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ABSTRACT 

We present new techniques for attacking the Schrodinger eigenvalue 

problem. They are based on asymptotic solutions to an exact set of re- 

cursion relations satisfied by moments of the coordinate operator. We 

apply these techniques to the generalized anharmonic oscillator 

H = P2 + X2'M and show how to compute the energy levels, all 

of the moments <X" >,and the value of the wave function and its deriva- 

tives at the origin. We specialize to the case M = 2 to obtain accurate 

numerical results for the low lying energy levels as well as (all) the 

moments. We also discuss the case V(x)= dx2 +x4. Transition moments are 

then treated in the same manner. 
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1. INTRODUCTION 

In this paper we present a general yet practical (and simple) method 
- 

for the computation of energy eigenvalues and physically interesting ob- 

servables with equivalent accuracy. Because of the recent interest in 

the anharmonic oscillator from both a mathematical 
l-6' and a computational 

7-9 

point of view, the moment method will be applied to polynomial potentials 

in this paper in order to illustrate its use. Power behaved potentials, 

such as the coulomb interaction, can be included in this class. 

Elegant and simple evaluations of certain perturbation expansions 

using recursive methods have been discussed by Swenson and Danforth 
10 

and Killingbeck. 11 The evaluation of high moments of the coordinate oper- 

ation in terms of its lowest moments has been described by Banerjee. 
12 

In this paper these recursive methods are generalized and are shown to 

determine the energy eigenvaluesas well as the coordinate moments. 

II. RECURSION RELATIONS 

The derivation of generalized virial theorems has been well discussed. 

Here we shall discuss a restricted class of relations that are of immed- 

iate interest to the problem at hand. Consider a one-dimensional Schrodinger 

problem and the double commutator 

where 

-d2 
Hz---- 

dx2 
+ VW 

(1) 

Taking the matrix elements of (1) between eigenstates of H, and 
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symmetrizing, one finds 

4 (Ea. - Em)* <Qlglm> + *(EQ + EmI <Qlg”lm> 

= <R12g'V' + 4g" Vim> - <Qlg""lm>, 
(2) 

where the prime denotes differentiation with respect to the argument x. 

This is exactly the relation derived and discussed by Banerjee. 12 

The matrix elements of (2) take on the particularly useful form if 

the potential is a polynomial. Although other cases can be treated, we 

will restrict ourselves to polynominal potentials here. For example, by 

setting Q = m (and dropping explicitly the label Q from now on), one 

finds for the case of a pure power, . 

VW = x 
2M 

, 

(any coefficient can be scaled to unity) and with 

N+2 
g(x) = ‘fN + 2) , 

that Eq. (2) becomes 

4E(N+l)QN = 4(N + M + l)QN + 2M - (N + 1) N (N - l)QN-*, 

(3) 

(4) 

(5) 

where 

QN = <QlxNjQ> . 

The discussion for R f m will be given in Section VI. 

Equation (5) and its obvious generalizations form the basis of this 

method. The familiar virial theorem is achieved by choosing N = 0, 

E = (M + l)Q2M (6) 
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As Banerjee has discussed, knowledge of the even moments from N = 0 

to N = 2M allows one to compute all of the higher even moments by re- 
-h 

peated applications of Eq. (5). 

Let us define the odd moments by 

QN = <QjlxlNIQ> 

which also obey the relation (5) for N 13. For smaller N, a simple 

integration by parts for N > 1 yields the relation 

co 

(N - l)QN-* = 2 
I 

dx(N - 1) x N-2 I)* (x) 

0 
00 

= -2 

Thus 

;E+ (N - 1) QN-* = 2 $* (0) , 

and one finds 

I)~ (0) = (M + 2)Q2M+1 - 2EQ' . (8) 

Proceeding one step further 

2 
d 

- Q2W 
dx* 

= 2,q2M-1 - 4E $* (0) . 

x=0 

It is convenient to rewrite the last equation using V(0) = 0 

(7) 

2 
d 

__ e* w 
dx* 

I 

213 (HO) ) * , 

x= 0 
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in the form 

($'@))* + E($(O))* = M Q2M-1 . 

