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ABSTRACT 

The properties of jets produced by a gluon source are examined in 

QCD. We give a simple derivation of the jet opening angle (up to an un- 

determined constant) using arguments of general applicability. At 

asymptotic energies, gluon jets are found to be wider than quark jets 

in an intuitively natural way. Unfortunately, in the energy range an- 

ticipated for PEP or PETRA, the results are quite sensitive to variations 

in the undetermined constant so that firm quantitative predictions cannot 

be made within the present approximations. 
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1. INTRODUCTION 

seasonably direct experimental confirmation of the existence of 

quarks is found in the decay schemes of heavy-onium states, in deep in- 

elastic scattering, and in the observation of jets in e+e- annihilation. I-1 

However, while these results are suggestive of an asymptotically free 

field theory, the precise details of such a theory remain unconfronted 

by experiment. In particular, existing data shed little light on the 

nature of those partons which are not quarks. 

That perturbation calculations can be applied to the strong inter- 

actions is the result of fairly recent theoretical developments. Because 

of asymptotic freedom, the running coupling constant decreases with 

increasing energy. Nevertheless, many cross sections cannot be calculated 

perturbatively at high energies due to mass singularities as z-+ 0. 

Recently, Sterman and Weinberg 2) have stressed the importance of cross 

sections which are free of such singularities and for which one may take 

the quark masses to be zero at the outset. They have suggested that such 

cross sections might be susceptible to direct experimental confirmation, 

despite complications associated with confinement of quark and gluons. 

This has stimulated a variety of applications. 3) 

2) In ref. , 
-+ 

the production of N-jet final states in e e annihilation 

was discussed. Here, and henceforth in this paper, the number of jets in 

a final state of total energy E is counted by neglecting soft particles 

(with energy < cE) and grouping hard particles with angular separation 

less than 6 in the same jet.* By considering the dependence of the 

*The cross section for two jets, so defined, differs slightly from the 

definition used in ref. 2) which specified a fixed detector. For a 
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2-jet production cross section on 6 and E in a manner reviewed below, 

.Sterman and Weinberg suggest that one can understand in detail the width 
-c, 

of jets and, conversely, use data on jets to test QCD. They define an 

angle for quark jets 6q(E) (see Eq. (5) below) produced in e-e+ annihila- 

tion, which they compute perturbatively to order g2 for 6,c << ‘1. To 

that order, Aq(E) differs from zero because of gluon bremsstrahlung from 

the quark-antiquark pair. 

In this paper, we apply QCD to the analysis of gluon jet production. 

Detailed experimental confirmation of our results would be strong evi- 

dence for the vector gluon nature of QCD. Unfortunately, it turns out 

that at energies available at accelerators such as PEP or PFTRA, one will 

have to go beyond the approximations used here to perform quantitative 

tests. 

Normally, the primary source of gluon production in.e-e+ annihila- 

tion is hard radiation from light quarks, as discussed in detail in 

ref. 4). To understand how the gluon jets are smeared out in a manner 

analogous to the calculation of ref. 2) , one would calculate the soft or 

approximately collinear corrections to this three-jet process. This 

requires going to next order in perturbation theory, a formidable (though 

not impossible) task. Even then, one would have to discuss a way to 

differentiate gluon jets from quark jets. However, in the decays of heavy 

quark bound states,, it is believed that gluons are produced directly from 

4~ detector, our definition seems more natural. For 6 and E sufficiently 

small, the two definitions agree for 6 > E. 
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quark-antiquark annihilation. Thus, for example, the total decay rate 

into kadrons of 0 -+ +I- +I- , 0 , 2 , etc., bound states (such as nc) is 

thought to be via two gluons. 5,6) The hadronic decay of l-- states such 

as IJJ(~.~) or T(9..4) is thought to be predominantly via three gluons. 6,7,S) 

Certain radiative inclusive decays such as T' -+ y + hadrons may be 

expected to yield two gluon jets. 839) Higgs bosons may also lead to two 

gluon jets. 10) This suggests that the investigation of jet production 

from a local source of gluons might be more than an academic exercise. 

Since gluons carry a higher color charge than quarks, we can anticipate 

that they will bremsstrahlung more efficiently and be more dispersed. 

Consequently, a gluon jet may be broader than a quark jet at the same 

energy, and this expectation is borne out by our calculation. Experi- 

mentally, this might be studied by comparing the jets observed (if any) 

from a series of resonances (bottomonium, toponium, . ..). 

In a slightly more speculative vein, we remark that it may also be 

possible to study gluon jets in hadron collisions although meaningful 

investigations presumably await the construction of new pp or pi colliding 

beam facilities. 

