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ABSTRACT 

We present a formalism for calculating higher order instanton ef- 

fects based on a systematic expansion of the functional integrals about 

multiple instanton-antiinstanton configurations. We consider how various 

correlation functions may be constructed from the determinants and prop- 

agators in a background multiple instanton field. A multiple scattering 

formalism is then developed in order to express these determinants and 

propagators for a multi-instanton field in terms of the basic single in- 

stanton quantities. The introduction of an improved gluon propagator 

based on a different choice of zero mode constraints is required in order 

to justify the multiple scattering formalism. As examples of this ap- 

proach, we consider instanton interactions, which appear as corrections 

to the dilute gas approximation for the instanton density, and the first 

order quantum contributions to the static quark potential. 

,(Submitted to Physical Review D) 

*Work supported by the Department of Energy, contract no. EY-76-C-03-0515. 

**Permanent address: Princeton University, Princeton, New Jersey 08540. 

fsupported in part by NSF Predoctoral Fellowship. 

$Correspondence should be addressed to the second author. 



-2- 

1. INTRODUCTION 

It is widely believed that instanton effects describe the dominant 
4 

non-perturbative contributions to the small scale dynamics of QCD. 1 How- 

ever, almost all discussion of instantons to date have relied upon the 

use of the lowest order dilute gas approximation(DGA). It is natural to con- 

sider higher order effects in order to verify the validity of the lowest 

order computations. Consideration of these corrections has been hampered 

by the lack of a convenient systematic procedure for expanding about 

multiple instanton field configurations. Previous attempts in this direc- 

tion2 have generally been incomplete in their treatment of these effects. 

In this paper, we wish to present a formalism for calculating higher 

order corrections to the DGA. At the same time, we solve two problems of 

more immediate concern; the difficulties with the definition of the single 

instanton vector propagator 3 and the apparent appearance of an unexpected 

linear term in the quantum corrections to the static quark potential.4 

The outline of this work is as follows. In Section II, we present 

a general approach for approximating the full quantum theory by the con- 

tributions of fluctuations about a set of classical field configurations. 

We then specialize to the instanton gas in Section III, and show how prop- 

agators and determinants in a multiple instanton field may be expanded in 

terms of single instanton quantities. This multiple scattering expansion 

requires that the effect of a single instanton be sufficiently localized 

about its position. Unfortunately, the gluon propagator found by Brown 

et al. 3 does not fall off rapidly enough for this to be true. We are, 

therefore, forced to reconsider the definition of the propagator with the 

aim of modifying its long distance behavior. This leads,in Section IV, to 
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the construction of an improved propagator, which is based on redefining 

the zero mode constraints which always accompany classical fields. Our 

const%ction suffers from none of the ambiguities present in the result 

of Ref. 3. In Section V, we consider the interactions between ins~tan- 

tons as an example of.the multiple scattering formalism. Finally, in 

Section VI, we investigate the first order quantum corrections to the 

heavy quark potential and show that it only leads to a finite renormaliz- 

ation of the coupling constant. A summary of the results plus suggestions 

for future work comprises Section VII. 

We have attempted to make the discussion as self-contained as pos- 

sible. Sections II and III use some recent work on semi-classical ex- 

pansions in gauge theories,5 and some knowledge of that work will be use- 

ful in understanding our formalism. Some of the results have been men- 

tioned elsewhere 6 but the complete analysis will be given here. ' 

II. GENERAL APPROACH 

We wish to consider the calculation of the vacuum expectation value 

of some operator @(A, $, T) composed of gauge and fermion fields. We 

have 

I O(A, do, $1 exp - S(A, JI, $1 (1) 

where y is the partition function, 1 [$BA%Jg$]exp - S(A, $, 5). This 

functional integral will be approximated by expanding about some set of 

field configurations 
t 1 A; , such as multiple instanton-antiinstanton 

configurations. (The superscript "z" represents the set of collective 

coordinates z 
{ I j 

needed to parameterize the chosen field configurations.) 

In order to partition the functional integral into different sectors 
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associated with each background field Ai , we must &pose one constraint 

for each continuous collective coordinate on the fluctuation x E A - AI. 
A 

Thus, we choose a set of constraint functions 
i \ 

f 
j 

and demand 

Jd4x (A 7 A;) fj = 0 (2) 

as a requirement that the field A describe a fluctuation of the back- 

ground field A:. In order to fix the corresponding collective coordinate, 

each constraint fj must have a non-zero overlap with the corresponding 

background field deformation e A: . 
j 

Following the method of Reference 5, the functional integral (1) 

may now be expressed as7 

<@)= &fiz{fi$~&li(rjld(~!i;ii (A-$))det (-D(A:)D(A)) 

(3) 
'6 

il' 1) 
A-A: fj (det J)O(A,$,G) exp - S(A,$,$) 

1 

Here 
J 

dz represents the appropriate collective coordinate integrations; 

and a similar expression for the partition function is understood. The 

collective coordinate Jacobian J is given by5 

Evaluated at A = A; , the Jacobian becomes 

Jjj, (A;) =jd4x{-g $1 (5) 

where f i is the constraint f. 

' 

orthogonalized to the local gauge fluctua- 

A; that is, yj=fj + D A0 ( ')(-D2(A:))-'(D(AE)fj), and ip is 
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similarly the deformation 8 zj A; placed in background gauge. (Note that 
.-. 

- ~' since we are only interested in perturbative expansions, the expression 
-w3 

(3) omits the step functions limiting the space of fluctuations discussed 

in Reference 5.) 

Exponentiating the delta function constraints, rewriting the Faddeev- 

Popov determinant in terms of ghost fields, and expanding the action S 

about A = Ai, we obtain 

J)@(AE + A,$,$) 

and 

(A wiggly underline indicates that the object is to be considered as a 

matrix in the adjoint representation, e.g., (Fp') ij = f Cv ikj Fy.Lim B-t 0 

is to be understood throughout.) 

We are now interested in expanding the functional integral in terms 
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of the fluctu.ation x z A - A:, or equivalently, within each sector per- 

forming a perturbative expansion in the coupling g. Since the background 
A 

field Ai is not necessarily an exact solution (or even a constrained solu- 

tion), the first variation$= - D-F need not be zero. As discussed in 

Ref. 5, this is acceptable so long as the point we expand about, A:, is 

within the region covered by Gaussian fluctuations about the true con- 

strained minimum. This means that the background field A: must approach 

a true solution as g tends to zero; this is possible so long as in some 

limit of the collective coordinates {zf the background field A: becomes 

an exact (or constrained) minimum. (All we are saying here is that the 

appropriate g + 0 limit is not generally g + 0, z fixed, but rather 

involves some choice of collective coordinates z(g) such that, as g + 0 

A: becomes a true minimum. This point will be illustrated by the specific 

example of multiinstanton configurations in the next section.) The end 

result of all this is that the first variation $7" cannot be 0(1/g) as 

might have been expected, but rather must be no more than O(1) in order 

to obtain a valid expansion. Thus we have A: - O(i), F 

s(AE) - o(t) , g" - O(l), Al" - O(l), ZI - OCgiI and x - O(l). 

We now consider expanding the operator 6, the collective coordinate 

Jacobian J, and the interactions exp - gI in powers of g (or x>. The 

lowest order contribution to <@> is given by 

<@>, =$ 
Jf v 

dz [C@A 98 I$ 9 T CBCGBC] @ (Az)jdet J (A:)) 

exp -/d4x[S(Ai)+$vAv+ +-K",d>uv 
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where 

& lJv =Jpv + $ f; X fy 

and a 

nz = ew -(S(Ai)- ~~~-~cd,,,lide,(,iA~~+ m)det(L)2(AE))det(J(A:]) (8) 

is the lowest order "density" for the A: sector. (Note that if @ contains 

fermion fields, then in the lowest order contribution (7) these would be 

tied together with fermion propagators in the background field A:. The 

presence of such fermion terms will be ignored for simplicity.) 