Since the states have a given parity, only one term on the left of Eq. (9) 

can contribute at a time. Incidentally, note that the value of Eq. (8), 

. I.e., a* (0) , indicates whether or not one is dealing with an even or an 

odd state. We see that the value of the wave function and its derivitives 

at the origin can be determined from a knowledge of the odd positive mo- 

ments. Note also that for a symmetric state, Eq. (8) and (9) imply a 

relation between E, Q', Q2M-1, and Q2M+1. 

Higher derivitives of the wave function at the origin $ (k)(0) can 

be computed by continuing the moment recursion relations to more negative 

N values. Alternatively one may use the differential equation with the 

initial condition given by Eq. (9); 

(k-2M)(0) - E$(k)(O). (10) 

This relation will be applied to the quartic oscillator in Section IV. 

III. ASYMPTOTIC BEHAVIOR AND EIGENVALUE CONDITION 

In the previous section, a knowledge of E and the low moments was 

shown to be sufficient for determining all higher moments recursively. 

Actually a study of the behavior of (5) for large N will lead us to a con- 

venient method for determining E and the lower moments as well. 

That the large N behavior of QN is connected to the eigenvalue con- 

dition should come as no surprise. Imagine solving the Schrodinger 

equation in coordinate space. The wave function must be finite at the 
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origin and for a potential that behaves asymptotically as V - X 2M , fall 

at large distances as 
-h 

Jl(x) - exp C 
-,xlM + IL 

M+l 1 
Since the moments are controlled at large N by the large x behavior of 

$(x> 9 one finds that 

QN - 2 /Zx xN exp [- &x"+l] 

0 

or 

N/M+1 
(11) 

for large N. More accurate estimates will be given shortly for the 

asymptotic behavior of QN. 

The important point is the following. If a sequence of (M + 1) 

even moments of QN are known at some (large) value of N, say N,, the re- 

cursion relation (5) with an arbitrary E can be used to compute the QN 

down to N = 0. The demand that Eq. (5) f or N = 0 (the virial condition) 

is consistent then determines E. Actually one does not need to know all 

M + 1 moments but only M ratios since their overall normalization is 

fixed by requiring that Q" = 1. 

Our procedure in practice is as follows. Derive an asymptotic ex- 

pansion for QN at large N. Then choose a sufficiently large value of 
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Nccl so that the fractional errors in Q N 
are acceptable. Then use these 

approximate values to start off the recursion relations. Since the recursion 
4 

relations are linear, one finds that the fractional errors propagate ap- 

proximately linearly. Hence the fractional errors in Q*, . . . Q 2M (and E) 

are roughly the same'as those in Q N (and these can be made arbitrarily 

small by choosing N, to be sufficiently large. Once the even moments 

have been used to determine E, the odd moments can be properly normalized 

and 1*(O), etc., can be computed. 

This procedure is simpler than its description, so let us turn to 

an example which clarifies it. Numerical results and examples will be 

given. 

IV. ANHARMONIC OSCILLATOR 

For this case the recursion relation can be written as 

E = N + M + 1 QN+2M N(N - 1) QN-* - - 
N+l 

QN 
4 

QN - 

From Eq. (11) we know that 

N 
MS1 

and hence the E term is nonleading in Eq. (12). Define qN to be the 

solution of Eq. (12) when E = 0. One finds that 

-!!- qN l)"+l r (M + (2: 1% = (2: :: 2 r (2: :: 3 N+M+l . 
r 2M + 2 

(12) 

(13) 
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Introducing F(N) through the relation 

QN = qN exp{-F(N)} , 

then F(N) is determined by the relation 

e 
F(N) - F(N+2M) _ .F(N) - F(N-2) .= E R(N)- 

(14) 

(15) 

where 

R(N) = (M + 

For large N, R(N) can be expanded in an asymptotic series and R(N) W 

(2/Nlr, r = $&l- . F(N) can then be determined by matching coefficients. 

To be more specific, let us consider the case M = 2 or V(x) = x4. To low 

order 
4 -- 

R(N)- ; 3 

() [ 
I-$- +++... , 

9N 1 
and 

5 -- 
F(N) 3+o (N -7/3) . 

It is straightforward to carry this procedure out to higher orders. 

Defining 

The first few values of FR are found to be 

Fl = E, 
F5 = -E*/30, F7 = -55El252, F8 = E*/lS, 

Fll = 293 E*/44 * 34 and F12 = 3 4 
-2E /3 . 

