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ABSTRACT 

We study in detail the classical Yang-Mills field equations in the 

presence of static external sources. Their formulation as an initial 

value problem in A 
0 = 0 gauge provides us with a powerful tool for de- 

termining the existence of new solutions. In the case of point sources, 

the only static solutions known so far are the various Coulomb solutions 

which we classify according to their total energy and isospin. In the 

case of a localized but extended source, there are, besides the well-known 

Coulomb solution, two new types of solutions: the "magnetic dipole" solu- 

tion which has the long-range behavior of a magnetic dipole field and 

which has lower energy than the Coulomb solution when the total external 

charge is large enough, and the "total screening" solution which has no 

long-range field strengths at all and which can have an arbitrarily low 

energy. We present a detailed study of these new solutions. 
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1. INTRODUCTION AND SUMMARY 

Gauge theories offer the greatest promise to describe the 
- 

elementary forces in nature. In particular QCD, the quantum gauge 

theory of the unbroken local symmetry group SU(3) of color, is widely 

believed to be the correct theory of the strong interactions. -Although 

this belief is strong and widespread there is actually very little known 

about QCD, especially in the infra-red regime where the usual tool 

of field theory, perturbation theory, fails to be applicab1e.l In such 

a situation the investigation of the classical version of the theory2 

appears as a welcome source of relatively straightforward insights. 

It has already brought forth the existence of the Wu-Yang monopole and 

of Coleman's non-Abelian plane waves.4 The fascinating topological 

properties of non-Abelian gauge theories have further come to light 

through the discovery of the 'tHooft-Polyakov monopole as a static 

solution to the broken SU(2) gauge theory, and of the instanton and 

meron solutions to the Euclidean version of Yang-Mills theory. These 

latter solutions, although purely classical, have turned out to be 

directly relevant to the problem of defining the vacuum state of QCD 

and possibly also to the problem of confinement.* 

In this paper, we will study the solutions to the classical Yang- 

Mills field equations in the presence of external sources, a problem 

relatively little investigated so far. We will not take into account 

the dynamics of the external source which we assume to be static.g That 

the study of classical Yang-Mills theories in the presence of external 

sources could contain some interesting surprises was first indicated by 

Mandulal'in his study of small perturbations around the Coulomb 
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solution. The existence of a Coulomb solution for an arbitrary external 

source is well known. Mandula showed that if the external source is dis- 

tribu;d over a thin spherical shell, the Coulomb solution is unstable 

under small perturbations as soon as gQ > 3/2 where g is the gauge coupling 

constant and Q is the total external charge. He also showed that the in- 

stability modes produce an inward flow of charge which tends to screen the 

external charge. Since the energy of the Yang-Mills fields in the presence 

of a static source is positive-definite, Mandula's result implies the ex- 

istence of (at least) one solution with energy lower than that of the 

Coulomb solution. 

In a previous letter,ll we presented two new classes o-f solutions 

to the Yang-Mills field equations in the presence of static, localized 

but extended external sources. Both classes have totally screened 

electric fields. One class of solutions ("the magnetic dipole" solutions) 1 . - 

has the long range behavior of a magnetic dipole field and has lower 

energy than the Coulomb solution when gQ is large enough. The other class 

("the total screening" solutions) has no long range field strengths at all 

and has arbitrarily low energy for all values of gQ. 

In Section II, we review the general properties of the Yang-Mills 

equations in the presence of external sources, with particular emphasis 

on static sources. In Section III, we discuss the Yang-Mills equations 

as an initial value problem in A 0 
= 0 gauge. This is a very useful tool 

for showing the existence of new types of solutions. 

For a point source, the Coulomb solution is the only static 



-4- 

solution known so far.12 In the presence of several point sources, 

there are in general several Coulomb solutions differing from one 
- 

another by their total energy and isospin. This is discussed in detail 

in Section IV. 

In Sections V and VI we give a detailed account of the "total 

screening" and "magnetic dipole" solutions respectively and show how 

they generalize to gauge groups other than SU(2). 

II. INTRODUCTION OF EXTERNAL SOURCES INTO THE YANG-MILLS EQUATIONS 

The equations of motion for the gauge fields13 AI in the presence 

.1-i of an external current J are a 

DuF"' = jv (2.1) 

where 

Ap = -u>a, j' = -ijzTa and 

F" = auAv- 3'A'+g[AP,Av] 
(2.2) 

Here Ta form an arbitrary representation of the Lie algebra of a gauge 

group G: 

[Ta, Tb] = icabCTC (2.3) 

where c abc are the structure constants of G. c We use a,b,c... to 

denote group indices, p,v... for space-time indices and i,j,k... for 

the spatial components. We use the metric with go0 = -11 D is the 
!J 

usual covariant derivative 

D,,@ = a,++&$,, $1 (2.4) 

with $=-i$aTa for any field I$~(x) transforming as the adjoint represen- 

tation of G. The field strengths F 
I-lV 

also satisfy 
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"pv _ ' DuF -2~ pvaBD F = 0 
II (J.8 

as a d2rect consequence of their definition, (2.2). 

It is well known that under local gauge transformations 

AFr ,+UA%J-l -$ (a%) 8 . (2.6) 

(2.5) 

with 

U = exp [-igXa(x)Ta] 

the field strengths and their covariant derivatives transform as 

Fuv -+UF"VU-l DuF%J(DaFuV)U-l (2.7) 

Thus equation 2.1 is covariant provided j' also transforms covariantly, 

i.e.: 

j'-+Uj%J -1 
(2.8) 

The equations of motion 2.1 can be derived from a Lagrangian 

density 

S= -iTr(FuvFVv) - Tr(j'AP) (2.9) 

The Noether current corresponding to the global gauge symmetry 

(U(x) x-independent) is: 

Jv = aPFUV = jv - g[AV,FPvl (2.10) 

