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ABSTRACT 

QCD radiative corrections to the vector meson lepton width are dis- 

cussed. It is shown how these modify the 0 th order equation of Van Royen 

and Weisskopf, thereby leading to a significant suppression, by about a 

factor of 2, of the calculated value of r. Consequences for phenomenology 

are examined. In particular, a prediction is made for the width of T', 

as well as for widths of heavier mesons. 
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1. INTRODUCTION 

- -' Over the past few years there has been a proliferation of quark- 
c, 

potential models. 1 These have generally been quite successful in pre- 

dicting properties of the charmonium system and some2 can accommodate 

the masses of the recently found T particles. 3 Most of these models4 

are, however , parametrized not only by themasses of certain mesons, but 

also by their leptonic decay widths, based on the Van Royen-Weisskopf5 

formula, 

P(V j. e+e-) = 16~r CX~/+(O)\~ 2 
eQ 

(1) 

where e 
Q 

is the quark charge, mV is the vector-meson mass, and 4 is the 

qq-wave function. 

In what follows, we hope to cast doubt on the reliability of this 

equation by showing, through an estimate of QCD radiative corrections, 

that these cause a large suppression (of order 50%) of P. 

Phenomenological implications of the modified formula will be pre- 

sented in the final section of this paper. 

II. CALCULATION OF THE LEPTON WIDTH 

The effect of lepton width suppression can be clearly seen in a 

QED calculation where orthomuonium,8,decays into ee. The radiative 

lth correction to the 0 order process is due to the exchange of a photon, 

renormalized by a counterterm (see Fig. 1). (Notice that part of the 

photon contribution iterates the Coulomb potential, thus repeating the 

0 th order decay rate.) The calculation can be done following the methods 
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outlined in Karplus and Klein6 and the result, 6 suppressed as advertised, 
-. 

is 

167~~1 r(6-+e+e-) = -7j--- 1 o(O)! 2 l1 _ h> 
2 

mO 
\ IT 

(2) 

For the purposes of comparison with QCD, we define three new quantities, 

ro, rT’ rL so that 

r=r o -i 1 + drT + rL) I . 

r. is the 0 th order rate, rT is the contribution of the transverse photon, 

and r L is the relative-order-o contribution of the longitudinal photon 

(here, the standard Coulomb-gauge terminology is employed).' The decom- 

position into rT and rL is not given in Karplus and Klein6 but (tedious) 

calculation shows r 2 10 = - - 
T 3Tr 

and rL = - 3 . 
TT 

We note that both rT and 

. - rL cause suppression, but that the main effect is due to rL. Furthermore, 

we find when doing the calculation, that the radiative correction (rT + r,) 

arises from the exchange of hard photons (where the momentum scale is of 

order mJ. More specifically, in Fig. 1, the small k region of the loop 

integration contributes only to the iteration of the wave function and to 

corrections of O(02) 7 . Terms which are O(a) are due to the region of 

integration where (kl>> am. As a final observation, we note that the 

wave function, 4, (the q-loop in Fig. 1) factors out when k is large, 

hence rT + rLis notldependent on 0. 

These above observations are important in trying to understand the 

analogous QCD calculation. As an ansatz, let us suppose that the first- 

order QCD correction arises in precisely the same way as above--namely, 

that the effect is due to single hard gluon exchange, and soft gluons (as 
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well as some other processes involving more gluons) will be assumed to 

contribute (through O(cl8)) only to the bound state. (Notice that this 

ansaG is of the same nature as that made by de R<jula et al. 8 in com- 

puting the spin-dependent O(clS) perturbation to a confining potential.) 

The resulting decay width is, then, by the remarks of the previous para- 

graph, 

r(V+e+e-) = 
16r cle21$(0)12 

I (3) 

where color factors have been included, and the strong cou'pling constant 

is renormalized at m 
Q' 

which, as we saw, is the typical momentum for this 

term. Equation (3) has been noted by Barbieri et al. 9 although the pre- 

cise nature of the underlying ansatz was not made clear in their paper. 10 

It is unfortunate that this observation of theirs has escaped attention 

for it does in fact imply considerable suppression of r. Actual values 

will be shown later, but first we shall discuss the validity of the as- 

sumptions leading to (3). 