(16) 

(17) 
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The omitted Fhs are zero. 

Note: The above series is 

with&higher excited states 

accurate at fixed E for N large. In dealing 

it is convenient to rearrange the ratios of 

Eq. (15) in the form (c = 4 and -2). 

c2& WA 
e F'(N) - F(N+C)= + ; W$)- -- 1' ( )I 3N W. + 0 2 (18) 

where i Z E(2/N) 413 A 
and W' = dWo/dE. 

0 
Substituting into Eq. (15), one 

finds that W. and Wl satisfy 

w; - EWo=l 

and 

wl=$ [ I 
-1 

w. (3 + 2 i Wo)(3Wi -i) . 

This expansion should be good when i is fixed and N becomes large. 

A simple procedure to solve the quartic oscillator eigenvalue prob- 

lem is as follows. To determine both the even and odd moments we need 
NW Nm+ 1 NW + 5 

six input moments Q , Q , . . . Q , where N is even. Since m 

the normalization does not matter, define the five-dimensional vector: 

T(N) = 
Q N+l QN+2 QN+5 - - 

QN 
, 

QN 
, . . . 

QN t 

= V1 (N) , V*(N) ,... V5(N) 

One may compute $(N, -2) by using the recursion relations.Eq. (12) and 

by assuming a trial value of E. This procedure is repeated until 3(O) 

is reached. The virial theorem then must be satisfied at the proper E 

(this is equivalent to the ordinary boundary condition at the origin, or 

in this language that the term N(N-l)(N+l)QN-* is zero as N + O+). This 
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sequence is repeated until the E satisfying the virial condition is 

found. Once E is fixed, Q', . . . , Q5 are then directly known since - -' 

-Q” = ;. There are in general a large number of values of E satisfying 

the virial condition (depending on Nco and the starting values of V). 

These are the energy eigenvalues. 

Numerical Results. Let us numerically examine the convergence 

properties of this method. Fixing K = 5, the values of E and Q* for 

selected values of N are given in Table I. 13 For completeness, in 

Table II the values of QN for small N are given for the first three 

levels. 

The computation of E and the QN is extremely rapid. For a fixed 

trial value of E, the five initial values of the vector V(Nco) must be 

computed and then N m recursive steps are performed to calculate down to 

N = 0. This is repeated for several values of E until the appropriate 

root of the equation E - 3Q4(E) = 0 is determined. A sample graph of 

this equation is given in Fig. 1. 

One amusing feature of the numerical results is that the values of 

E oscillate as a function of Nco with a wave length of 6 (see Fig. 2). Two 

of the output E values for Nm, Nm + 2, and No? + 4 are found to be larger 

than the exact E value while the third one is roughly twice as far below. 

The average of these three E values is actually several significant fig- 

ures closer to the exact value than any single one. We do not completely 

understand this feature but it clearly depends on the detailed structure 

of the potential, the recursion relations, and the asymptotic estimates. 

To compute the Taylor expansion of the wave function for the quartic 

oscillator, one may use Eq. (9) and (10). For even or odd eigenstates, 
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one knows from Eq. (9) that 

l/Je (0) = $ d-- 

Go (0) = $7 

This is sufficient information to completely determine the wave function 

from Eq. (10). The first few terms of the Taylor expansion are 

qe(x) = qJe(0) - $+ ++ 24 - E3 
6' x6 + E4 - 3843 X8 + 

. . . 81 1 
. . . 

J 

Ijo = IgO) c x - $ + q + 120-E3 ,7 + E4-960EX9 + . . . (20) . . 7, . 91 

V. THE POTENTIAL V = x4 + dx2 

The moment relations for this potential has form 

E = N + 3 QN+4 - - 
N+l 

QN 

N(N-1) QN-* + d(N+2) QN+* 
4 

QN 
(NSl) QN * (21) 

For large N, it is easy to see that the first two terms on the right are 

dominant, and the d term is larger than the constant E. Following the 

previous section, define 

QN = qN e -F(N) - D(N) 
(22) 

where qN and F(N) are given by Eq. (13) and (17). Then D(N) is found to be 
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where 

=L * 
- Dl Gd 

' d* D4 = 36 

'd D2 = 6 D5 = 5 'd 1 -&Ed*-- 
4-g4 

d4 

. 
D3 = 0 . 

