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ABSTRACT 

The contribution of the multibubble insertions in the photon propa- 

gator to the anomalous magnetic moment of the electron is reexamined. 

Using the asymptotic form of the photon propagator one finds a softer 

. singularity than that found in a recent analysis. 
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It has been known since Dyson that the perturbation expansion in the 

quantum electrodynamics is divergent, which implies an existence of a 
* 

singularity at the origin in the coupling constant plane. The reason for 

the occurrence of this singularity is the instability of the standard 

vacuum against the spontaneous 'production of e+e- pairs for the-negative 

coupling constant. Further analysis shows [1,2], that this singularity 

is of a Bore1 summable type. Recently [3,4] it has been noted, that the 

renormalization causes an occurrence of a non-Bore1 summable singularity 

at the origin. Whereas the divergent, but Bore1 summable series are a 

rather natural phenomenon in the field theory, the non-Bore1 summability 

indicates an incompleteness of the theory. In the quantum electro- 
- 

dynamics the source of the singularity are diagrams of the type shown 

on Fig. 1 contributing to the anomalous magnetic moment of the electron. 

Following Lautrup [4] one writes (Fig. 2) 

ah> = t s ix (l-x) [-7r(- & m2)] 

0 

(1) 

where n(k2) is connected with the photon propagator by 

D,,v(k2> = (-gPV + -%I + (2) 

For an n-bubble insertion (Fig. 1) that contributes to the n-th order of 

the expansion in a, [-n(k2>3 =[-.rr2(k2)ln where ITS is the second order 

contribution. In the large n-limit one can use the saddle point method 

for the evaluation of the integral. Using the expression for ITS calculated 

. 
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in the perturbation theory one finds that the expansion coefficients 

behave like n! and the series is therefore non-Bore1 summable. This non- 

B"orel%mnability is connected with the break-down of the perturbation 

theory for large momenta and the appearance of a spurious pole in r(k2>. 

One can find, however,.examples where a(a) has a non-Bore1 summable ex- 

pansion, even though r(k2> has no unphysical pole [6]. In the following 

-. 

I shall analyse the above singularity from the point of view of the 

spectral representation and the renormalization group. 

For -k2 >> m2 the renormalization group arguments [7] tell one that 

dk2> = i F (q(d) + Rn $$-) (3) 

where F and 4 are mutually inverse functions, i.e. F 

bation theory [8] gives 

Pertur- 

s(a) = a 
i 
1+&o + 

) 
... 

and consequently 

4(x) = - $ + . . . o<x<< 1 

F(x) = - $ (5) 

(4) 

for x < 0 and 1 x( >>l 

Spectral representation for n(k2> requires that F is a monotonically 

increasing function. This is a consequence of the positivity of the spec- 

tral function. The actual behavior of F has been found by Anselm [9] to be 

F,,(x) = evx P(x) (f-5) 
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where 

k2 
dM20(M2) 
(k2 -M2 IL 

v=l- lim -A& 
k2 -+ --m 

I 

dM20(M2) @"L 
k2-Mz 

0 

Function P has the property 

(7) 

(8) 

This means, that the function F,, behaves essentially like an exponential 

for very large x. However, in case of the finite renormalization, 

$dM20(M2) < m , v=O and F as(~) = P(x) goes to a constant when x + to. 

After the insertion of (3) and the change of variables x=1-eWt 

equation (1) takes the form 

a(a) = 1 / dt e-2t 
1TO 

F(- G + t) (9) 

One observes here that a(+O) # a(-0) as a consequence of the monotonic 

behavior of F. 

The behavior of the coefficients an in the expansion a(a) = J5' anan 
n 

can be found by using Lipatov's method [12]. One considers a double 

integral 

(10) 

and looks for a saddle point in (u,t) variables. The saddle point is 

determined by equations: 
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- 

(11) 

2 - f' -$+t =o 
1 

--h 

n -- 
a 

%ft (-?+t) =o 

where f'(x) 3 g 
I 

F(x).. The solution is CI = F and t = t-l- A. -A is an 

n-independent number such that f'(X) = 2. One sees immediately that 

n. I a s - , n large (12) n 
(679 

which is the result of Ref. 
PI l 

Therefore, if one can find a solution 

to the saddle point equations, i.e. if f' can achieve the value of 2, (9) 

would give a non-Bore1 summable contribution. The function F, however, 

satisfies the spectral representation 

F($+t) = l+et 
i 

@&,4) ds 
et+s 

(13) 

0 
and in consequence, as one can easily convince oneself, the values of f' 

have to lie in the interval [0,1-j. Thus the existence of a real saddle 

point, which would imply the non-Bore1 summability of the perturbation 

expansion, is prevented by the spectral representation. On the other 

hand, it is difficult to say anything definite about the contribution, 

that a complex saddle point would make, if it existed. It would have to 

lie in the region (Re et CO), where one does not trust the above approxi- 

mation anyway. 

One can insertinow into (9) an identify F(x) = F(x) - Fas(x) 1 +- 

Fas (x) . F-Fas coincides with F pert 
for v#O for sufficiently small x, 
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say XC-X 1, Al>O, and is vanishingly small for large x>x2. The integral - 

over the perturbative region can be performed and the result is expressed - 

in ter;. of the exponential-integral functions. It has an essential 

singularity at u=O and vanishes as ~1 + 0 +' 

One finds that this contribution takes form 

where 

apert = 2 c,(a) n!(&)n+l 04) 

C,(a) = 1 - e -3;. i&)-k& 
= 

ah 1 and A=1 - x . c,(u) are of order 1 for n < ~ c and decrease rapidly 

above this value. Therefore the series (14) mimics the results of 

Ref. [3,4] up to this order. 

The integral over the intermediate region of [F-F,,] gives simply 

HIT -- 
a e (15) 

Finally, from the asymptotic contribution alone 

m 

a = 
as I 

dt e-2t Fas 
0 

(- $+ t) 

assuming that P(x) behaves like a polynomial, one obtains the result 

a as = e- " [P(g) e~-~ss]szo (16) 
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In case of the finite renormalization when v=O, one can approximate 

F as by a e-function. Then F-Fas still can be approximated by F pert for 
4 

x-c-h 
1’ 

One finds in this case that 

6~r -- 
a = const l e a. (17) as 1 -- 

As one sees, a(a) contains non-perturbative terms of the type e 
a . 

We notice that the non-perturbative contribution is consistent with 

the (weak) Bore1 summability [10,11] of the perturbation series. The terms 

-1 

of the type e a can always show up after the resummation of an asymptotic 

series as they vanish identically in the expansion in a. Of course, 

whether other classes of diagrams, besides those on Fig. 1, 2, can con- 

tribute to's non-Bore1 summable singularity is still an open question. 
I 
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FIGURE CAPTIONS 

1. n-bubble insertion. 

2. General blob insertion. 
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Fig. 1 

Fig. 2 