The main difficulty encountered in calculating the QCD corrections 

is, of course, the fact that we do not know what diagrams contribute to 

the confinement. For the case of muonium, the Coulomb potential is given 

by iteration of the, longitudinal photons. In the same way, iterations of 

the longitudinal gluon would lead to a Coulomb potential which does not 

have the confining behavior expected in QCD. This means that the low 

momentum Coulomb gluon does not iterate the potential and the computation 

of TI, does not proceed as in QED. We can (and do) still assume that the 
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soft gluon serves as part of the iterating term (and does not contribute 

to O(a) correctiorm)but such a separation between iteration and correction .-- 
4 

is not at all clear. The transverse gluon is not binding. Thus it ap- 

pears that rT may be less questionable. Unfortunately, as was observed 

previously, rT = lYL/5'(in muonium) and so it appears that the main con- 

tribution to the correction may come from the less reliable term (although, 

in point of fact, we do not really know that the transverse gluon does 

not enter as part of the iteration-- our intuition from QED is not reliable 

in this matter). 

There is a further difference between the QCD and QED calculations-- 

namely, tri-gluon contributions could contribute in O(as), as is shown in 

Fig. 2. This is, in principle, calculable, but the calculation is long, 

and, in light of the previous problem (regarding the iterations of the 

potential) may not be very revealing. In fact, the multigluon couplings 

are probably the source of confinement and so it might be hoped that Fig. 2 

should be ignored for our purposes. 11 

One last point must be raised in the analysis of Eq. (3). This re- 

gards the question of the validity of a perturbative expansion in this 

equation. % 2 0.3 implies rT + rL 2 0.5, suggesting that higher orders 

will be important and thus that the O(a,) result is somewhat unreliable. 

In particular, note that for u s > 0.7, Eq. (3) implies r < 0. In order 

to assure positivity of r in the phenomenological analysis to be done, 

(3) will be replaced by 

r(V+e+e-) = 
&TC.X~ eil+(O) I2 

l8 -- 
3Tr as (mQl)2 (4) 

This is equivalent through O(os) to (3) and has the advantage of positivity. 
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111. PHENOMENOLOGICAL IMPLICATIONS 

We here adopt the ansatz made in the last section and consider Eq. 
* 

(4) * To estimate the suppression we use 12 

as(M) = ,,"" 2n 
1 

log (M2/A2) 
(5) 

where n is the number of flavors with quark mass < 2M, and A is found 

from deep inelastic scattering 13 to be about 500 MeV. Taking 192 M=m 
2 

C 
- 2 GeV, we find os(mc) - 0.50 and ( 1 - $ as Cm,) ) - 0.33. This is, 

as claimed, a very large suppression and so we see that Eq. (1) should 

not be used in constructing a potential. 

One possible indication of the suppression of I' has to do with the 

mystery of the large splitting between +(3.1) and X(2.83).14 If X is 7-1~ 

(paracharmonium), then it is difficult 15 to reconcile such a large hyper- 

fine splitting with the lepton width of $07 = 4.8 f 0.6 KeV).16 The reason 
-- 

for this is that the Breit-Fermi types of formulas I/ imply that the hyper- 

fine splittings derive their main contribution from I+(O)] 2 
which, as 

has been mentioned, is usually fixed by Eq. (l).18 But we have just seen 

that Eq. (1) must be modified and that a larger value of I@(O) I2 (called 

for by the +-X difference) is compatible with the observed lepton width 

of lJJ. Unfortunately, neither the status of the X (as paracharmonium) 
19 

nor the questioned reliability of the hyperfine calculation really lends 

much weight to this "evidence" for suppression. 

Another possible hope for seeing the radiative correction is to 

measure r( rl c+ 2y)/r($ +e+e-). This experiment may soon be done 20 and, 

if sufficiently accurate, could measure the higher order effects. The 

0 th order prediction for the ratio 21 is 
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M2 M2 
?-!L r(Qc'2y)/r($+e+e-) = 3eQ 2 =4AL 3 2 (6) 

M M -. 

-n % k 

and any deviations from this would be evidence for QCD-radiative correc- 

tions. The effect could be large if r(nc+2y) were enhanced by its 

O(as) perturbation but there is some indication from QED that this might 

not be the case. Namely, in parapositronium, P, Harris and Brown 22 have 

shown that the radiative corrections to P(P-+2Y) suppress, rather than 

enhance, the rate. If the suppression should also occur in QCD, then it 

might turn out that experiment will confirm Eq. (6) even though there are 

radiative effects (which just happen to cancel). 

Finally, we leave the question of directly testing (3) and turn to the pre- 

dictions that can be made for lepton widths in a potential model. Perhaps 

the most reliable of these are the ratios r(V'+e+e-)/r(V+e+e-) where V' 

is a radial excitation of V. We expect this ratio to be approximately 

independent of radiative corrections. Because Eq. (4) and (1) give the 

same value for this ratio, all models should agree for this quantity. 