The outline of the paper is as follows: In the next section, we 

review the situation for quark jets, stressing the limited quantitative 

validity of theoretical results so far. In Section III, we derive a 

result for gluon jets analogous to ref. 2) in order to identify how 

bremsstrahlung by gluons will differ from bremsstrahlung by quarks. 

Section IV contains a discussion of this result. Finally, in Section V, we 

conclude with some comments on confinement and the parton model and on the 
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implications of our conclusions for future work. In an Appendix, we 

- -, present some mathematical details of the derivation of the result in -. 
-c, 

Section III. 

II. REVIEW OF QUARK.JETS 

The Sterman-Weinberg result for the two-jet production cross section 

to order g2 is 2) 

(1) 

where 

4 2 GOP3 = 
E2 

NC c Q; 

is the zeroth order total cross section; N 
C’ 

the number of quark colors; 

Qi, the charge of quarks of flavor i. In Eq. (l), C2(R) is the value of 

the quadratic Casimir operator for the fermion representation 11) 

(C2(R) = 4/3 for the SU3 fundamental representation). Equation (1) 

represents the first terms of an expansion in 6 and E in which terms 

vanishing with 6,~ -f 0 have been dropped. 

Since the total cross section to order g2 -js12) 

o. 1 +$ C2(R) $ 

the fraction f of events consisting of two jets may be written as 

(2) 

(3) 

It is apparent from the preceding discussion that the constant term 

in (3) is dependent upon the precise nature of the source (in this case, 

a vector electromagnetic current). On the other hand, the terms 



-6- 

divergent as 6 or E tend to zero are presumably source independent 

(althzugh we have not proved this rigorously*) and are characteristic of 

QCD itself. Recall that Eq. (1) and, hence, Eq. (3) are obtained by 

neglecting terms of O(a) or O(E) and higher. Their regime of applica- 

bility, therefore, requires B and E sufficiently small, presumably so 

that the logarithmic terms are larger than the constant terms. Yet, to 

apply perturbation theory, ~1~ must be sufficiently small so that the 

corrections to the cross section (Eq. (1)) or to f (Eq. (3)) are small. 

Even at the highest energies anticipated in the not-too-distant future 

for PEP or PETRA, these approximations are marginal. 

In Table la,we evaluate Eq. (3) for various values of E and 6 for a 

center-of-mass energy E = 30 GeV. In so doing, we have utilized the 

asymptotic QCD formula 6) 

2(E) = c33 - 2Nz) In (E/A) (4) 

with a scale A for the logarithm taken to be 0.5 GeV. However, the num- 

ber of quark flavors Nf to be included here is ambiguous at finite ener- 

gies. Presumably, we should include those flavors for which the quark 

mass is negligible at any given energy. We will assume that only the 

lightest three flavors are to be included for the range of energies of 

interest.? 

*We have in mind that the soft or collinear corrections to a non-infrared 

divergent process may be calculable from an analog of the low energy 

theorem of QED given by F. E. Low, Phys. Rev. 110 (1958) 974. This 

analogy suggests that perhaps the constant term in Eq. (1) is also 

source independent. 

tTo some extent this can be resolved experimentally by observing how 

frequently the jets detected contain the heavier quarks. 
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For E = 30 GeV, as/r is quite small (0.06), so one would expect per- .- 

turbation theory to be good. However, perusal of Table lashows that we 
h 

are caught in a bind. To justify the expansion in c and 6, we must 

choose them small. Yet the smaller we choose them, the larger the cor- 

rection term, i.e., the more questionable is the perturbation expansion. 

Clearly, the formula makes sense only for In -& > : (E < 0.236) and for 

6 sufficiently small so that the log term is larger than the constant 

term. In Table lb, we list the value of In i In & - 
( 

0.75) which is to 

be compared with the constant term r2/12 - 7/16 % 0.38. Apparently, the 

range of validity of this formula is barely marginal at this energy. 

Because cs decreases only logarithmically with energy, the applicability 

of Eq. (3) improves only very slowly with increasing energy. 

A more sensitive test of the energy dependence was suggested in 

ref. l). At any given energy E, what opening angle 6q(E) is required so 

that some predetermined fraction f of the events have at least 1-c of 

their energy within the solid angle defined by 6q(E)? Solving Eq. (3) 

for 6 yields at asymptotic energies the power law 

YE) = E 
-%q4 yf,, 

(5) 

For Nf=3 and c=O.l, this gives E 0.98(1-f) . 

