLk + 3 - 3 
ax” axk 

here Ti = rk 5: and 

A rsRk = gri 

, af? 
.+ + ,j Ai _ 
ax sk ja. 

(9) 

(10) 

(11) 

(114 

The integrability condition can only be fulfilled if 

A +r; =O (lib) 
rsRk srIlk 

but this relation can be shown to be a consequence of G, being a group of motion.[l2] 
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Using ri as connection in the spinning electron equation covariant w.r.t. G r' one 

can also show that the current is conserved. In this spinning electron equation yk 

are reAlaced by YR, the generators of Gr expressed by the Y" (if such generators can 

be formed) see Ref. 10, 9. 

The two connections are related as follows: 

rL a (12) 

In case of generalized Lorentz and rotation groups, the last term has itself the 

form of a generator in spin space and the contribution of such a term to the Dirac 

equation is thus only a mass term of order of magnitude determined by the inverse of 

the radius of the homogenous space, which one may identify with the universe. 

IV. A THEOREM ON GROUP TRAJECTORIES AND GEODESICS. SPECIALIZATION ON THE GROUP 
COVARIANT LAW OF MOTION 

The following theorem is a generalization of theorems which apply to the geometry of 

the group space p2]. It applies here to the invariant variety of our intransitive 

group. 

Theorem 

The trajectory of the symbol Si of a group Gr on its minimal invariant variety V 
9 

coincides with a geodesic of the Riemannian metric on V q for which Gr is a group of 

motion, iffon every one of its points, there exist q linear independent symbols 5: 

(e.g. 6 = 1 . . . 4) (one of which may be 6: itself) such that: 

i gik'i = C:A~$ Sikci = 0 (Y’ 1 . . . r, 6~1 . . . q) 

Proof 

Every symbol fulfills Killing's equation (2). 

contracting the indices i and k with 5, and making use of Eq. (13). 

(13) 

results in 

(14) 
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SO that all derivatives of gikCf; $ vanish on the trajectory. One can choose the 

.parameter for the trajectory such that x ..k and thus x = 

furthegore 

the right hand side because of Eq. (14) equals 

which because of Killing's equation (2) equals 

the geodesic for our parameter: 

is fulfilled. 

such that the equation of 

What is the law of motion of a macroscopic body on this manifold? -GUrsey[17] in 

his review article on the DeSitter group points out that all the geodesics in this 

case are also trajectories of the group and he conjectures the motion along a time 

like geodesic. 

One should request also for the general case that all the time like geodesics be 

identical or at least very well approximated by group trajectories. But even in case 

of the DeSitter group there are other trajectories (which do not correspond to maximal 

circles). Must we exclude such trajectories from the law of motion? I don't think 

so if we consider invariant varieties as large as the universe! A motion which does 

not approximate well the analog of a maximal circle as trajectory in DeSitter space 

for example, may be extremely rare for statistical reasons-just as we rarely can find 

a macroscopic system violating the second fundamental theorem of thermodynamics. The 

phase space of a trajectory approximating a circle of radius comparable to our solar 

system would be so much smaller than that approximating the radius of the Universe! 

Does not the wave equation on the invariant variety constructed according to the 

rules outlined in Section II take account of all the degrees of freedom of the group? 

A detailed discussion of this conjecture will be presented in a separate publication. 

V. GENERALIZATION OF THE FORMALISM AND THE GRAVITATIONAL FIELD 

The formalism used is covariant w.r.t. linear transformations of the base vectors 

which are independent of ti.!e Iloints of Vn. The covariance can lye z::tended to point 



-7- 

. 
dependent linear transformations 5: = StE;i, by adding to the derivatives in a well 

known way a term linear in the derived entity for every base index. Replace for 

example? 

ati 
--f by SAek= 

asi 
ax 

--!? + A;k(x)E; 
ax! 

where Atk transforms inhomogenously: 

A; = SAL+ _ -it% s-l 
. axk 

(15) 

(16) 

S;.k transforms then like 5:. 

The introduction of the potentials A* ak allows to formulate Lie derivatives and Lie 

brackets etc. again covariantly e.g. for a vector B: 

The gauge field Fik transforms homogenously: 

F ik - -&- A. + [Ai,%], F$ = SFikS-l 
axk l 

(17) 

(17d 

. - 
We can now restrict our considerations from Vn to Vq excluding nonvanishing derivatives 

and tensor components perpendicular to it. Fik vanishes as long as the symmetry of 

Gr acting in Vq is not broken. Irrespective of this, a regular transformation S(x) 

exists such that for every nonsingular point in a given coordinate system the base 

vectors become: 

= &', (a=1 . . . 4'4) 5;; = 0 (R=q+l . . . r) 

Then 

(18) 

(184 

Notice that c& is here point dependent and cannot even be transformed into the struc- 

ture constant of the group if Fik#O. One finds for example in our gauge: 

E 
'aB*y 

(18b) 

see [14-J 

si a. [fpy.“] = O etc* (18~) 
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E 4 is generalized correspondingly so that g ik 
'a8 

=c a+ 'BE 
= (‘i ya8 Sk a i3 is no more 

the metric induced originally in V 
q' 

gik fulfills however, the generalized Killing 

equatiozein our gauge: 

agik II 

a2 'a ' gllkAii + giR Atk 
11 

'8 =O (184 

Care has to be taken in case of coordinate change when the base vectors have no more 

the values of Eq. (18). 

The Lagrangians are gauge independent and we have seen that a gauge exists in which 

48= GFiik~Eik- and the matter part can be expressed exclusively in terms of the po- 

tentials Ak and the matter fields. The metric needs not to appear. Variation w.r.t. 

the potentials gives field equations with second derivatives only and the matter 

currents as source. The gauge field has taken over the role of the symmetry breaking 

which used to be expressed by the metric, when a nonhomogenous distribution of sources 

or gravitational waves occur. 

An example is the case of the DeSitter group where the principle of equivalence 

was shown to remain valid. [9] A consistent application to the presence of matter 

may require the adoption of the authors view on the physical significance of group 

trajectories. [11] 
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