3' is conserved (avJv = 0) due to the antisymmetry of Fi-lv. Thus Jv is 

a conserved but not a gauge covariant current, whereas j 
V is gauge 

covariant but not conserved. avJ V = 0 implies conservation of the total 

isospin, i.e. external isospin plus the isospin carried by the Yang- 

Mills field. The total non-abelian "charge" corresponding to J" is: 

1 = s d3xaiFoi = J F oi 

surface 
.nid2x 

at m 

(2.11) 



I is time independent and is covariant under gauge transformations which 

are constant gauge transformations at spatial infinity. 
-h 
The gauge covariant current jv, although not conserved, satisfies: 

DJ’-’ = aPjP+g[An,jP]= 0 (2.12) 

Indeed, in general 

I$D,]$= gCFuv$+J (2.13) 

and therefore 

DPj' = DVDvFVV = +[DP,Dv] F" 

=- ; [ FuV,F'V] =O (2.14) 

From the Lagrangian 2.9 we can calculate the energy-momentum 

tensor 

TV’ = 69 -- 
8a Aa 

aVA; + gVVg 

UC1 

= + Fla%'A; + gu'&? 

= + FyFza- (D,F"o)aA~+g"v.Z??+ acl(F","AI) 

Using equations 2.1 and 2.15 the total energy is given by 

(2.15) 

H = 1 d3xTo0 = i$d3x [E2-!-B2+jk<] 

provided the surface integral: 

j' d2xniFziAE = 0 

Here Ei = Foi and Bk = -!- E 
. . 

2 kij FIJ (i,j,k= 1,2,3). 

(2.16) 

(2.17) 
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STATIC SOURCES 

In this paper we shall be concerned with static sources. We call 

a souze distribution j'(x) static if ji(x) =O, i=1,2,3. Equation 

2.12 then implies aoq(x)=-g[Ao(x),q(x)] with q(x)=j'(x). This means 

that the time-development of q(g,t) is given by a gauge transformation 

which depends upon Ao(z,t): 

q&t) = u(;;t,to)q(&tO)U+(~;t,tO) 

with 

( t u(ii;t,to) = exp - s (2.18) 
t 

dt'gAo&t') 

0 ) path-ordered 

Consequently, our assumption that the source is static implies that the 

Casimir invariants build out of the qa(z,t) - i.e. the polynomial 

expressions in q a which are invariants under the group transformations - 

are time-independent. For example, for SU(n>, in which case q(x) is 

an antihermitean traceless nxn matrix and the Casimir invariants are 

C,(x) = Tr(q(x))', R=l ,...,n-1, (n-l= rank of SU(n)) we have: 

aOCR = LTr c (aoq)q R-l ) = -0Tr ([ A0 ,q) q 
R-l! 

) 

= -gR (Tr (A,q’) -Tr(AOq'))=O (2.19) 

Thus a static source distribution only "rotates" in the internal 

isospin space. For a static source, the energy is simply given by: 

'H = -$d3x(E2+B2) (2.20) 

We now consider the Yang-Mills field equations 2.1 in the presence 

of a static source *u(x) = 6 
Ja p"qa(x) * Let us specialize for the moment 

to the gauge group SU(2). In this case, for an arbitrary qa(x) there 
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exists14 a gauge transformation U(x) such that (U(x>q(x>)a= sa3q(g) 

when q(z) = &a(z)qa($) is time-independent. With the ansatz 
4 

AI=6a3Cu all the non-linear terms disappear from eqs. (2.1). The 

resulting equations are the abelian Maxwell equations: 

al-l(avc" - avcv) = gvoq(Ti) (2.21) 

Its solutions are the static Coulomb potential plus an arbitrary 

radiation field. They are thus also solutions to the non-abelian 

equations (2.1). We will call the solution with the static Coulomb 

potential only, the "Coulomb solution" to eqs. (2.1). 

Now consider a general gauge group G of order n and rank r. By 

definition, the rank is the maximum number of commuting generators in 

the Lie algebra of G. This maximal set of commuting generators is 

called the Cartan subalgebra. The rank of G is also the maximum number 

of independent polynomial invariants (i.e. Casimir invariants) which 

can be constructed out of the generators. Let Ti (i=l...r) be the 

generators of the Cartan subalgebra of G. For an arbitrary source 

distribution qa(x) (a=l...n) there exists" a gauge transformation U(x) 

which lines up q a completely within the Cartan subalgebra: 

uwswu+(x) = 2 (-i)Tiqi(G) 
i=l 

(2.22) 

The qf(d) are time-independent because they can always be expressed in 

terms of the r time-independent Casimir invariants build out of the 
r . 

qa w - If we make the ansatz: AP(x)= (-i)xTiCi(x), the eqs. (2.1) 
i=l 

become linear and identical to the set of r abelian Maxwell equations: 

au(avc': 
1 

- 2°C') = gvoqR(G), i=l...r 
i i 

(2.23) 
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Thus for any gauge group and for an arbitrary14static source 

distribution, there always exists a static Coulomb solution (plus an 
- 

arbitrary radiation field) to the Yang-Mills equations which can be 

obtained by solving the linear Maxwell equations (2.23). 

Let us in particuiar consider the case of the gauge group SU(3) 

which is of order eight and rank two. The commuting generators of 

SU(3) are those corresponding to the two diagonal Gell-Mann matrices 

X3 and X8. A general source distribution is given by 

464 = a$l-+ Xaqaw. The Casimir invariants are 

C,(z) = -2Tr(q(x))2 = qa(x)qa(x) and 

(2.24) 

C,(g) = -4iTr(q(x)3 = dabcqa(x)qb(x)qC(x). 

For an arbitrary source distribution q(x), there exists14 a local 

gauge transformation U(x) that lines up q(x) into the commuting 

directions of internal space: 

u(x)q(x)u+(x) = +@)h3+q~(~)A8) (2.25) 

Indeed one can always find a special unitary matrix to diagonalize an 

arbitrary hermitean matrix. s; and 9; are time-independent because 

they are related to the Casimir invariants by: 

Cl& = (q$N2 + (s$h2 

(2.26) 
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III. THE INITIAL VALUE PROBLEM IN A,=0 GAUGE " 

In the following sections weshalldiscuss several static solutions 
4 

to the classical Yang-Mills equations. Sometimes however, when we are 

unable to find static solutions, it will be useful to know that certain 

non-static solutions exist with a given energy and total isospin. The 

initial value problem for the Yang-Mills equations in Ao=O gauge 

provides a very powerful technique for accomplishing this. 