The first corrections to the above result are given by expanding 

either @ AZ + i or the interactions(det J)exp 2, to first order in g. (0 1 

Expanding @, one finds the contribution 

(9) 

This term, suppressed by one power of g with respect to <a), , 

should really be considered as part of the "classical" result (7) since 

it merely shifts the background field that we expand about,A:, toward 

the nearby constrained minimum given to this order by A: + dgml$. Note 

that the corresponding first order shift in the action, from S A; t 1 
to the 

( 
*-1 

minimal action S A:'+ &V I? 1 is already contained in the lowest order 

density (8). 

If we instead expand the interactions(det J)exp gI, then the con- 

tribution we obtain may be represented graphically as 
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where 

m is the classical shiftgs-' 
* -1 VNWV,, is the quantum gluon propagator k! 

_--- is the ghost propagator A = 
i 
-D2 AZ 

( 1) 
-' 

jsiH) + ) 

-1 
is the fermion propagator S = i m 

0 is the first order collective coordinate Jacobian 

6 vertex 6~ det J 

and the other vertices may be read off the interaction Lagrangian 2T. 

This term contains the second order shift in the action towards the 

minimal value, as well as the first order shift in the various determinants 

in the density (8) toward the true constrained minimum. These corrections 

clearly also appear in the denominator when we expand the partition func- 

tion. Obviously, for an exact solution, all of these corrections vanish. 

The next corrections, 2 O(g ) w.r.t. < >* B 
0' 

are of several types. 

First, we may expand 0 to second order in x. This clearly yields the 

following contribution to <> d 
2' 

(11) 

= I dz n: dz n: 

corresponding to the second order classical shift along with the quantum 
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A -1 propagator AZ . This combination of both classical and quantum pieces 

will be referred to as the complete vector propagator 'g ; 
-cI 

(12) 

or graphically W= -+/vvv\?y~ 

The second contribution to <a>* comes from expanding both @ and 

the interaction(det J)exp LPI to first order. This yields the terms 

nt F{ * + ewJy + 4 + - (13) 

0 

Finally there are the terms coming from expanding the interactions to 

second order. This yields a variety of diagrams (in both the numerator 

and denominator) including, for example 

These terms all consist of quantum corrections to the zero order 

density (8). 

Examining all these corrections, we see that they may be conveniently 

organized if we define the full density nZ; 

the one point function within each sector, 

wz = { w + +JqJ + --(\‘;I + * + APNa + . ..} (16) 
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and the sector two point function, 

-. 
- -' - <ii>z = ( n/y( &v-L + ,vvvvt f . . . 

> 
(17) 

Then we see that an arbitrary vacuum expectation value (a> may be 

computed as 

+ 0.0 1 (18) 

This shows how the vacuum expectation value of any operator may be 

constructed from the density nz and the sector n-point functions 

(ii.. .;i>". All essential information is contained in these basic objects. 

III. MULTI-INSTANTON CONTRIBUTIONS 

We now wish to apply the previous general formalism to the specific 

case of multiple instanton-antiinstanton field configurations. We choose 

the configurations that we will expand about to be pure superpositions of 

single instantons and antiinstantons, 

K 
A1 = 

c 

e. 

P 
A i (xi, Ri' Pi) 

1-I 
i=l 

(19) 

Here K is the total number of instantons and antiinstantons in the super- 

position, ei = + or - indicating an instanton or antiinstanton, and the 

single instanton field (in singular gauge) is given by 

A+ (x 1~- i' Rp+ = f (20) 
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Each instanton is parameterized by a position xi, scale size pi, and 

group orientation Ri. The set of the collective coordinates will he de- 

noted^by c1 
1 

,(i> ;lla14N. 
1 

(N here refers to color SIT(N); there are 

4N-5 group degrees of freedom.) The complete set of (continuous) collective 

coordinates for our multiinstanton field is thus givenby - 

15 j I4NK} = {Fiji)}. 

As dYscussed previously, we must choose a set of constraint functions 

IfJ -J 

,(i> 
a 

) 

, (one for each continuous collective coordinate) and 

impose d4x (A - A')f 
ii 

= 0, as a requirement that the field A describe 

a fluctuation of the multiinstanton field A'. 
(i) The constraints fa are 

naturally chosen to be determined from a basic set of single instanton 

constraints; 

fii)(x;xi, Ri, pi, ei) = Rib fIi (x - 
a 

Xi/Pi) $y (21) 

The basic constraints ff are conventionally chosen to be given by the 

single instanton zero modes; fd = $-- A' (Cl a ); however, we will find 
a 

later that this is not the most convenient choice. Until then, the basic 

constraints fh will be left unspecified. 

Now, our simple superposition (19) is of course not an exact clas- 

sical solution. Nor is it even the minimal action configuration under 

our choice of constraints. However, if we are to expand about our simple 

multiinstanton configuration (19) subject to simple linear constraints (21), 

then we must arrange it so that our configuration is within the region 

covered by Gaussian fluctuations about the true constrained minimum; a 

region of size O(1) not 0(1/g). As mentioned previously, this may be ac- 

complished by choosing a non-trivial limit for the collective coordinates 
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as g -f 0. In the case at hand, we simply require that all distances 

between instantons become large as g + 0. Specifically, we choose to 
& 

impose g Rn x. -t const. as g -+ 0 so that all instanton separations be- 
1 

come exponentially large and the configuration approaches an exact solu- 

tion. (From the lowest order dilute gas results one knows that the average 

instanton separation in the ensemble is exponentially large as g -+ 0; 

what we are doing here is to arrange the g -t 0 limit so that the same 

result is true within each sector of the ensemble individually.) 

. - 

Of course, having chosen this limit, all effects sensitive to the 

density (or separations) of instantons become exponentially suppressed 

as g -f 0, and hence all higher order density corrections are formally 

negligible compared to the usual quantum corrections (higher order in g). 

However, in the same spirit that leads one to consider non-perturbative 

exponentially small effects in the first place, we will-not immediately 

discard the higher order density corrections since they may, in fact, 

numerically dominate the perturbative corrections for some processes of 

interest. In effect, we treat the quantum coupling g and the density 

-e -l/g as the two parameters of a double series expansion. 

We have seen how any correlation function of interest may be con- 

strutted from the density n 
Z and sector n-point functions 6 . . .A >". 

These objects are in turn computed from the determinants and propagators 

in the chosen background field. We would now like to examine how these 

quantities for a multiinstanton field may be expressed in terms of the 

basic single instanton quantities involved. 
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We first note the following relations: 

-cI A1 = 1-I c 1-1 
i FI =- 

PV c ,?) + g 
!JV Cl ‘Aci), A(j) 

-1-I V 1 
i i#j ' 

(**a) 

(22b) 

D,, (AI) Fiv= g ,ci), F(j)+ D (A(i))A(j) + u 1J.v u V 
A(j), A(i) 

1-I V 11 
(22c) 

+ g2 c [,i',[Gj), Aikg] 
i#j#k 

(**d) 

[[Ah”, Aii)][Af), c’] + (**e) 

+ *gx @) bhi), A$j'] + g2/( c [ALi'9Aij)]j2 

ifjfk i#j 
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,-(5) 
!JV 

is the Abelian part of F(I): gci) = 3 A(i) - 8 A(i). Rela- 
PV F.lV !J v u v 

tion (22e) follows from judiciously integrating by parts and is quoted 
-c, 

from C. Bernard, ref. 2. 