One cannot expect this asymptotic formula to work at finite energies 

any better than Eq. (3) itself. Inclusion of the constant term is given 

by the substitution in the exponent of 

l-f 3 l-f (6) 
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The correction term is of magnitude 0.11 for E = 30 GeV and represents a 

very significant change. It would be fortuitous if the uncalculated cor- 

rectgns to Eq. (3) were negligible. Since the failure of Eq. (3) is 

primarily due to the expansion in 6 and E, it should not be difficult to 

obtain a more reliable formula by calculating the next few terms in the 

expansion. 

III. GLUON JETS-DERIVATION 

In this section, we will derive a formula for gluon jets analogous 

to Eq. (3). Before getting into details, we can anticipate some features 

of the result. Bremsstrahlung by a gluon will be proportional to the 

"color charge" C2(G) of a gluon, just as the corrections in Eq. (3) were 

proportional to the quark "charge" C2(R). Since for SU3 color, C2(G) = 3 

while C2(R) = 4/3, we are likely to find a much larger effect. In addi- 

tion, a gluon may split into quark-antiquark pairs. Altogether then, 

resolving a gluon jet may well require much higher energies then resolving 

a quark jet. As a first step toward quantifying these qualitative 

remarks, we derive a formula for the opening angle of a gluon jet gq(E) 

analogous to Eq. (5) for a quark jet. Therefore, we compute in this 

section to order g2 the two-jet production rate from a gluon source* 

which we choose to be (F;v)2. 

The remainder of this section is devoted to sketching the derivation 

of the result exhibited in Eq. (9), to which the reader uninterested in 

*With slight generalization, the following derivation applies to and 

yields the same result (Eq. (9)) for any Lorentz- and gauge-invariant 

local source of gluon pairs with nonvanishing gPv term so long as the 

source produces more than two gluons only at the expense of additional 

powers of g. 
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details may pass. We define the following production rates: 

- -’ W+ = the total rate to order go 

W2 5 the order g2 contribution to the 2-jet production rate 

W3 z the order g2, contribution to the 3-jet production rate. 

The number of jets in the final state is defined exactly as in the Intro- 

duction and should not be confused with the number of quarks or gluons 

in the final state. To this order, the total production rate is simply 

the sum W tot = w. + w2 + w3. W2 receives contributions from infrared 

divergent pieces, viz., the virtual corrections to the two gluon final 

state plus the soft or nearly collinear configurations in the three 

gluon state. However, since Wtot, Wo, and W3 are all infrared finite, 

it follows that WL is also not divergent, as expected. Note that the 

fraction of two jet events may be written to this order as 

f 5 
wo+w2 W3 

w +w2+w3 
z -- 1 

0 wO 

Thus, f may be calculated directly from W3 and W. without encountering 

any divergences. In particular, there is no need for infrared regulari- 

zation.* 

We proceed to calculate W3 = Idf (2~r)~ G(pf-pi) lTl2 to order g4, 

where the phase space integration includes all 3-jet events. In the 

limit 6,s + 0, df includes all of 3-particle phase space, and W3 is 

*Precisely analogous remarks apply to the derivation of Eq. (3) for quark 

jets and can be used instead of the method given in ref. 2) . In 

essence, Eqs. (1) and (3) can be obtained by subtracting the cross sec- 

tion for three jets (given in ref. 4)) f rom the total cross section. 
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divergent. This is due to bremsstrahlung, as follows: If particle 1 is 

emitted by particle 2, the associated Feynman graph has the propagator 

* 2 
l/(p1+p2) = 1/2plp2(1-cos A), where A is the angle between z1 and c2 

and pi is used to denote both a 4-vector and its zero component. The 

denominator displays both infrared (p i + 0) and collinear (A -t-O> singu- 

larities, and the df integral would diverge. However, for 6,~ > 0, all 

singular points are excluded from the df integration, and W3 is finite. 

Performing the df integral is technically difficult for two reasons. 

First, the integrand is a priori a complicated function of the phase - 

space variables, although it might be that, as in the Sterman-Weinberg 

calculation, the integrand simplifies drastically under an appropriate 

choice of variables. Second, the limits of the df integration corre- 

sponding to 3-jet final states are not simple. However, in this paper 

we compute W3 only up to an undetermined contribution which is finite as 

B,E -+ 0. Thus, we are free to make approximations whose error terms 

remain finite in that limit. As a result, the calculation turns out to 

be very easy. 

Our Feynman rules are given in Fig. 1. For now, we neglect quarks. 