It is well-known that for any gauge field configuration A:(x) 

one can find a gauge transformation U(x) such that 

Au' = U&+ - $ (a?J)U+ has A; =O. Having fixed Ao=O, there remains 

the freedom to perform local gauge transformations U(g) which are time- 

independent, since they preserve A'=O. Let us thus consider eqs. (2.1) 

in A =O 0 gauge: 

(DiEi> a = aiE; + g(AixEi)a = qa& (3.1.1) 

dE; 
-= 
dt (DjFjila (3.1.2) 

with dAa 
E; 7 2 (3.1.3) 

where (Ai~Ei)a = c abcA2;. Equation (2.12) implies that in Ao=O gauge 

aoqa=O. Thus both the magnitude and the direction of the sources in 

the internal space is fixed. 

Equation (3.1.2) is a second order equation for the time evolution 

of A;(x). Thus, given AT and ET = aOAai at some initial time t=tO, the 

Yang-Mills fields are specified for all time through eq.(3.1.2)and(3.1.3). 

Eq. (3.1.1) provides a constraint on the values of AT(g,t) and ET(z,t). 

However, since eq. (3.1.2) (D Fju=O) combined with eq. (2.14) 
u 
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=0) implies ao(DiEi)=O in Ao=O gauge, it is sufficient that 

A: and ET satisfy the constraint (3.1.1) at t=tO for them to satisfy 
- 

the constraint at all times. 

The total energy of the system and its total isospin I can be 

computed at t=tO and will be conserved. If the energy is finite then 

the positive-definiteness of the Hamiltonian density G%=$(E2+B2) 

insures that no non-integrable singularities in &/will develop in 

time. 

IV. POINT SOURCES 

In this section we discuss the Yang-Mills fields produced by a 

system of point sources. Let us first consider the case of-the gauge 

group SU(2) and two point sources separated by a distance r= 1 z1-g2 1 . 

We have: 

sab4 = zgc 1 ea& (2-6,) + e;cS (t-2,) 3 (4.1) 

where Z is the charge of both point sources in units of the gauge 

coupling constant g, and e; and e2 a are unit vectors giving the 

orientation of the two sources in isospin space. Eq. (4.1) does not 

give a gauge invariant characterization of the sources however. A 

locally gauge invariant characterization is the following: 

Q(z) = /qa(;)qa(;) = Zg[6(g-;1)+6(=2)] (4.2) 

The situation corresponds to having two &-function localized particles 

represented by vectors $, and $, which transform as the n-dimensional 

representation of SU(2): 

2 
qaw = .x g $+ Ta iiS (=,, 

i=l i (4.3) 
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The statement that two such particles are located at zl and z2 is gauge 

invariant whereas a specification of their orientation in isospin space 
h 

is not gauge invariant. 

The gauge invariance of the Yang-Mills equations (2.1) means that 

-a if we find a solution to those equations with the orientations e 1 and 

e; on the right hand side, this is also, after an appropriate gauge 

transformation, a solution for any other orientations e a.. 
1 and e a, 

2' 

Therefore, when we write down an expression for a solution A;, although 

this expression will always correspond to particular values of ey and 

e;, these values of e: and e; do not characterize the solution. Instead 

we will characterize a solution by its energy and its totalisospin 

(isospin of the source plus isospin carried by the Yang-Mills fields) 

because these quantities are gauge invariant in addition to being 

conserved. 

Following our discussion of the initial value problem in Ao=O 

gauge, we solve the t=t 0 constraint equation (3.1.1) for the source 

(4.2) by: 

(4.4) 

A;(;) = 0 

The resulting solution to the equations of motion will not be static 
a 

unless e a 
1 = +_e a 

2 in which cases dEj = (DiFij)a= 0 and A:= 
dt 

(t-tO)E;. 

The energy of the configuration (4.4) is infinite but by subtracting 

the infinite self-energy of each source we obtain a finite interaction 

energy: 
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H a a _ Z2g2 
int 47rr ele2 (4.5) ~-- 

"The t"otal isotopic charge is given by eq. (2.11): 

Ia = Zg(ey + e;) (4.6) 

We thus have an infinite set of solutions to the Yang-Mills equations 

with the source (4.2). e4 and e; are just a convenient way of labeling 

these solutions. 

Among these solutions, only two (up to gauge transformations) are 

static. They correspond to setting ey=+e; and ey=-ey. In Coulomb 

gauge they have the form: 

A;(x) = 0 

Their energy is: 

H 
z2g2 

int =’ .4nr 

and their total isospin: 

Ia = 
2ZgeT i I 0 

(4.7) 

(4.8) 

(4.9) 

In a loose way, these two static solutions correspond to the I=0 

and I=1 representations that figure in theKronecker product of two 

doublets: 

’ 2x2 = 1+3 (4.10) 

The I=0 state is attractive, while the I=1 state is repulsive. 
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Point Sources in SU(3): 

We now turn to point sources for the gauge group SU(3). In the 
--h 

case of SU(2) both a neutral attractive (1~0) and a repulsive (I=l) 

solution exist for the source distribution corresponding to two point 

sources of equal magnitude. In fact there always exists U in SU(2) 

such that (Ue)a = -ea for any 3-vector ea. This result does not hold 

in general for other representations and other groups. In particular 

we shall see that there is no U in SU(3) such that Uab6bS = -6a8. As a 

consequence the source distribution Zg6 a8(6(~-~l) + 6(g-z2)) has a 

repulsive solution with Ia=2Zg6 a8 but it has no attractive solution 

with Ia=O. Let us now discuss this situation in more detail. 