Next, we discuss the multiple scattering formalism for fermions. 

8 This material has been largely covered previously; however, we will 

briefly review it here since it furnishes the simplest example of the 

approach. 

Consider the fermion propagator in a multiinstanton field, 

s' = (@ (A') + m) 
-1 

= ((a + A1 + m))-' (23) 

Defining crii) = Sil(S(i) - So) Sol, where So is the free fermion 

propagator (I + m) -1 and S(i) is the fermion propagator in a single in- 

stanton field A (i> , we may expand S' as 

S1 = so + 
c 

SOP so + c SOP so&) so+ c 

i i#j i#j 
j#k 

SOP SOP SoJk)So + . . . (24) 

This expression may either be verified directly, or else easily de- 

rived by formally expanding S1 in terms of single instanton field insertions 

on free propagators, and then resumming the insertion of an individual 

(5) instanton into (T . 

Similarly, the determinant of (b(A') + m) may be expanded as9 

det (@(A') + m) = : det (EI(A (i))+ m) 

exp-Tr 
ic 

soJ ) i so,(j)+ c so~(i)soo(j),o~~k) + . . .I (25) 

\i # j i#j 
jfk 
kfi 
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These formulae obviously have a multiple scattering interpretation 

where the particle either freely propagates or else scatters off of a single 

instanston. The validity of these expressions (as asymptoti,: expansions 

in the instanton separations) presumably merely require that the "scattering 

amplitude" o ti) be sufficiently localized so that the convoluti-on integrals 

are finite. Note that the lowest loop in the determinant (25) is still 

divergent. This merely reflects the fact that a multiinstanton configura- 

tion with finite instanton separations must be renormalized at a different 

point than if all instantons were infinitely distant. Hence the deter- 

minant corrections (vacuum loops) require regularization and renormalization. 

Next, for the scalars, we must consider 

D*(A') = a2 + 
C( *ga * k(i) + g 2 ,(i),(i)) + g2 x A( (26) 

i ifj 

The complication here is the presence of the cross terms bilinear in 

the gluon fields. This means that the multiinstanton propagator and de- 

terminant cannot be expanded only in terms of the single instanton propa- 

gators; rather a double expansion in the usual non-local instanton vertex 

ti> 
u as well as a local seagull vertex V (ijIG g*A(i),tj) must be used. 

S 

- (i-1 = A-ltAti)- A )*-I Thus, proceeding as in the fermion case, we define OS 0 0 0 

(where A 0 
and A(i) are the free and single instanton scalar propagators), 

and obtain 

A'=(-D2(A1)) -l= Aoi- c Aoo(i)Ao+ ~(A,#i)AOo~~)Ao+ Aov’ij)Ao -t . . .) 

i i#j 

+ A oti)A 
0 0 

,tj), 
0 
o(k)A + A 

0 0 
o(i)Ao~(~k)Ao+Ao~o,o,(k),o +...) 

i#j 
j+k 

+ . . . (27) 
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Similarly, the determinant det -D2(A1) may be expanded as 

h det ( -D*(A') = II det (-D~(A(~)I) 
i 

* exp-Tr 

i i#j 

C( . 
+ Aoo( ) ' Ao~(j)Aoo(k) + Aoo'i)Aov(jk)+. . . 

ifj 
j #k 
kSi 

(28) 

Finally the vectors may be handled in much the same way as the 
h 

scalars since the quadratic operator&l contains both single instanton 

and biinstanton terms. Here we have 

-$= D2 (A’) $‘- (i-> 
DP(A1)Dv(A1) + 2g F/(A') - & fP 

xfti) v 

= E26PV - (1 - $) aua’]+ C((2ga * &,(j-) + g* i&ti)* kti)) 6” 

i 
(29) 

i#j 

and exactly the same expansions as in the scalar case are valid if we re- 

place the scalar quantities no, os' , and Vs' by the corresponding vector 

and @= 
V 

g2 

'i =. (a2&uv _ (1 i$i -"wl,(o~i' = Go1 (Gci) 

&(I) &(I) &“Lv - l _ i ,(i)$) + 2 [$ji’ , A;) 

equivalents Go 
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Now, from the work of Brown, Carlitz, Creamer, and Lee,3 the scalar 

and massless fermion single instanton propagators, A ti> and S(i), are 

known-and have sufficiently rapidly decreasing long distance behavior to 

justify the multiple scattering formulas (24) - (28). The single instan- 

ton vector propagator'G ti> is known3 for the case where the constraints 

f t-i> are chosen to equal the zero modes, aA ti> /an, themselves. 

However, because the global gauge and dilation zero modes have a 

l/r3 asymptotic behavior, the propagator is forced to have a l/r tail. 

(It satisfies o*G(~) = fixfi asymptotically [for 5 = 11.) This means 

that the integral of the propagator times a zero mode is logarithmically 

divergent. This in turn forces the propagator to contain an infinite 

amount of zero mode terms; &n (CO) anA ti> x a,Ati). _ 

The l/r tail of the BCCL propagator is a sufficiently slow fall-off 

that the convolution integrals involved in the vector multiple instanton 

expansions are divergent. Thus with this propagator it does not appear 

that a multiple scattering formalism is possible. Furthermore, the l/r 

tail and the divergent pieces of the BCCL propagator are very inconven- 

ient even for calculations in the one-instanton sector where they lead 

to spurious terms (such as O(g*) linear contributions to the heavy quark 

potential) 4 which should cancel in the final physical result. 
6 

This motivates the desire to introduce an improved vector propagator, 

one which would be free of divergence and spurious long range tails. Since 

the constraints f (9 are actually our choice and need not equal the zero 

modes themselves, one might hope that by using constraints more localized 

than the zero modes an improved propagator would result. The problem is 

that we must be able to actually compute the propagator corresponding to a 
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different set of constraints. What we must understand is how, given a 

prop%gator appropriate for one set of constraints, may we use it in order 

to construct the propagator appropriate for a different choice of con- 

straints. The next section shows how the solution to this problem enables 

one to find an improved propagator. 

IV. THE IMPROVED VECTOR PROPAGATOR 

We would like to find an improved vector propagator based on a choice 

of constraints different from the zero modes. In order to easily find the 

effects of a change in the constraints, we will use the relations 

(H + vi x vi)-1 = 
-1 -i 

v ij j H 

det (H + vi x vi) = @et H)det(l + (vH-'v))~~ 

(30) 

(31) 

which are valid for any invertible matrix H and an arbitrary set of 

vectors v 
i z i' To apply these relations, we write the quadratic operator 

for the new set of constraints Gil as 

Gf 
-l= &+ + fzxf = (32) 

Z 
$ fzXf 

Z cbzx@z 

= G -1 
@ 

+ vi x vi 

Here 

$~z will be taken to be the true zero modes aA (i)/an 

and 

(vi) = ( fzl JB, i +zl JT) 
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G+' 
the propagator with zero mode constraints, is the BCCL propagator. - 

-. 
Now, taking 4, i t 

to be normalized zero modes, so that G + = Y9,, we find 
$2 

=G Gf 4 - (G4fz) (@f),,l,$,, - +ztf$,;;, tfZ,GO) t 

wzz, is just the overlap of the constraint fZ with the zero mode 

(P,,. In order that { fZ 
1 

be an acceptable choice of constraints, this 

matrix must be nonsingular. 