. 
(24) 

. 

One can also scale the series analagous to Eq. (18) and the approximate 

scaling variable is d(2/N) 213 E a. 

A simplified form for QN that is correct in the limit of large N is 

N 5 --- 

QN =(f,' 6 exp I- t - d (P)'- (E -t-.$)(F)- Bt . . . 1 (25) 

The behavior of the solution of (21) for fixed (but large N) and 

d -f m is easily found by scaling. Define E = dl'*e, introduce 

pN = dNj4 QN 

and the moment recursion relation (21) becomes 

N+2 PN+* 
e-N+1 pN 

+ N(N-1) PN-* (N+3) PN+4 d- 5 -=-- 
4 PN (N+l) -pN 

(26) 

(27) 

asd-tca. The solution for PN for the lowest state is exactly that of a 

simple harmonic oscillator. 

r(?) pN _ 
r W*) 

and e = 1. 

(28) 
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The neglect of the right-hand side of (27) is justified provided 

that 
-cI 

3 

N << NO 
z =2d -3 (29) 

Thus only the moments for N <<.N 
0 

are controlled by the harmonic term in 

the potential; the anharmonic term controls the N >> No moments. 

The effect of the dx* term on the moments is also simple to understand. 

As d increases, the wave function must decrease faster as lx1 increases. 

Hence the wave function for small x rises and the large N moments decrease 

(also the energy obviously rises at the same time). For negative d, on 

the other hand, the potential widens (eventually becoming a double well) 

and the large N moments must increase. 

Some sample values of the ground state E(d) and Q*(d) computed with 

K = 5 and N co = 200, are 

E(1/2) = 1.23335 Q*(l/2) = 0.33103 

E(.O) = 1.06036 Q*(O) = 0.36202 

E(-l/2) = 0.87002 4*(-l/2) = 0.40089 

The first three states for d = 1 have energies 

EO(l) = 1.39235 

El(l) = 4.64881 

E*(l) = 8.65506 

The first and last'values are within the rigorous limits given by Bazley 

and Fox14 who discuss only the symmetric states. 

In Fig. 3, the values of Eo(d) and El(d) are given for d in the 

range -1 to 1. For large negative d, the levels approach pairwise de- 

generacy whereas for large positive d they must approach a spacing of 2 &. 
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VI. TRANSITION MOMENTS 

Let us now assume that the (diagonal) moment problem has been solved 
5. 

for two different states as described in the earlier sections. It will 

now be shown that all the transition moments are computable by a similar 

procedure. Defining the transition moment between the states i and j as 

. - 

(such that TN exists for all N for all possible parities) 

m 

TN : 2 
I 

dx xN $i(x) $j(x) 

0 

and the choice 

xN + 2 

g(x) = (N + 2) 

allows Eq. (2) to be written in the form 

E _ N-k21 TN+2M N(N-1) TN-* * 
N+2 

-m-m - - 
TN 4 TN (N+;)(N+ljTTN ' 

(30) 

(31) 

(32) 

where 2E = Ei -t E, and 2e = E. - E.. 
J 1 J 

As before, the asymptotic behavior of TN must be determined. One 

easily finds that 

TN =toQN(E) e -G(N) 
, 

and for the special case M = 2, 

5 
*I 7 

G(N) = g (f) + . . . 

(33) 

(34) 

Starting at large N, the TN at successively lower values of N can be 

computed from (32). Thus they are completely determined at this stage 

of the calculation except for one overall normalization constant. 
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The absolute normalization of TN can now be fixed by considering 

sufficiently low values of N. We must, however, discuss separately the 
c, 

even-even, even-odd, and odd-odd transitions. In the first case, E-E, 

we have 

a3 co 

TN = 2 

I 

dx ~~$~(x),j,~(x) = 2 

I 

dx p,(x) , 

0 0 

where ~~(0) # 0. An integration by parts yields the result 

lim N-t2 (N - l)TN-* = 2PT(0) = 2$i(o)$j(o) , 

(35) 

(36) 

where the relative phase between $, and $ 
j 

is of course arbitrary. Letting 
I 

N-t1 in Eq. (32) produces the condition 

123 (M -I- 2)T2M+1 - 2 E Tl - 3 e T 

which allows the T"s to be normalized in this case, since qi(0) and 

I/J~(O) are given by Eq. (9). 