Recall that for SU(3) there are two gauge invariant objects - the 

Casimir invariants (2.24): 

Cl(g) = -2Tr(q2(d) = qa(x)qa(x) 

C,(z) =-4iTr cq3(x))= dabcqa(x)qb(x)qC(x) (4.11) 

Observe that for qa= 6 a8,c2 = - -!-whereas for qa=-6 a8, c 2 . 
fi 2 6 

Thus no group element can change +6 a8 
to -6 

a8 ; they are in different 

orbits. 

Consider a field es(x) a=1,2,3 in the color triplet representation 

of SU(3); we shall call its components red, white and blue respectively. 

The color charge distribution carried by $ will be (apart from a 

normalization constant): 

qa (x> = ++(x)iAa$ (x) (4.12) 

a3 ,3 
Qa(x) is always related, by a gauge transformation, to JINa(x)= 6 $ (x) 
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in which case - 

qRa(x> = 
- 

Thus the source produced by a field J, in the 3-representation has the 

characteristic property that it is in the orbit of -2 ($+wJ (xl > 6a8 . . 

In other words its source distribution is related to 

- * lir+wJ, (xl 6a8 by a gauge transformation. This can be expressed 

in a gauge invariant manner by saying that for a color triplet 

For a color antitriplet (Xa+- XaT) we have 

c2 (4 
3 

Cl d 

1 

=-K - 

(4.14) 

(4.15) 

The color charge distribution carried by a color antitriplet is in the 

+1 6 Orbit Of 43 a8 *+(x)$(x). 
Another interesting property of SU(3) is that although no group 

transformation can change 6 a8 to -&a8 
there exist transformations which 

change 6 a8 to 

6 
a8 

(4.16) 
with '3 

x 1q2 = 1 
i=l 

In particular the currents corresponding to blue, white and red are, 

respectively 



- 
(4.17.1) 

J5 6a8 --y- 6a3 (4.17.2) 

red: X/J = i qa=-$ci 
0 0 3 

These qa are all related by group transformations. In fact 4.17 

-i aa 
correspond to the three different ways in which the matrix q=T X q 

with q a=*+tx)+X al/J(x), can be diagonalized. 

We now turn to the problem of two point sources both in the 

3-representation of SU(3) at t, and z2 with r= 1z1-z2/. As for SU(2) 

(eqs. 4.1 and 4.2) we can consider the sources at zl and g2 to be 

arbitrary vectors in the orbit of - -!- 6 
45 a8' 

We can then write an A"=O 

gauge initial condition as in eq. 4.4 which leads to a solution of the 

equations of motion. Up to global gauge transformations only two of 

these solutions are static. They can be written in Coulomb gauge as: 

a A;=0 Ao=~& 1 1 6a8 (4.18.1) 

(4.18.2) 

They correspond to the two inequivalent ways one can diagonalize the 

sources (blue-blue for (4.18.1) and blue-white for (4.18.2)). 

Thus, as for SU(2), we have an infinity of non-equivalent solutions 
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for the same source distribution. These solutions are characterized by 
-. 

their total energies and by their total color, Ia. Note that in their -_ 

-ground state, the two color triplet point sources attract but are not 

neutral (eq. 4.18.2). Furthermore the two static Coulomb solutions (4.18) of 

the system are analogous to the two representations which can be 

constructed from two color triplets: 

(3) x (3) = (3) + (6) (4.19) 

4.18.lcorresponds to the sextet whereas 4.18.2 corresponds to the anti- 

triplet. 

Now consider the situation of a point-like color triplet at 2 
1' 

and 

a point-like antitriplet at 2 2' Again there are an infinity of 

solutions with various energies and total color corresponding to all the 
. 

combined orientations in the orbit of Z 6 
J;; a8 

for the color triplet 

h a8 for the anti-triplet. Among them there are again two static 

solutions: 

Aa= Aa 
i 0 

+-: 
x-a 

11 -- 
2 \iz2j ) 

(4.20.1) 

(4.20.2) 

Solution 4.20.1 is attractive with Ia= while 4.20.2 is repulsive with 

Ia#O. Once more one can show that 4.20.1 has the lowest energy in the 

aforementioned infinite class of solutions. 4.20.1 and 4.20.2 

correspond to the two non-equivalent ways of diagonalizing the sources: 

either they have opposite color (blue-blue) or they do not have opposite 
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color (blue-white). We can again draw an analogy between 4.20.1 and 

4.20.2 and the decomposition: 
-c. 

(3) x (2) = (1) + (8) (4.21) 

Finally we consider three color triplets at zl, z2 and z3. Of the 

infinite class of solutions with different energies and total Color 

there now exist three static solutions which are not related by a 

global gauge transformation. These correspond to blue-blue-blue, blue- 

blue-white and blue-white-red and are given by: 

~0 Aa=L&j 1 1 
- 0 47~ ,Cj a8 , q , , ii-$, 

; b-b-b (4.22.1) 

A; 
11 =0 A; =J---z 1 

, S-f,, 
--&++ (4.22.2) 

I x-3, I 

Cl 
- 6a3 (- 

\2 , z-t,, )I 
; b-b-w 

+ 6a3 ;b-w-r (4.22.3) 

4.22.3 has the lowest energy of these solutions. It has Ia=O and 

it is thus neutral. 4.22.1, 4.22.2 and 4.22.3 correspond respectively 

to the (lo), (8) and (1) in the decomposition 

(3) x (3) x (3) = (10)+2(g) + (1) (4.23) 

We summarize the situation for SU(3) in Table I by showing the 

relative values of the interaction energies for various states (i.e. 

static solutions). 1.5 
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TABLE I 

decomposition 

'3x3:3+6 

3x9 =1+8 

interaction energy 

5, solution 4.18.2: - -1 

2r12 

6, solution 4.18.1: c 
r12 

1, solution 4.20.1: - -1 

r12 

8, solution 4.20.2: -%- 
2r12 

3x3~3 = 1+2(8)+10 1, solution 4.22.3: + 

10, solution 4.22.1: - 1 + - 1 + - 1 
r12 r13 '23 
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V. EXTENDED SOURCES AND SCREENING 