We can also make predictions of the lepton width of heavy-quark 

states, without being committed to the precise value of the radiative 

correction. Namely, we will use the equation 

r(V+e+e-) = r. 
( 
1 - aas( (7) 

where "a" is determined from r($+e+e-). Using (7), predictions for 

lepton widths were made for a potential derived from a Pad; approximation 

to the B-function 23 (th' 1s potential yields a spectrum in agreement with 

charmonium and upsilonium). Results are tabulated in the Table and in 
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Figure 3. Observe that "a" is found to he 0.95 in reasonable agreement 

8 with the coefficient - 
( 1 

of Eq. (4). Also the computed value of 
3n 

-. 

r( TG+e-) is in good agreement with experiment. 24'25 (Here, the role of the 

radiative correction is important, since 
( 
l- aus(mT))2/(l - a us(mC))2 = 1.9). 

Of special interest is the prediction of l?(T'+e+e->/r(T -+ e+e-) = 0.41, 

which has yet to be measured. This prediction is to be compared with that 

made by Thacker, Quigg and Rosner 
26 who, using Eq. (1) and a very general 

class of potentials, find (based on r(y+e+e-) = 1.3 KeV) 0.23 ,< 

( 
r(T.'-+e+e-)/r(pe+e-) 5 0.31. (Note that at PETRA energies, we predict 

rW +e+e-)/r(V+e+e-) ,+ 0.3.) 

IV. SUMMARY 

By studying the leptonic decay of orthomuonium, we have seen that 

QED radiative corrections cause an O(o) suppression to the 0 th order 

rate, r 0' Furthermore, more detailed examination of that calculation 

leads us to believe that QCD radiative corrections will have a similar 

form in the computation of r(V-+e+e-). If so, then Eq. (4) should be 

used. In charmonium, we find that r - 0.3 r o, i.e., a very large sup- 

pression is effective. When applied to a specific model previously pro- 

posed, based on a Pad; approximation to the B-function, 23 the above com- 

puted r is in close agreement with experimental values of the decay rates 

of $, $' and T. Other predictions for heavy-quark states are made and in 

particular, the prediction for T' is P(T' -+e+e-)/T(T+e+e-) rv 0.4 which 

may be larger than the ratio expected in other potential models which cor- 

rectly give $, +' and y rates. 26 

The most important implication of such a significant suppression 

factor is that the lepton width should not be used as an experimental 
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parameter with which to determine potential models. The above results 

indicate that doing so can (and probably does) lead to an underestimation 

of I$%) I2 b y as much as a factor of 3. 

-. 
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TABLE T 

Predictions of lepton widths for heavy-quark vector mesons using 
- ~' 

-the e;uation P (1 01 - aas ) 
where P 0 = 16~~2~90~2(eQ/mv)2, mQ is the 

quark mass, mV is the vector meson mass, and "a" is fit to the G-width. 

The potential used is.that of Ref. 23. Masses are in ceV< . 

mQ "t r(e = l/3) (KeV) He = 5) (KeV) Experiment (KeV) 

2.0 

5.4 

8.0 
. - 

12.0 

16.0 

25.0 

3.1(Y)) 1.2 4.8 

3.7($') 0.5 2.0 

9.4(T) 1.46 5.85 

lo.0 (T') 0.60 2.41 

10.4 0.41 1.64 

10.7 0.35 1.39 

14.5 1.53 6.11 

15.2 0.57 2.30 

15.6 0.40 1.59 

22.4 1.60 6.39 

23.1 0.56 2.24 

23.5 0.36 1.43 

30.1 1.71 6.83 

30.9 0.56 2.25 

31.3 0.34 1.40 

4.8 t 0.6 (a> 

1.9 f 0.4 (a> 

1.3 t 0.4 6) 

' 47.8 1.94 7.76 

48.7 0.60 2.40 

(a) Ref. 16; (b) Ref. 24; (c) Ref. 27 
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1. 

2. 

3. 

Leptonic decay 
c, 

corrections. 

FIGURE CAPTIONS 
-. 

of orthomuonium including first-order radiative 

A trigluon correction to lepton width of orthocharmonium. 

Lepton widths for quarkonia, using the equation PO 1 - aus 

where P 0' "a" and CL s are given in the text. The potential is that 

of Ref. 23. The three labelled curves refer to the levels of radial 

excitation of the state. The quark charge is e 
Q 

= 213. 



3436A’ 

Fig. f 

3136A2 
7 -78 

Fig. 2 



‘5 
2 
- 

L 

8 

6 

4 

2 

0 

0 

7-78 
3436A3 

Fig. 3 