Then, the only singular contributions to T are graphs of the form shown 

in Fig. 2. Although the singularity structure of the propagator looks 

like 1/p1p2A2, T itself has a collinear singularity going like l/A. This 

is because every term in the numerator of T has a factor of c:p 1 j' 
which 

is of order A for A small. (Here, we take advantage of the fact that we 

may choose the gluon polarization to satisfy cy=O, E~=E~, and zi *; =O.) i 

Thus, the singularity structure of T looks like (p1p2A)-I. But as 

shown in the Appendix phase space contains the factor p1p2 sin A. It 
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follows that a cross term contribution to W3 consisting of the product 

of a singular and a nonsingular graph is nondivergent as 6,s -+ 0 and can 

be ne;lected. Therefore, we need only consider products of singular 

graphs. 

The details of the remainder of the calculation of W3 may-be found 

in the Appendix. The result is 

401 
l-f = -2 C2(G) 

Tr 
+ (In $ - +$) + r(Q) 1 (8) 

where the remainder r(6,c) is finite in the limit 6,s + 0. 

As expected, the formula is quite similar to Eq. (3) except that 

C2(R) for quarks has been replaced by C2(G) for gluons. Since 

C2(G>/C2tR) = 9/4, we can immediately conclude that the expansion in 6 

and E will be valid only at extremely high energies. 

So far we have neglected quarks. Their inclusion in the calculation 

of W 3 involves no new ideas, and we obtain 

4cl 
l-f = --Z 

NfC2(R) 
7r ln$ln$- $C2(G)- 8 

neglecting terms which are finite as 6,~ -t 0. This is the desired 

of (3). Notice that the constant coefficient of In $ is precisely 

factor occurring in the S-function which determines es(E). 6) 

IV. DISCUSSION OF RESULTS 

Given our caveats concerning the applicability of the formula 

(9) 

analog 

the 

for 

quarks (Eq. (3)), the reader will have no difficulty appreciating that 

this situation is even worse for gluon jets. From Eq. (8), we see 

that we must now choose s < 0.2 to obtain a meaningful expansion in 

E. Unfortunately, now we have not calculated the constant additional 

term so it is impossible to estimate how small 6 must be chosen. AS 
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before, we expect that,for a range of values of 6 and E sufficiently 

small to justify neglecting the constant term, f will not be near 1, 
- -' -c, 

signifying a breakdown of perturbation theory. (Indeed, for ~=0.1 and 

6$30°, we find f<64% for E=30 GeV.) Consequently, we suspect that 

Eq. (9) is quantitatively useless until extraordinarily high 

As before, it is interesting to "solve" for 6 to obtain 

totic power law 

This suggests that the collimation of gluon jets will shrink much more 

energies. 

the asymp- 

(10) 

slowly than for quark jets. For Nf=3 and c=O.l, we find E -0.44(1-f) . 

For Nf=3, the correction to the In 2~ term is fortuitously exactly 

the same as in Eq. (5) so we may say that* 

6g(E) = 6q(E)4'g , (11) 

where, it must be noted again, the exponent is simply the ratio 

C2(R)/C2(G) of* "color charges" for the quarks and gluons, respectively. 

V. CONCLUDING REMARKS 

In this paper, no mention has been made of the non-perturbative 

confinement mechanism which prevents the quarks and gluons themselves 

from emerging as asymptotic states. The interpretation of -the pertur- 

bative calculations as predictions for physical cross sections rests on 

certain, often unstated assumptions about the nature of the confining 

mechanism. We follow the usual parton model hypotheses by supposing 

*Of course, by the energy range where Eq. (11) is valid, we anticipate 

Nf considerably larger than 3. 
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that each quark or gluon of large momentum leads to a jet of hadrons 

characterized by a sharply damped transverse momentum distribution; 
- -' 

typiczly, the mean transverse momentum <p,,> is 500-800 MeV. It is 

further assumed that this non-perturbative transverse momentum cutoff 

is essentially independent of the large momentum of the original quark 

or gluon. It is supposed to approach a finite value in the infinite 

momentum limit of the parent parton.* 

This means that a parton of momentum P will yield a jet of hadrons 

with a non-perturbative opening angle A % <pl>/P, which must be distin- 

guished from the angle 6 or 6 
9 

g given in Eqs. (5) or (10). In our 

discussion we have tacitly assumed that 6 >> A. At finite energies, 

this gives a lower limit on the range of applicability of the perturba- 

tive formula. For example, for a parton of momentum 15 GeV, we find 

A % 3'. 

From the parton point of view, the angular dependence on 6 discussed 

in this paper or in ref. 2) should not be thought of as the spreading of 

a jet but rather the extent to which, at any given energy, three embry- 

onic jets will be confused as two. 