Consider the Yang-Mills field produced by an extended, static 
4 

source distribution qa(x). For SU(2) we characterize this source by the 

gauge invariant-distribution q(z) = dqa(x)qa(x) . Let us assume that 

q(g) has no 6-f unction singularities and that q($)cAe ibr as - 

r = I;] -+a for some A and b>O. The standard "Coulomb" solution for 

this configuration is obtained by setting 

qa(x) = sa3q(;) 

and 
A;(Z) = 6a3C'(;) 

(5.1) 

Let us first restrict ourselves to spherically symmetric source 

distributions: q(z) rq(r). Let us suppose for the moment that q(r)=0 

for r>r o. The Coulomb solution with qa = 8a3q(r) will have the long 

range electric field ET = $- 6a3 for r>r O.Now recali that in SU(2) 

a source +6 a3 can locally be changed to -6 a3' (Such a feat is 

impossible in electrodynamics where the sign of the charge is gauge 

invariant.) To see the consequences of this let us divide the region 

r<r - 0 into an even number of shells each having an equal total isotopic 

charge. Then let qa point in the +6a3 and -6a3 directions in alternate 

shells. If we then make the ansatz At = 6a3CP, the source distribution 

on the right hand side of the resulting Maxwell Equations is spherically 

symmetric and has zero net charge. The solution which results thus has 

a vanishing electric and magnetic field for r >,r o. By a gauge transfor- 

mation this is also a solution for the configuration qa(x) = sa3q(r). 

We shall see that as the number of shells tends to infinity the energy 

of the solution tends to zero. Thus for a spherically symmetric 
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extended source distribution there exist solutions of arbitrarily small 

energy with totally screened electric and magnetic fields. 

par the spherically symmetric case it is technically simple to 

avoid the discontinuities associated with a sharp transition from 

+6a3 to da3. Let us.return to a general q-(r) and defgne: - 

Q = Im 4rr2q(r)dr 
0 

(5.2.1) 

h(r) = : i 4rR2q(R)dR 
r 

so that 

.-Qldh qcr) = - 4n .Z dr (5.2.3) 

(5.2.2) 

h(r) is the fraction of the total charge Q outside a radius r. Let us 

represent the charge distribution as follows: 

qa(r) = q(r) 
[ 

6a2sin2snh(r)+ 6a3cos2nnh(r) 
I 

- (5.3) 

The Yang-Mills equations now have the following static solution 

A; = E;t 

6a2(cos 2nnh(r)-l)- 6a3sin2rnh(r) 
3 

(5.4) 

This can now be rotated back into a gauge where qa is parallel to 6a3 

everywhere. The solution then has the form 

qa(x) = q(r)sa3 

A:=0 AT=Ett- 6a1l a.(2nnh(r)) 
g 1 (5.5) h 

Ea=9TiL 
i 4~r r2 27rn Ba2(1-cos2nnh(r))- Ba3sin2nnh(r) 

I 

The electric field is completely screened and there is no magnetic field. 
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The energy of this total screening solution is computed from (5.4) or 

(5.5) and is given by 
h 

H t.s. =141. 1 O3 dx 
I - sin2nnh(xa) 

a 2n (27rn)2 o x2 
(5.6) 

&+A Htes' is finite provided 1-h(r)%r' as r-t0 with A>b. ((5.212) 

implies h(O)=l.) This means that q(r) is less singular than 1 
.5/2 as 

r-to; this condition is also necessary and sufficient for the Coulomb 

solution to have finite energy. If h(r) satisfies the above condition 

then H t.s. +O as n-+m.ll We have thus shown that a static, extended, 

spherically symmetric source distribution admits static solutions of 

arbitrarily small energies for which the electric field is Lotally 

screened and the magnetic field is zero. 

Before turning to a general (non-spherically symmetric) source let 

us see what happens in the case of SU(3). The source is-now described 

by the two gauge invariant functions: 

Cl& = qawqa(x> 
(5.7) 

C,(z) = dabc qawqbwscb) 

We have already noted in Section II that Cl and C2 are time independent 

if s=O. Suppose first that C2(;)=0. Then qa(x) can be gauge rotated 

into the form qa(x)=q(z)6a3. It then lies completely within an su(2) 

subalgebra of SU(3): As a consequence qa(x) can be locally changed 

from +6a3 to -8a3 and the total screening solutions exist as for SU(2). 

If C,($#O then the situation becomes more complicated. As 

discussed in Section II qa(x)Xa can always be diagonalized by a gauge 

transformation so that the source can be represented as 
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qa (3 = sa3q3(;) + sa8q8(;) (5.8) 

.For seplicity we shall restrict ourselves to the case where the source 

is derived from a field in the 3-representation of SU(3) as in 4.13. 

(Our results apply to the general case, 5.8,- as well.) Thus consider a 

spherically symmetric source with 

qa(r) =-6a8q(r) = $+(r)ga$(r) 

where 
Qa(r) = 6a3(fiq (r>)+ 

(5.9) 

By a local gauge transformation qa(r) can be rotated to the form 

1 

sda(r> = fiq (r) -, {(h J$cosfJ;&sin@)q (J?iZ?os0) } 

JZ?sin0 
(5.10) 

with 6 = 2rnh(r) 

where h(r) is given by eq. 5.2. It is now a simple exercise to compute 
. - 

the components of q'a(r) and to verify thatJd3x qa'(x) = 0. In 

analogy with 5.4 one can now write the electric field as the sum of the 

Coulomb field for each component of q'a(x) and write Ai=ETt , A:=O. 

One then has a static solution to the Yang-Mills equations. The 

electric field is totally screened and the energy tends to zero as n-f-. 