This result expresses the propagator for an arbitrary set of con- 

straints in terms of the known BCCL propagator. Since the propagator Gf 
,. h 

satisfies the differential equation JdG, = 1 - fzxfz, then as long as 

the new constraints fall faster than l/r3 at large distance, the improved 

propagator Gf will have no l/r long range tail. Similarly, one may easily 

verify from (33) that any amount of zero mode terms (9x9 contained in G 
0 

will be removed when constructing Gf. Thus for any choice of short-ranged 

constraints, the improved propagator G f should suffer from none of the 

problems of the BCCL propagator. 

The determinants used in the zero order density ni are also modified 

by a change in constraints. Using (2), we find that the new determinant 

det (Q&! + i fxf) is equal to the old determinant times a correction - 

det (f$) zz' > 
*. This correction is exactly canceled by the- corresponding 

change in the collective coordinate Jacobian J, Eq. (5). Thus, changing 

the choice of constraints has no effect on the DGA instanton density nz 0' 

We would now like to explicitly examine our improved propagator for 

the case of a single instanton located at the origin. In order to con- 

veniently construct a propagator with the best possible long distance 
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behavior, we will choose our constraints to have the same tensor structure 

2 
as the zero modes multiplied by some function f(x > of compact support. 

(Choosing f(x2) = 6(x2 - P*) so that the constraints are localized on 

spherical shells would be particularly simple.) 

We begin by quoting the appropriate portions of the work of Brown 

et al. 3 The vector propagator satisfying the equation 

-$p + (1 - +) DUD' - 2.."')$ (x,y) = 

is given by 

G BCCL = 
PV (34) 

10 
where 

l/D4 is the convolution of two isospin one scalar propagators. We find 

it convenient to work in regular gauge for part of the calculation; in 

this case, we have 

-$-= 

+ tr T 
i ( 

T+* a xy + P*)Tb(T+ TX + P2 
1) -. 

35 
4a2 (x - y)* (x2+ p2)(y2+ P2) 

(35) 

l/D4 is thus given by 

d4z 3 tr (Ta&z + p’) (TLTy + p2jTb (TGTz + 0’) (+, + p’)) t36) 

x2 + P2 Y2 + P2 

2 
(x - z>* (y - z)* 

where we have used the relation $ tr (Ar,) $ tr (r,B) = $ tr (AB) provided 
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either of the arbitrary 2 x 2 matrices A or B are traceless. (-This fol- 

lows from the more general relation that we will use several times, 

-1 -2 tr ?ArG) -$ tr (rPB) = i tr (AB) for any matrices A, B.) 

The zero modes (in regular gauge) are as follows: 

global gauge: ( 
2* 

4 xv'/ x*+p 1 norm HIT 
22 

p 

a(O) = 2p2qa ( x2 + p* 1 2 
dilatation: 4 xv/ 

1-1 I.lV 

translation: I$ a(B) = 
1-I 

2p3r7;8 /(x2 + ,'i' 

We choose our constraints fZ to be I z 

global gauge: fa(b) 2 a-b 
= 

1-I 
(2/P havnav xv f (x2/p2) 

dilatation: ,a(()) 
v 

= (2/p2)n;v 2) f(x2/p2) 

22 
norm 2~ p 

(38) 

translation: 
fa(B) 

= wPh;a (x2/p2) f (x2/p*> 
lJ 

The overlaps are given by 

/ 

fZ $Z’ = p’ 22 
-121~~ Q 

where 
co 

Q= 
I 

dy fty)/tl + l/y12 

0 

One easily finds that the sum of all normalized zero modes is given by 

+ + 
2-$trr r r~ r ~~+*p (y 

2 

fox) $Y) = p 
II 

T*(:*+p*g* + ,'j' 

0 

- 

(39) 
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and similarly 

TvTbTfTx + x 
i, 

*j) f (x*/P21 

Y2 + P 
2* 

1 l Q - P* 

(40) 

Unfortunately, the convolution integral (36) may not be easily 

evaluated analytically. However, for our purposes, it is sufficient to 

consider the two asymptotic limits, I: x >> y, p and II: P << x,y. 

In the first limit, we find (see Appendix for details) 

( 52*/(x-y)* 1 
2 

- f Rn (x*/p*) 
X 1 

+ p 
2 

P2 

16,~~ (x2 + p2>(y2 + p2) 

(41) 

fi is a large distance cutoff needed to regulate the convolution. Thus 

the BCCL propagator in this limit is given by (we set <'= 1 for simplicity) 

GBCCL = 
vv,reg -4 I.lVUB 

+ p2 +tr r a x y ~ v b y x)/4n2(x2+P2)2(Y2+P2) r+r -r+r T r+~ (42) 

4 1' + + 
+P -pr 'I: T T T '1: 'I ayvbyx 1 

+ m(x*ip*)] /4~r*(x* + p')"(y' + p'j" 

+ 0(1/x3) 
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Here, the first term is just a gauge transform of the free propagator 

.(up to the P* terms in the denominator). The second term contains the 

l/r tzl referred to previously and has the form x*$'(x) x +'(y) N p2/xy3. 

The last term contains the divergent amounts of global gauge and dilata- 

tion zero modes. 
3 

To compute the behavior of the improved propagator in this limit, we 

need only consider the first two terms of (33) since the last two terms 

are automatically 0(1/x3). Using the previously mentioned trace identities, 

one easily finds 

b(T;TX + o’ix’ ,4n2(x2+P2)2 jy*+p2/* 

41 
- P 2 tr 

i 
T T+'C -c r+r apvbyx + 

(43) 

+ Qn(x*/p*)] /4a2(x2 + p')'(y' + P*)* . 

+ 0(1/x3) 

Thus the second and fourth terms of G BCCL are canceled exactly, and 

for this limit of our improved propagator, we find (after transforming 

back to singular gauge) 

G + 0(1/x3) 

6 dab 
I-lV + ()2 ( % 

@+.$c ;i c I~ I~ 
aB 0ll.l Bv = 1 

471*(x-y> *7T IT 2 2 2 T2 T2 f 0(1/x3) (44) 

XY 0 XY x y 

where TT 
X 

= lW2/x2, TTY= li-P2/y2, and Iig f 6uB- 2YUY “/Y2. 
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As expected, the divergent zero mode piece and the l/r tail have 

been completely removed in constructing the improved propagator. The 

leadi;g behavior of G - GO in this limit is O(p2/x2y2). 

The second limit is more conveniently evaluated in singular gauge 

directly. In this case, we have 

$--& = /d4z 3tr [‘.i1+-& TX ;:) 

i 2 1 + 5 TZTx + ) 7 J Ii i 4a2 1 2 TTITIT XY z 2 (x - z>2 (y’- z)2 1 (45) 

and one finds (see Appendix) 

3 = (&Cb [( Rn Q2/(x - y>2 1 + 1 + 

XTY 

5 2 Rn ( y2/(x - y)2 1 + 
X 

2 
+ Cj kcx2/(x-y)2 P2 + 2 - c abc -c 

Y 4n2 
nxyK + O(P4) 

where 

K= 
x1 + ;L 1 - . 