We would like to conclude by reemphasizing that, at energies of 

experimental interest, the expansion in E and 6 given in Eqs. (3) and (9) 

are invalid. Since the higher order correction to the total cross sec- 

tion is quite small (see Eq. (2)), a perturbation theory ca-lculation of 

l-f should be valid for large enough c and 6. Consequently, it seems 

*We have tacitly assumed that quarks and gluons fragment into hadrons in 

essentially the same way. Alternative possibilities have been sug- 

gested, e.g., in G. L. Kane and Y.-P. Yao, University of Michigan pre- 

print UM-HE-77-44 (1977). 
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worthwhile, as a test of QCD and the confinement hypotheses here, to 

-+ recalculate l-f in e e annihilation without expanding in E and 6. This 
-c, 

calculation should not be difficult and will be presented in a subsequent 

publication. 
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APPENDIX 

Here we present the remaining details of the calculation of W3. 

Usinpcovariant normalization, 

-. 

l3 df-3117 
d;:i 

i=l (2,)3 ‘2p 
. 

i 

Some typical kinematical manipulations yield 

J df 
4 11 

(27~) Hpf-piI = 24 - 
PlP2 dQ 

Gw4 apt 

/--I 

p2 
dpl dA sin A , 

ap2 2 
P3'0 

where A is the angle between pl and p2. Due to the particle interchange 

symmetry of ]T12, we can restrict pI<p2<p3 in the df integral and multiply 

by 6 without changing W3. The resulting contribution to phase space in 

the limit 6,~ + 0 is enclosed by the dashed line in Fig.. 3. However, we 

can safely approximate this region by the semicircular region enclosed 

by the solid line in the same figure. This is because the resulting 

error in the limit 6,~ -+ 0 (already taken in the figure) is just the 

integral over the shaded region. But, as observed earlier, the full inte- 

grand goes at worst like l/plA and clearly yields a finite integral over 

the shaded region. 

Therefore, excluding the two-jet phase space from the semicircular 

region, we may take our limits of integration to 

26<A=+ 

be cE<k<+E and 

Since we only need consider singular graphs such as in Fig. 2, 

T=xgf Ep3 
- ala2a3 p1'p2 

+ E2'E3 P2'El + c1s2 P1'E3 1 
(A. 1) 
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where the sum runs over the 3 cyclic permutations of the indices and 

where we have used relations such as p 'E = - -' 2 3 -P1's3' 
-h 
Furthermore, we need only keep those terms which have singularities 

in the semicircular region, i.e., 

gf 
i 

EP 
3 

ala2a3 p1'p2 c 
-El-E3 P1'E2 + E1’E2 P1’E3 1 

Ep2 +- 
P3'Pl 

E3'E2 P2'E1 

Ep3 +- 
Pl'P2 

c3-c2 p2.c1 E A+B+C 
I 

(A.21 

In computing IT12, 
2 we note that A +2AC has collinear divergences as 

8,~ + 0, B2+2BC has infrared divergences, C2 has both, and 2AB has neither 

and can be dropped. 

Now, p1.p2' ~1s~~' ~1-c~~ s1*s3, and are all fairly com- 

plicated functions of p1 and A. However, considering p2, note that the 

difference p2- 2 'E-p1 vanishes with both p1 and A. Thus, error terms 
. 

resulting from the replacement p2 -t 2 E-p1 all have a power of p1A appear- 

ing which eliminates any collinear or IR divergences present. Extending 

this reasoning for various cases, we find that we may make the replace- 

ments p3= $E, p1*p3 = p1p3 (l+cos A), p1*~~ = -2p1p2 sin A/E, E~.E~=O or 

51 as well as p2 = +E-p1. 

It is now straightforward to sum lTl2 over the final gluon polari- 

zations: 

c lTl2 = g2(fabcj2 +E4 
CAm3) 

A1X2X3 

The integrals are now trivial, yielding Eq. (8). 
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TABLE 1 

(a) Fraction f of events for various values of E and 6. 

1 (b) Value of In - 6 

E/6 1 5 10 15 20 30 

(a) 0.05 CO <o 3 29 42 59 

0.1 <o 28 45 56 63 72 

0.15 35 57 66 71 75 81 

0.2 69 77 81 .82 83 86 

(b) 0.05 6.28 3.79 2.71 2.08 1.63 0.56 

0.1 3.48 2.10 1.50 1.15 .90 .56 

0.15 1.84 1.11 0.79 0.61 0.48 0.29 

0.2 .67 .41 .29 .22 .18 .11 
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FIGURE CAPTIONS 

- ~’ 
1. Fklevant Feynman rules for QCD with source 

2. Singular contribution to T. 

3. Phase space- subregions of interest. 
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Fig. 2 
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