One can understand this result better by recalling that although a 

source-6 a8 (corresponding to a (3)) cannot be rotated into +6a8 (corre- 

sponding to a (3)) we are still able (as in Section IV) to combine three 

(3)'s to neutralize the system. In other words one divides q(r) into 

equally charged shells, as we did for SU(2) and alternately assigns to 

these shells the charges -6 1 a8 6 a3 thus ; and+26 -26 

neutralizing the charge. 
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Finally we comment on the case of a general non-spherically 

symmetric extended source distribution q(;) which vanishes exponentially 
-cI 

at spatial infinity. We consider the gauge group SU(2) for simplicity. 

There exist infinitely many source distributions qa(s) with the same 

-. 

-. 

-z- 
q(') = Jga(:)qa(r) all of which are related by gauge transformations.. 

However let us, for the moment, consider each such qa(;) separately. 

The initial condition 3.1 (a) for the A'=0 gauge initial value problem 

is solved by: 

, 

A;=(), E;(z) = -& 
J 

d3x-qa($) 
x.--x. 

= = 
I2 ---I 3 

(5.11) 

at t=t 0 

Clearly these configurations for different choices of qa(G) (but for 

the same q(z)) are in general not related by a gauge transformation. 

In fact they have different energies and total isospin. Most of the 

solutions resulting from the time-evolution 3.1.2 and 3.1.3 will be 

non-abelian in character (for example [E~,E~II is usually non-zero) 

and in general they will not be static. We see then that in addition 

to the Coulomb solution discussed in Section II, any source distribution 

q(s) admits an infinite class of solutions with varying energies and 

total isospin. 

As a particular example let us take qa(z) o 6a3 hut -let us alternate 

the sign of qa(z) within the source distribution (by a gauge transforma- 

tion), so that 

qa (3 = sa3q3(;) (5.12) 

with q3(P) = +q(s) in some regions (R+) and q3(;) = -q(:) in others (R-) 
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It is clearly possible to choose these regions such that the first n 

multipole moments of q3(G) vanish. In other words for each n>O there 

exist-regions R+ and R such that 

s d3xq3($ x.....x. = 0 
=1 =k - 

(5.13) 

for il,....ik=1,...3, O<k<n . - - 

The configuration 5.11 then yields a static solution to the Yang-Mills 

equations (A; = ET(t-to)) with ET % 6 a3 F(0-,) as ;+co -- n+l . The energy of 
r 

this solution will tend to zero as n+m. Thus for a general source 

distribution there exist static solutions to the Yang-Mills equations 

with arbitrarily low energy and with an arbitrary number ofmultipoles 

of the electric field vanishing. 

VI. THE MAGNETIC DIPOLE SOLUTION 

If small perturbations are applied to the Coulomb solution of an 

extended charge distribution, one might presume, although it has not 

been shown, that by emitting radiation the Yang-Mills fields decay into 

one of the "total screening" solutions exhibited in the preceding 

section. Moreover Mandulag has discovered an instability mode of the 

Coulomb solution which is present specifically when gQ is large enough; 

more precisely, when gQ > 3/2 in the case he studied of an external 

charge distributed over a thin spherical shell. In our preceding pub- 

licationll we found that extended charge distributions can-indeed 

admit a type of solution which has the long range behavior of a magnetic 

dipole field, which has lower energy than the corresponding Coulomb 

solution once gQ is large enough and thus appears to correspond well to 

Mandula's instability mode. We shall now give a more detailed account 
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of these "magnetic dipole" solutions. 

Let us first everywhere line up the external source into the 

comm;ing directions of isospin space (Cartan subalgebra): 

[q(x), 4(Y) 1 = 0 all x and y (6.1) 

In this diagonal form, the source q(x) is time-independent (see Section 

II). Eq. (6.1) partly fixes the gauge. The remaining gauge freedom 

consists of all local gauge transformations in the Cartan subgroup 
(1) (2) b-) 

u(1) xu(1) X . . . xU(l), where r is the rank of the group. 

From Section 11,we know that any solution A to the field equations 
1-I 

in the presence of a static source q(x) necessarily satisfies: 

D$‘(x) = aodx) + g [Ao(x),q(x) 1 = 0 - (6.2) 

. - 

Therefore, we can conclude that in our chosen gauge, eq. (6.1), in which 

aoq(x)=O, a solution to the Yang-Mills field equations in the presence 

of an extended charge distribution has AO(x) also lined up in the ---- 

commuting directions of isospin space. 

If, in addition, we assume L6 that the Yang-Mills fields All(x) are 

all time-independent, the field equations get simplified as follows: 

Ei = Foi = - aiAO + g [A0 3 Ai] (6.3) 

DiEi = -aiai A0 + g Ai,[Ao, Ai II 
+g (2 [aiAo,AiI, +[Ao,aiAi-j = q(z) 

DE 
Vi 

=' g Ao, -Ajax + g [Ao,Aj J 1 
(6.4) 

(6.5) 

These equations get simplified considerably further by imposing cylin- 
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drical symmetry around an axis in real space, which we choose to be in 

the 3 direction. We make the ansatz: 

- 
Ao= $(P, x3) and Ai = E i3j ? AM31 

where p=Jxi+x2 2. As a consequence: 

B ZF ij ij = a.A.- a.A. , 
=J J= 

aiAi=O and AiaiAO=O 

Thus we obtain 

(6.6) 

(6.7) 

(6.8.1) 

(6.8.2) 

or in terms of 4 and A 

-V2$ - g2[A,[W ] 1 = q(g) (6.9.1) 

Tj2A - 1 p2 A-g2,-), [+,A] 1 = 0 (6.9.2) 

We will first analyze these equations for the case of the gauge group 

SU(2) and discuss later how the results generalize to other Lie groups. 