I 
d4z ;/4n2 z2 (x - d2(y - zj2 

2 2 
XY 

and 

-f -t 
xl= x - 

(x * Y) 

Y2 

y+ ; = ; _ (x ' y> ; 
' 1 2 

X 

(46) 

Unfortunately, K may not be easily evaluated analytically; however, one 

easily sees that K - l/x2 as x + m . 
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The BCCL propagator is thus given in this limit by 

6. gab 'GBCCC = pv 
pv,sing 

4n2(x-yj2 
- P 

2 &ab i "('c 'Y': 'x) 

4TT2 x2 y2 

L tr -r+T i+-c 2abc 2 ( llvBol -c 
-PE 

4TT2 (x-y)2 
11 

(x - yp -c (x -'ypl 
CiX 4 

X 
+ %y y4 1 

+ 2P2 - cabc $ tr k:TVTiTU) a:$ 'Izy K + O(p4) 
4*2 

(47) 

To calculate the correction terms needed to form the improved prop- 

agator (33) we must use the previous asymptotic limit of G BCCL . Thus, 

we find (from (43)) 

. - 
-Ggf($f)-lQ- $(f@)-'fG$ = p2 

4T2 x2y2 

2 =p6 ab + tr ( T~T~T~Tx) 
4a2 x2y2 

2 abc 1 -PC 2 tr 
5” a 

- -JYY- 
Y2 

+ O(P4) (48) 

and our improved propagator, in this limit, is given by 

[- 

-c B rl x 
c1X 

x4 (x-y) 2 

) :;x;8 

X 
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In this limit, the leading correction to the free propagator is a 

traceless l/r2 term. As before, the l/r tail of the Brown et al. propa- 

gator-is removed in forming the improved propagator. (One may similarly 

verify the cancellation of the O(p4 Rn R2) zero mode terms in this limit.) 

Thus, we conclude that the difficulties with the BCCL propagator may 

be completely cured by constructing the improved propagator (33) based on 

localized collective coordinate constraints. 

v. INSTANTON INTERACTIONS 

As an application of our general formalism, we would like to con- 

sider the instanton interactions that appear as corrections in the in- 

Stanton density n'. First we examine the classical interactions present 

in the zero order density(8).These effects have been considered several 

places previously; 1 our purpose here is to show how the known results 

follow easily from our previous discussion. 

The "classical" part of the instanton density (8), exp- S(A ( 4 - 

+ $bi -'a) requires us to evaluate the action of the multiinstanton field 

I 
A +-A? -l$(which, to this order, is the minimal action constrained 

solution). The action S(AI) may be expanded as shown in (22e). The 

lowest order term is of course just the sum of the single instanton ac- 

tions. The various correction terms may be estimated by considering the 

magnitude of the integrand in the two important areas; the near regions 

((x-xi) ,$ p for 'some xi) and the far region ((x - xi) 2 d for all 

Xi) * I1 (P is taken to refer to some typical instanton size, and d is a 

typical instanton separation. For our estimates, we will not bother to 

worry about which particular size or separation is appropriate.) The 

4 4 
first correction term I 

g(i) g-(j) is of order X 
!JV I-IV 

/d since the near 
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regions have integrands of size l/d4 and volumes p4, while the far region 

appears to contribute an integrand of order p4/d8 times a volume hr d4. - ~' 

The cst three terms are similarly seen to be at most O(p /d ). 6 6 2b By using 

(22c), the $2 -l$ t erm may also be shown to be of order p6/d6. To 

see this, we note that &?= -D i F is O(l/d3) in the near regions and 

O(p 4 7 /d ) in the far region. The contribution to the double integral 

4 
J 

dx / d4y ,.$?(x) ~2 -' (x,y)$(y) when both x and y are in the same near 

region is 0, p 
i 

8 . L d3 -$ -$ 
1 

= O(p'd>. The contribution of all other 

. regions is at most O(pS/dg). 

Thus the leading classical correction is simply given by the overlap 

of the Abelian terms 

1 -- 
4 

XI 

g(i> $0) 
I.lv Fiv l 

i#j 

By integration by parts, the equivalent form 

1 
2 

,(i> 
1-1 

n A;j) 

may be obtained. 

Since, in the far region Cl A(i) is O(p4/x7>, not O(p2/x5> as would 
lJ 

naively be expected, the contribution of this region to 
s 

.ggis at most 

0 (p6/d6) . Thus, the leading contribution comes from the near region, 

where we have 

int 
AS =- 

=i 

d4x a A(-i) &i) 
lJ v PV 

i#j 
near i 
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Near instanton (i), g(j) is in its far region and coincides with 

- ~' the fQ1 field strength, thus 

&j> = 
42j .x-xjx-x. 

UV - gp Rab G3*c& If3V 
J/(x - x 

j 
)4 + 0 P4/(X - x 

j 
p- 

i 

Since this is divergenceless, as required by the far region (linearized) 

equations of motion, the interaction may be reduced to a surface integral 

surrounding near region (i), and we find the established result 1 

int As =- d3C A(i) F(j) 
uv WV 

(50) 

We would now like to turn to the quantum instanton interactions in- 

duced through the dependence of the one-loop determinants in the instanton 

density (8) on the instanton positions and orientations. Using the multiple 

scattering expansions developed previously, the determinants in the density 

"i (except the collective coordinate Jacobian which will be discussed 

later) may be represented as 

n: det-1/2 2 ti> 

i 
det (@(Aci)) + m) det (- D2(A(i)])l.exp - Vint (51) 

J 
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where V int' the one-loop quantum instanton interaction, is given by 

v = (i) 
int $ Go"; G $1 + 1 G ,cij> (i> 

ov 2 ov - soof 
(j> 

SOaf 

- A;o~i)Aoo~jj - ho +j’ + . . . - (52) 

The indicated terms comprise the first corrections to the DGA evalu- 

ation of the multiinstanton determinants. As mentioned previously, the 

evaluation of these loops is complicated by the need for regularization 

and renormalization. We will not attempt a complete calculation of these 

effects, but will merely try to find the dependence of the interaction on 

the instanton separations. 

We begin with the scalar terms. Recalling the definition of o (i> , 

the first term we must consider is 
. - 

Tr jdol(ACi) - Ao)Ail(,(j) - A,)) 

The isospin 1 scalar propagator in a background instanton field (located 

at the origin) is given by (3) &) = 
2 2 Note that when P2 << x ,y , 

n(i) = A0 _ + 2p2Eabc 5’ xy x2y2 (x - Y12 

We would now like to apply the same type of estimates used previously to 

the above trace. Explicitly, we must consider 

/,,,'Y Zrjb:(fci) (X,Y> - Ao)a: (A(j) (y,x) _ A,)) (53) 
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This integral is, of course,divergent due to the short distance 

(x -+ y) singularities. However, it seems clear that these singularities 

may be regulated without modifying the long distance dependence of the 

determinant on the instanton separations. (For example, by using point 

splitting techniques to regulate and remove the divergences, one sees that 

the finite contribution from the short distance (x M y) region has the 

same long distance behavior that one would naively estimate.) 

Thus, we may examine the behavior of the finite remainder of the 

loop (53) by essentially ignoring the presence of the divergences. By 

examining the integrand in the various important near and far regions, one 

may show that the integral is of O(p4/d4). For example, to-find the con- 

tribution when x and y are in the far region (i.e., x, y, x-y 2 d), we 

note that both propagators (less the free propagators) are of order p2/d4, 

each derivative becomes a factor of l/d, so the total contribution is 

O(d8 (-$ $f) = O(p4/d4). 

Similarly, for the contribution from x, y 2 d; x - y <, p, the volume 

is O(d 44 p ) and the leading term of each propagator is the traceless piece 

which is of order p/d3 since n C 

XY 
- O(pd). Taking all the derivatives 

to act on one of the propagators, we find that at least two of the de- 

rivatives must insert factors of l/d since if three or more derivatives 

2 act on the l/(x-y) factor, then two of them must form a2 which collapses 

the1/(x-y)2to a B-function. This causes the traceless term to vanish 

completely. Thus, the contribution of this region is O(p4/d4). All other 

regions contribution at most O(p5/d5). 
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(ij) The lowest order scalar loop involving the local vertex Vs. , ex- 

plicitly 
J 

d4x tr ,(i) (x) A(j) (x) A0 (x,x>, should be completely removed 

.by th; renormalization. Thus, the ghost contribution to the quantum in- 

Stanton interaction induces a pairwise O(p4/d4> potential. 