= PT(0) (37) 

For the E-O transition, TN is written as 

co m 

TN = 2 

I 

dx X~I/L~X)IJJ~~X) = 2 dx xNfl b,(x) 

where a factor of xihas been extracted from the odd wave function and 

hence CT(O) f 0. It follows that 

lim N T N-2 

N-4 
= 2iTKo = 2 ii(O) +; (0) 

and thus 

-2(M + 1) T2M + 2E To + e* T* = A PT (01, (39) 

(38) 
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where +i(0)and + jr (0) are evaluated by using Eq. (8). 

Finally,for the O-O transition, TN is written as 

- ~’ al 
- 

TN = 2 
I 

dx xN+* - P,(X) * * 

0 

The limit as N-t -1 of Eq. (32) yields the cond ition 

MT2M-1 - e*‘$ = PT(0) = qtoN;to) * (40) 

Thus it is possible to absolutely normalize the transition moments in 

terms of the normalization of the individual wave function at the origin. 

Applying this method to lowest E - 0 transition, we find for the 

quartic oscillator M = 2 that 

<OjXll) = 0.600805 . (41) 

Using Eq. (32), one finds (N = -1) 

<01X311> = -$<OlXjl> e* . 

Higher moments are determined 12 by successive application of Eq. (32). 

VII. CONCLUSION 

The moment method described here seems to possess many practical ad- 

vantages. Among these are the simplicity of the numerical analysis and 

the fact that one deals directly with quantities of physical interest, 

the diagonal and transition moments (rather than a point-by-point descrip- 

tion of the wave function which must then be integrated). The moments 

are computed with essentially the same fractional accuracy as the energy 

eigenvalue. This is in contrast to, for example, variational methods 
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which compute the energy quite efficiently but have a much larger (square 

root of the fractional energy error) uncertainty in the moments. In ad- 
c, 

dition, there is no explicit diagonalization of large matrices required 

in our method. 

An alternative use of the moment approach is in discussions of per- 

turbation theory. For example, the divergence 394 of the power series ex- 

pansion of a quartic perturbation of a harmonic oscillation is easily 

seen by examining the asymptotic moments. Similarly, if a quartic oscil- 

lation is perturbed by a quadratic term, the fractional first order change 

in the moments is easily seen to grow as 3 N . 
J- 

This immediately suggests 

several possible alternatives to perturbation theory in which the exact 

recursion relations are used together with perturbation theory to increase 

the radius of convergence of the expansion. 4 

In summary, the moment approach is simple yet efficient for numerical 

analysis of power law potentials, and may provide an interesting basis 

for the discussion of more general mathematical properties. In addition, 

it treats the Schrodinger problem in terms of moments. This is in direct 

analogy with the treatment of field theory in terms of Wightman functions. 
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TABLE I 

- - -h CONVERGENCE OF METHOD 

Ncn E Q2 I$(O)l 2 = 2Q3 E 

4 1.051533050 .367921250 -642837408 

16 1.060734005 .362508956 .629372638 

64 1.060356106 .362034406 .628762340 

256 1.060361528 .362022473 .628751219 

1024 1.060362084 .362022647 .628751368 

4096 1.060362090 .362022648 .628751369 

16384 1.060362090 .362022648 .628751369 
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TABLE II 

MOMENTS FOR FIRST THREE LEVELS OF H = P2 + X4 

Ground First Second 

E 1:0603620905 3.79967303 7.455698 

Q1 0.4875770267 0.88301025 0.974638 

Q2 0.3620226488 0.90160590 1.244714 

Q3 0.3333520582 1.02458533 1.716708 

Q4 0.3534540302 1.26655768 2.485233 

Q5 0.4156919400 1.67757512 3.748430 
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FIGURE CAPTIONS 

1. A graph of the virial function E-3Q4(E) whose zeros determine the 

energy eigenvalues. 

2. A display of the convergence properties of the method. Notice the 

overall convergence and the cycles of three phenomena. 

3. A graph of the first two energy values of H = P2 + x4 + dx2 as a 

function of d. 
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