For SU(2), eqs. (6.9)become: 

-V2$3+g2$3((A1)2+(A2)2) = q3& (6.10.1) 

@3)&l = $,3A3A2 = 0 (6.10.2) 

+V2Aa2- a p2 A +g2($3)2Aa = 0 for a = 1,2 (6.10.3) 

V2A3 -lA3=0 
P2 

(6.10.4) 

The last equation plus the boundary condition that A3 + 0 at infinity 

and the requirement that A3 be free of singularities implies that A3 = 0 

Moreover, since A1 and A2 play symmetrical roles in eq. (6.10) we shall 

assume, for simplicity, that A2 = 0. We then obtain the equations of our 
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previous paper;llrenaming $3 = 9 and A1 = A: -cI 

- v 2$ +g2A2+ = q3& (6.11.1) 

$A - --$ A + g2i$2A = 0 _ (6.11.2) 

One obtains the Coulomb solution by setting A=O. If A#O, the full 

non-linearity of the equations comes into play and there are no 

analytical methods available. It is nevertheless possible to show that 

there exists a large class (a continuous infinity) of localized and 

integrable (i.e. Q cm) charge distributions which, besides the Coulomb 

potential, admit a new type of solution with A+ 0 and I$ P 0 and finite 

total energy. To this end let us consider any field A(o,x3) which 

satisfies the following conditions: 

1. A(o,x3) goes to zero as r+O. 

2. Away from the origin, A(p,x3) approaches,exponentially 

fast a solution & of V2 ?JZ - $ & = 0. 

The idea is as follows. For that given A(p,x3), we try to 

successively solve eq. (6.11.2) f or $(p,x,) and calculate q(p,x3) from 

(p, A and eq. (6.11.1). For the charge distribution q(p,x3) thus found, 

$(p,x ) 3 and A(p,x ) 3 will be an exact solution of the field equations. 

The first condition on A(p,x3) has been imposed so that the energy 

density be integrable at the origin. The second condition on A(p,x3) 

has been imposed so that both 4 and q would vanish exponentially fast 

away from the origin. Whether everything works out or not depends very 

1 
much on which solution&of V2&--&=O one uses. 

P2 
For a particular 

solution&to be useful it should have at least the following properties. 
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First, it should go to zero at infinity toassure finiteness of the 

energy there. Second, it should have no singularities anywhere other 
c. 

than at the origin to insure that the whole charge distribution will be 

localized there. Third, it must be possible to find an A satisfying 

conditions (1) and (2)‘above such that i(V2A --$A) is negative.- Other- 

wise, of course, there is no real solution 4 to eq. (6.11.2). Of the 

various solutions&which we know of to V2d -+z= 0 [piz=+--, x3 VP, 

x3/p ' rnYl n Pl(cos9) and r%k(cos0) for "21, where the Pt are the 

Legendre polynomials1, only the solutions ----& Pi(cos0) have the 
r 

required properties. Among these we will only use extensively the one 

for n=l: qr3 = y. 

Let us then consider an A field of the following form: 

A(p,x3) = c a 

is an arbitrary function that goes to one exponentially 

fast as r/a+a, and goes to zero as r-+0, in a particular fashion to be 

determined later. a is a parameter with dimension of length which will 

of course be the spatial extension of the charge distribution q. c is 

the (dimensionless) norm of A(p,x3) which will be directly related to Q 

and the gauge coupling constant g. We will call fc:,9, the shape 

function because it gives us all the information complementary to the 

norm (Q or c) and the spatial size (a). Solving eq. (6.11.2), we find: 

E4 = d ( 
2 4 af 

V2f -7 ar + 
r2tlnB % ) 

(6.13) 

=t ,;2(x,0) with x = 4 

where 5i.s again a dimensionless function which depends only on the 
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"shape". gQ, goes to zero exponentially as r-f00 because f goes to one 

exponentially in that limit. There certainly exists a very wide set of 

'shape-functions f such that g+ is real everywhere. The external charge 

distribution is now given by eq. (6.11.1), (6.12) and (6.13). The 

total charge is 

Q = /h3x (-V2$+g2A2$) = Jd3xg2A+gc211 (6.14) 

where 

. - 

11=271 { sin38dB IT f (x,e)LF(x,fj> mdx 2 

0 OX 

is a number which depends only on the “shape". 

The field strengths are the following: 

= 3(Z*g)g-Zr3 F&k;sf)-Z(S f) 
r5 f(t ,e)+ .3 

(6.15) 

(6.16) 

with g 
A 

=ca3. 

We then find that the long range behavior of this new type of solution 

is that of a magnetic dipole field. All the field strengths but $,are 

either zero or short range. The physical situation is as follows. The 

Yang-Mills fields xlC and I$ create a charge distribution -g2(11)$whose 

total charge exactly cancels Q. The electric fields thus become short 

range. On the other hand, those Yang-Mills fields create a current 

loop distribution: 



-31- 

J' = &,2~1 = &$2A ; (2 x ;) (6.17) 

-whose=total magnetic moment is precisely i?i = c a 3. 

Let us now consider the energy of the magnetic dipole solution: 

Hm.d: = 
1 

d3x + 

= 
r r 

[ (9)2 + (C)2 +- (iv)2 1, - 

[&)2 + gqJ(;t1)2 f (&L+l 

-1 
=Jd3x L$(?@)2 + g2@2A2J (6.18) 

where we have integrated the last term by parts and made use of 

eq. (6.11.2). m.d. Let us separate the dependence of H on the gauge 

coupling constant g, the total external charge Q, the size _a of the 

source, and the "shape": 

11 =- - 
( 

1 +Q3'\ 
a g2 2 g 111 

where we have used eq. (6.14) and where: 

I3 = 2$'sin3adW[$~2(x,C3) f2(x,e) 

(6.19) 

(6.20) 

I2 and I 3, like I1 depend only on the "shape". 