The estimates for the vector contribution to Vint are identical to 

the scalar terms. This follows since in the long distance limit 

2 
P << x2 2 ,y , the improved vector propagator has a behavior similar to 

the scalar propagator, namely, the O(p2) traceless terms proportional to 

abc c 
E rl xy have short distance singularities no worse than l/(x-~)~. Thus 

the same estimates for the propagator (less the free propagator) are 

valid in the various regions. So the overall contribution of the vector 

terms in (52) is again of order p4/d4. 

For the lowest order fermion contribution, we must consider the loop 

/d4x \d4y tr ($x/S(i)(x,y) - So) dy (S(j)(Y,x) - So)) (54) 

Now, for massive fermions, the single instanton propagator S (i> is 

not explicitly known. However, it is of course exponentially damped at 

large distances. This implies that the massive fermion contribution to 

V is O(e -md 
int ). 

For massless fermions, the analysis is modified due to the presence 

of fermionic zero modes. In the massless limit, one of the single in- 

Stanton fermion eigenfunctions has an eigenvalue + m. Thus, the DGA 

multiinstanton fermion determinant has a factor of (m>K which suppresses 

the zero order instanton density. The single instanton fermion propagator 

is given, form+O, by 
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,(i) = '0 'i + $i) + O(m) 
m 

tihere 
h 

eo+; = 
p2Tx i+ tT; (1 - Y5)/2 

Em2 x2 -I- P2 ( 
312 

) ( Y2 + P2 1 
312 cx2p(y2p 

and 

(1 + Y5) 
) = J@) 2 + A (i)@ (1 - Y,) 

2 

i 

2 
= so 1+ ; 2 + *Y Tx*y 1 / hxlTy) 1’2 

2 

-Ao 3 ?X 

(55) 

I 
f+Tx-y o+Yg) T ;- f + u-Yg) - 
(x2+p2> 2 (Y2+P2) 2 1 

,;I hxKy> 1 

:5 

12 

6) 

For antiinstantons, all (lky )/2 projections 
5 

reverse chirality. 

In order to examine the m + 0 limit of the fermion contribution, we 

must expand the exponential in exp-Vint so that the l/m factors in the 

fermion propagators in Vint may be combined with the (m)K in the DGA re- 

sult. Thus, a given term in the expansion of det (a + m) now consists of 

any number of fermion loops. Each vertex in a loop consists of a zero 

(i> +(i> mode piece q. $. Yi> /m and a non-zero mode piece S f O(m). As dis- 

8 ’ 
cussed by Mottola, the only terms which survive in the m -f 0 limit are 

terms where the zero mode vertex for each instanton appears just once. 

K 
(Terms with fewer zero mode vertices cannot completely cancel the (m) of 

the DGA result and hence vanish; terms with too many zero mode vertices 

cancel among themselves due to the Fermi statistics.) 
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Thus, the 

all terms with 
- ~' 

in th&e terms 

first correction to the DGA result is given by the sum of _ 

only K zero mode vertices present. Each link of each loop -. 

consists of the factor 

It is easy to see that the sum of all these terms is just (m) 
-K 

det h. 

Thus, the (m) K suppression factor of the DGA result is replaced by det h. 

This result is, of course, equivalent to performing degenerate perturba- 

tion theory in the space spanned by the different zero modes. Because 

the zero mode for an instanton has definite chirality, the matrix element 

h ij is only non-zero between instantons and antiinstantons. Thus det h 

will be non-zero only if the configuration consists of an equal number of 

instantons and antiinstantons. This merely reflects the fact that exact 

fermion zero modes exist in any multiinstanton field with a net topological 

charge. Thus, in order to obtain a non-zero contribution to the functional 

integral, we will only consider "neutral" configurations, those with equal 

numbers of instantons and antiinstantons. 

Each matrix element h ij is of order l/d3, so that if det h is repre- 

sented as exp v, then we see that the massless fermion zero modes induce 

a logarithmic instanton-antiinstanton interaction potential. 1 

The next corrections to this result are given by those terms where 

we insert additional non-zero mode vertices S ;l(p - So)s;l into some 

of the loops of the lowest order terms. If we only insert a single new 

vertex, then the resulting contribution is 

(57) 
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where m. ik is the minor of h. This vanishes for (.i) and (k) both instan- 

tons or antiinstantons, and provides a l/d 2 correction to the logarithmic 
4 

instanton-antiinstanton potential. If we insert two non-zero mode vertices, 

then the leading contribution is given by 

->: j-$(s”’ - so) 3 ($j) - so) * det h 

i+j 

and provides an additional l/d4 potential. 

These results on corrections to the scalar, vector, and fermion de- 

terminants agree with previous analysis of one-loop instanton interactions 

based on the exact two-instanton solution (2b). - 

Finally, we must consider the dependence of the collective coordinate 

Jacobian on the instanton separations. We have 

J = 
ZZ’ 

d4x F(x) &r A1 
Z 

(58) 

where 

is the deformation BZ,A1 placed in background gauge, 

aZ,A1 = aZ,A1 + D(A') (-D~(AI))-~(D(AI) aZ, AI) 

In the DGA evaluation of J, the overlap of the constraints centered on 

one instanton with the deformations of other instantons are ignored. Also 

a deformation of instanton (i) is only placed in background gauge with 

respect to instanton (i), not in background gauge with respect to the 

total field. Thus, replacing the combined collective coordinate index z 

with the instanton number (i) and the single instanton coordinates, Ra , 
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we see that the dilute gas Jacobian Jo is given by 

Y” 
(i>(j)= 6 

ij 4 

/ 
dxf(i) -1 

01 an 
ct 8 B 

where 

, 

$I@ = agA(i) + D(A(i)l+h(A(i)) aa 'A(i)) (59) 

So, the first order correction to the DGA Jacobian is given by 

-1 
6(Rn det J) = tr (Jo) (J - Jo) 

zz' 

and we wish to estimate the size of the difference (J - Jo). Since Jo is 

diagonal in instanton number, only the diagonal elements of (J - Jo) con- 

tribute to the trace. This correction is given by 

c [jLi’ D(A(i)) (- D2(A(i’j)-1 [,(i) , p] 
j 

+I [ $I, A(‘)] (-D2(Aci)))-’ D(AO) aBAci)/ (60) 

These terms are easily seen to be of order l/d4. (The apparent l/d3 con- 

tribution from near region (i) vanishes due to the spherical symmetry 

after A(j) - nPd/d4 is factored out.) 
1-I 

This agrees with the previous 

partial considerations of C. Bernard. 2b 

Thus we see that, except for the previously known logarithmic in- 

Stanton-antiinstanton interaction caused by massless fermions, 
1 all cor- 

rections to the classical dipolar interaction (50) are of order p4/d4. 

No other interactions of longer range than the dipole force are found. 
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VI. HEAVY QUARK POTENTIAL 

Consider the computation of quantum corrections to the potential be- -. 
- ~' 

tween-static, heavy quarks. We wish to examine the calculation for two 

reasons: first, to illustrate some of our formalism in a specific example 

and, second, to show explicitly that the long range limit of the heavy 

quark potential is, at least through O(g2), just a finitely renormalized 

Coulomb law. 

As is well known, the static limit of the quark potential is obtained 

by evaluating the Wilson loop integral 

< exp ig 
s Ap dJ$ > 

for a Euclidean path of spatial separation R and time extent T. As 

T -+ 00, the Wilson loop equals exp -V(R)T, where V(R) is the static po- 

tential. Following our general formalism, we now find a. consistent ex- 

pansion of V(R) by expanding the above expectation value in powers of 

A=A - A1 in a given sector about AI. We must then sum over all configura- 

tions and identify the exponentiation in order to extract V(R). 