The requirement of convergence for I2 puts a restriction on the way 

f&e) approaches zero as r+O, since 

(see eq. 6.13). Let: 

f i,e = r"Hl(e) + r 
( ) 

n+l H2(8) + O(r 
n+2) as r-+0. (6.21) 
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Then, from eq. (5.13), one can verify thatg't, 
( > 

0 % constant as -?a+0 and 

therefore that the integral I2 is convergent, provided: 
-h 

d2Hl 3 dH1 
-++- 
de2 tan0 de + n(n-3)H1 = 0 

d2H2 3 dH2 
-+-- 
de2 tan0 de + (n+l)(n- 2)H2 = 0 

(6.22.1) 

(6.22.2) 

and the e-integral is itself convergent. For example if f is 

e-independent it is necessary that: 

f(r)sr3 + O(r5> . (6.22.3) 

The convergence of the I1 and I 1 
3 integrals requires that n X--. 

2 

The energy of the Coulomb solution corresponding to the external 

charge distribution q(z) has the general form: 

HCoulomb = 42. 
a I4 (6.23) 

where I 4 depends only on the "shape". For a given "shape", size and 

gauge coupling constant, the energy of the magnetic dipole solution 

rises linearly with the total external charge Q whereas the energy of 

the Coulomb solution rises quadratically in Q. Thus there is a critical 

value of Qg 

(Qd (6.24) 

above which the magnetic dipole solution has lower energy than the 

Coulomb solution. 

In sumary: to every function f ‘$e ( 1 which goes to one as r-tm, 

which goes to zero as r-t0 in the manner specified by eqs. (6.21) and 
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1 (6.22) with n>--, 2 and which is such that theg(x,e) in eq. (6.13) is 

everywhere real, there corresponds an external charge distribution 

which-admits a static solution of the magnetic dipole type given by 

eqs. (6.6), (6.12) and (6.13). The energy of these magnetic dipole type 

solutions become lower than that of the corresponding Coulomb solutions 

if the external source strength is sufficiently large. 

We shall now explore the generalization of our results to any 

gauge group. To this end the Cartan-Weyl representation of Lie 

algebras is useful. This representation generalizes the use of raising 

and lowering operators in SU(2) to other groups. According to the 

Cartan-Weyl representation, a basis can be chosen for any Lie algebra 

where every generator is either inside the Cartan subalgebra 

(T., i=l...r, r=rank} which is the maximal set of commuting generators 1 

or is associated with one of the (n-r), r-component "root-vectorsM of 

the Lie algebra (n=order). Let us then label the generators which are 

outside the Cartan subalgebra T where a = (al,...,ar) is the associated a 

root-vector. Let us also recall that: 

1. if a is a root-vector, so is -a = (-a 1 ,...,-a,) 

2. all root-vectors are sums of a subset among them called the 

simple root-vectors. 

This having been said, we can write down the commutation relations in 

the Cartan-Weyl representation: 

ETiyTj 3 
= 0 for all i,j =l...r 

[Ti’Ta] = a.T la 

r -TayT-a] = 2 aiTi 
i=l 
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[ TayTbl (=’ if a+b is not a root-vector 

-c. 

(6.25) 
with a+b#O =Nab Ta+b if a+b is a root-vector 

The root-vectors and the Nab thus play the role of structure constants 

in this representation. Now, we know that i must lie completely 

within the Cartan subalgebra (see eq. 6.2) while there is no a-priori 

restriction on where A lies. Thus: 

4 = (-i) 5 $I T 
k=l kk 

kAkTk' +xASaTa 
k=l a I 

(6.26.1) 

(6.26.2) 

However, projecting eq. (6.9.2) onto the Cartan subalgebra fmplies: 

With the boundary condition that A+0 at infinity and the requirement 

that it has no singularities, we obtain that Ak=O for k=l...r, i.e., 

A must lie completely outside the Cartan subalgebra. To satisfy 

eq. (6.9.1) one must then require 

AvaADb(ai-bi)NabTafb = 0, i = 1 . . . r (6.28) 

and: 
a+b#O 

. 
-V2$k + g2 c AaA-aakal$i = qk , k=l . . . r (6.29.1) 

a 

while eq. (5.9.2) becomes: 

V2Aa-1 A +g2 
P2 a 

ak$T Aa=O (6.29.2) 

Let us now specialize to the case of the gauge group SU(3). After 

adding some tedious analysis, we find that within our original ansatz 
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eq. (6.6) there are three types of solutions to the field equations ( SU(3) _ 
\ 

notation: ("3h3 + '$&), A = 3 c \'k ) : (6.17) -. 

- k= 1,2,4 ' 
5,6,7 

. 
1. All 4, vanish except A 1 and AZ, and:- 

-V2$3 + g2((Al)2+(A2)2)#3 = 93 

i 

L + g2(+3>2> A 
P2 1 = 0 1 

2 

ii. All Ak vanish except A4 and A5, and: 

i. 

v2- -$ +g2 

iii. All % vanish except A 6 
and A7, and: 

( +('3-F8) 
+g2 ( (A61 2 + (A71 2> 

('3-F8) ='3-78 

-$ + g+-2J3dB)2- As 

= o 

- 7 

(6.30.1) 

(6.30.2) 

(6.30.3) 

It is clear that these three solutions correspond to the three SU(2) 

subgroups of SU(3), I, V and U respectively. For a given external 

charge distribution, there are in general four different solutions up to 

global gauge transformations. The first one is the Coulomb solution 

obtained by setting A=O, in which case 2, ii and iii are all equivalent. - 
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The other three solutions have the long-range behavior of a Coulomb 

field in a direction of isospin space which is in the orbit of X,g, plus 
-h 

a magnetic dipole field within the SU(2) that commutes with the 

direction in isospin space of the Coulomb field: 

in case i: - q8 produces a Coulomb field while q3 gets screened and 

produces 

in case ii: 
-G3+Q 

- 2 

screened and produces a magnetic dipole field associated 

a magnetic dipole field associated with SU(2)T. 

produces a Coulomb field while q3+G 8 gets 
2 

with SU(2)v. 

incaseiii: fiq +4 3 8 produces a Coulomb field while '3 -45q 8 gets 
2 2 

screened and produces a magnetic dipole field associated 

with SU(2)u. 

Of course if q is completely within an SU(2) subgroup, the charge can 

. be totally screened. 
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