Applying(18) with @ as the Wilson loop operator, we can easily 

derive that the contribution from sector A; is given, through O(g2) by 

W'(R) .y = I t+lrji+ [N+bl] + [I- 

(a) ( b) (cl 

t b-t] + 
(d) 

(61) 

where the static fermion propagators are defined to be (x denotes a 

spatial 3-vector), 

uz (5; tl, t2) = exp - A&, t> dt, 
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and the bnti-) fermion-gluon vertex is (-) ig Aa/ where Aa are the N2-1 

matrices of the adjoint representation of SU(N). The blob w 4 

represents the various terms in <A> ', such as 

[4+-y, +.m +...] _ 

(see Section II). .yis the partition function, 
/ 

dz nz, which appears 

as a denominator for each term of W. If we restrict ourselves to the 

color singlet states, it is convenient at this stage to define V'(R) as 

the potential due to AZ and all configurations connected to A: by global 

gauge transformations. When this is done, an overall color trace times 

a factor of i is to be understood. For example, the one gluon exchange 

term (b) is explicitly given by 

T/2 

lim g2 z,ab 
t- a 

T+aN (dtldt2)Goo (x1,x2) tr ~l(xl;-m'tl 

-T/2 L 

u z2;+ 009 
)I 

(62) 

We have taken the liberty of replacing the T's appearing in the fermion 

propagators by ~0 ; U always approaches its limiting form rapidly enough 

for this change to be irrelevant. 

We again are concerned with multiinstanton configurations, and for 

simplicity, we restrict the discussion to the case of SU(2) with no light 

fermions and with the heavy quarks in a color singlet. The lowest order 

contribution is obtained by keeping only term (a) of Eq. (61) for V'(R). 

Clearly, the single instanton contribution is given by 
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W;l)(R) = 5 
/ 

d3xIdo 

P5 
- %I; -co,o3 > u(l) (x 

-2 -+ mY-m > 

-lx 1 
where n (P) is-the dens 0 ity of instantons after global. gauge averaging 

and 

where 

UC1)(x;t1,t2) = exp i r * ‘2 - QP 
2 

f(~-+,P; t1,t2> 

r -I 

f (2&p; t1t2) = - A2. 

I 

tan -l 

ap J-g& 
2 2 - tan-1 J&&T J (63) 

It is easy to convince oneself that this single instanton result is ex- 

ponentiated by multiinstanton configurations, with the final result that 

VO(R) = -2W(l) (R)/T, the factor of 2 coming from also considering anti- 

instantons. This result has been given before, in several places.' It 

now emerges as the lowest order of a systematic expansion, with the cor- 

rections given by terms b, c, d of Eq. (61). 

Consider now the higher order contributions. In the vacuum sector, 

U=l,<li>=O and we can use the free gluon propagator G (0) = cTab 6J 

4~~(x-y)~. Wvac(R) is then given by 

+3g2 dtl dt2 

8 ITS 
-& 

R2+(tl-t2) 2 R ' 

where terms independent of R have been dropped. This potential is ex- 

ponentiated by the set of ladder diagrams 
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to give the usual, perturbative result, a Coulomb potential between the 

two heavy quarks. The one instanton sector is slightly more complicated. 

U(l)-was given in (63) and we must use <A 3': the sector one point func- 

tion, and G, the propagator, discussed in previous sections. This term 

contains an integral over instanton time t I' as well as the times asso- 

ciated with fermion-gluon interactions, and will contain pieces propor- 

tional to both T and T2. For example, consider the gluon exchange term. 

For very large average times 

t1 + t 2 -+fm 
2 , 

the U's approach their limiting form and can be factored out of the 

average time integral. Because one part of G is just Go, which depends 

only on (tl - t2), and because there is still the t 
I integral to do, there 

will clearly be a T2 dependence. The T2 piece is just part of the expan- 

sion of the exponential of the Coulomb piece added to the lowest order 

potential VO(R). In other words, building up the entire exponential of 

the Coulomb potential requires the inclusion of terms coming from the one 

(and also the multi) instanton sectors, and these pieces should be sub- 

tracted from the full sector contribution. Once this is done, we can de- 

fine Wil)(R) 2 
as the O(g T) term. It is again clear that this term will 

be exponentiated by multi-instanton configurations. 

Our finalexpression is then 

V(R) = Vcoul CR) - 
3 

d x1 F n (p> [v. (R) + v2(R)] (644 

(64b) vo(R) = 
i i 
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(cl (64~) (b) 

. - 

+ 

Note that consistency requires that we now know n(p), the density of in- 

stantons, to O(g2), i.e., to two loop order. Note also that to this 

order it is correct to include the entire set of ladder graphs in the 

vacuum sector and to only keep a single subtracted gluon exchange in the 

single instanton sector. This is because each additional rurgleads to 

2 an extra power of g T in the vacuum while the localized nature of the in- 

stanton field configuration leads to each rung having an additional power 

2 
ofg P- The former are part of the O(g2) contribution to the potential 

V(R), while the latter contribute terms to V(R) suppressed by additional 

powers of g2. 

The problem of calculating V(R) has now been reduced to calculations 

.f<Q , G and n(p) in the single instanton field, and to evaluating 

Eq. (64). This is a major undertaking, involving the evaluation of one 

and two loop Feynman diagrams in the presence of the external field. 

Rather than attempt the entire computation, we shall focus on the long 

range limit of V(R), characterized by the approximation R >> p for all 

configurations that we consider. This has been attempted previously with 



-41- 

somewhat ambiguous results 4 which have been traced to an inconsistent 

treatment of Eq. (64).6 4 

We now define an integrated potential 

vo(R; x1> p> + v2(R; xp > 1 (65) 

where all dependences have been explicitly shown. The dimension of i 

is (length) +3 and it therefore has a long distance expansion 

V -ao'R+b p4/R . 

(We will ignore all logarithmic corrections and we will see that no odd 

powers of p appear.) Since the p integral in (64a) cannot introduce any 

additional R dependence, the asymptotic behavior of V(R) will be governed 

by vcoul and by the asymptotic behavior of v. Our aim is. then to check 

which is the first non-vanishing term in the expansion of v, or, simply 

stated, to see if a # 0 so that linear terms are present in V(R). The 

classical term v 1 
0 (R) is known to have l/R long range behavior ; we there- 

fore restrict attention to v2. 

The simplest term to consider is the one corresponding to single 

gluon exchange. Substituting (64~ (b)) into (65) yields 

2 
v-g 
- i 

d3xIdtldt2 (l) (zl-xli -?+tQ f u(l) (I& - zl; ty > x 
.-kd 

u(l) (x -x 
2 I rv N 

;m,t2)$ U(')(x,-xI;t2-m) G;;(xl,x2) 

- u(‘)(~~-x~; - co, co) U+ifz-y, ~0, -aI G;;)aa(xl,x2) 1 (66) 
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Imagine doing the x1 integral for fixed tl, t2. One region of in- 

tegration is when x I is close, on the scale of p, to either the quark or 

anti:quark. Since R >> p, G in this region is given by the form valid 

for x >> y, p, Eq. (44). It is easy to check that G is order p"/R2 and 

that the volume of the integration is proportional to'04. Therefore, in 

our search for p 2 terms, we can safely assume that x I is far from both 

fermion lines. From (63), it follows that 

p) = l+ i 'c* (x --XI) P2 f(x - XI,P) + O(P4> 3 

and the only possible p2 terms arise from keeping the p 
2 term in the ex- 

pansion of any one particular U or in G, the full propagator. The ex- 

pansion of G in the asymptotic limit x,y >> p, Eq. (49), consists of the 

free propagator plus traceless O(p2) terms, and the simple formulas 

6 ab Tr(Ta T' 2 . 2-c) = E abc Tr(Ta Tb) = 0 

suffice to show that all these terms vanish. The remaining integrations 

2 
can never introduce compensating inverse factors of p . We have therefore 

shown that the exchange term does not give rise to a linear piece in V(R). 

For the "loop" term, (64c(d)),we need to know < > 
x (1) , the single 

instanton sector one point function. This is given by 

/ 

G pv +Y) Fy(y) d4y 

where F is the blob defined graphically above. A careful and tedious 
12 

study of all the various contributions to F leads to the conclusion 

that F(y) vanishes asymptotically for large y as l/y5. This means that 
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the large x limit of <x> can be derived by using the asymptotic form 

of G for large x, Eq. (49). Substituting that result into the defini- 

tion zf <x) leads to <i) = O(p2/x3). 

Returning to the final integrals in the loop term (over zI, and 

t,), phase space considerations similar to those which appeared in the ex- 

change term allow us to restrict our attention to the region of integration 

z&-E,'>P. (The leading contribution from the near regions only affects the 

single quark self energies.) Using the expansion of U given previously, it is 

again easy to show that the p 2 term vanishes upon taking the traue and 

again, there is no linear piece of the potential. Finally, the "self- 

energy" term (64c(c)) is treated in exactly the same fashion, taking care 

to subtract out the infinite Coulomb self energy. The conclusion is that 

none of the three terms can contribute a linear piece to i and that there- 

fore V(R) - g2/R. It might be interesting to calculate'the magnitude of 

-2 
the effective coupling g to check if the lowest order results are signif- 

icantly modified, but this has not yet been done. Since g2 is rather small, 

it would be very surprising if these higher order corrections had any im- 

portant effects. 
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VII. SUMMARY 
-. 

Up to now, a consistent formalism for handling higher order instanton 

effecTs has been lacking. In this paper, we have attempted to remedy this 

situation by developing a systematic formalism for expanding about multiple 

instanton configurations. As examples of our general method, we consid- 

ered two problems, instanton interactions and the instanton contribution 

to the static quark potential. While the full analysis has not yet been 

carried through, the major result that we have found is that quantum 

corrections do not induce longer range potentials than the lowest 

order results and hence do not introduce qualitatively new 

effects. 

There are many calculations that can be performed, at least in principle, 

using our formalism. However, as is already evident from the simple examples 

pursued here, these calculations are in general quite difficult largely due 

to the technically complicated form of the single instanton propagators. A 

number of computations are vital, however, in the development of a model of 

hadrons based on the multiinstanton approach. These include a calculation 

of the two loop corrections to the instanton density in order to relate our 

semiclassical coupling g to experimentally measurable quantities, and a de- 

tailed study of instanton interactions to further explore the statistical 

mechanics of the interacting instanton gas. This work is now in progress. 
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APPENDIX 

We discuss here a few of the techniques and tricks used to evaluate 
& 

l/D4 and construct the improved propagator in the two limits: (i) x >> y,p, 

and (ii) p << x,y. 

In the first limit, one straightforward method to evaluate the con- 

volution integral 

(A. 1) 

is to split the integration region into an outside region, A2 d z 2 2 
s R , 

where R 2 >> x2 >> A2 2 2 2 2 >>y ,p , and aninsideregiono bz-< A. In 

the outside region l/(y-~)~rnay be expanded as 

c 

2(Y*z) + 1+2 + 4(y*z)2 - y2z2 
4 

+ . . . 
Z Z Z i 

and the resulting integrals may be easily evaluated by performing the 

2 angular integrals directly and then integrating over z . In the inside 

region, l/(x - z) 2 may be expanded as 

1 i 1 
2X'Z 4(r'z)2 - 

+ + 
x2z2 

x2 2 4 + . . . . . 
X X ) 

and identical types of integrals are encountered. Keeping track of all 

terms through O(kn x2/x2) produces the result quoted (41). 

Calculation of the covariant derivatives of l/D4 needed to form the 

BCCL propagator (42) is greatly facilitated by noting that the isospin 1 

covariant derivatives when acting on the traces may be converted to 



-48- 

isospin l/2 derivatives acting inside the trace. For example 

L l-r T T+T 
2 2 axy 

TbT+T 
YxRn fi2/(x-y) ) 

i 
2 

c1 (x2+P2)(y2+P2) 
1 

-jj tr 
( 
T,TzT rbT+T 

= Y y x) 

(x2 + P2HY2 + P2> 
aa Rn i n2/(x - Y12 1 

Tb 
Rn Q2/(x - yj2 ( 

(Y2 + P2) 

Here 

A; = 
nc 

a,6 ab 
+ 2E acb vx 

b2+P2> 
(regular gauge) 

and 
1 
T a 

Dol=aa-i$-Az=a - k&yg)- = a + (k - XJ 
IJ (x2+p2) 1-I (x2+p2) 

Note that covariant derivatives acting backwards involve -5 1-1.3 

Using the first form of D l/2 , we have 

.;I. 
Y 

(x2+ P2) - 

( x2 + P2 1 
3/2 

while the second form is useful for evaluating 

(A. 2) 

(A.31 

T+T T+ T yx p/2 2 y a 

( x2 + P 
2 l/2 a = - p 

) ( x2 + P2 1 
312 * 
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Note that the derivatives on the (x2 + p2' ' ' * ) cienom3nators are always can- 

celed by the xc1 piece of the field term. 
-c, 
As mentioned previously, the tensor manipulations needed for dotting 

qu,,S with Dal/D4 D 
B' 

and for evaluating 

are vastly simplified by using the trace 

the correction terms N G BCCL fxql 

formula 

* tr (AB). 

This allows all the tensor structure to be combined into a single trace 

which may be easily manipulated by using the anticommutation relations 

{+ TV} = yv3 the cyclic trace identify, and the fact that tr(A) = 

tr(A+) if tr(A) is real (as is true for all our traces). - 

Finally, the integrations involved in computing G BCCL fx$ are all 

trivial since, to the order considered, all of the integrands are spher- 

ically symmetric. Since the constraints f are localized, the appropriate 

asymptotic expansion of G BCCL needed for computing the correction terms 

is always limit I, x2 >' Y 2 ( or vice versa). 

To evaluate the convolution integral in the second limit p 
2 << x2,y2, 

we proceed from the singular gauge expression (45) directly. Splitting 

the integrand into an inside region 0 s z d p and an outside region 

P SZSQ, one immediately sees that the contribution 

is O(04) and will be dropped. In the outside region, 

2 pand the integrand in powers of p . For the order p2 

i -r. 

of the inside region 

one may blindly ex- 

terms, one finds 

-c \ 

-P (A.4) 
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The trace term cornhines to form 

- -’ 

:p2 d4z I‘ fiab 

J 
1 1 

(4.1r2)2 
x2 z2 

+ 
(Y - z) 

2 
Y2 z2 (x - z>2 

- which may be easily evaluated; however, the traceless piece 

2 abc 
2P E 

1 
7 2P2 abc -c 

y' YZ 
z2(x-z)2(y-z)2 = --y E 

4Tr 
qxyK 

may not be easily evaluated analytically. 

Since only the trace part of l/D4 is easy to evaluate in this limit, 

the various trace manipulations mentioned previously are not as useful as 

before. However, the covariant derivatives may simply be blindly eval- 

uated through O(p2) yielding the quoted result (47). The correction 

terms are evaluated exactly as before, and their tensor structure may be 

separated into trace and traceless pieces as shown in (48). 


