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ABSTRACT 

The motion of a charged particle in a linear electromagnetic device 

can often be analyzed by using the transport matrices. For an electron 

storage ring, this technique has been applied to yield fruitful results 

such as the trajectory of the particle distribution center and thebeam 

sizes and shapes in phase space. Coupling effects among the horizontal, 

vertical and longitudinal motions are included in a straightforward manner. 
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1. INTRODUCTION 

Ignoring nonlinear perturbations, the equilibrium particle distri- 

butiop,in an electron storage ring'is gaussian in the phase space with 

canonical coordinates X=(x,x',y,y',z,&), where x, y, and z are the hori- 

zontal, vertical-, and longitudinal displacements relative to the center 

of particle distribution; x' and y' are the corresponding conjugate 

momenta; AE and 6 = E is the relative energy deviation. 1,2,3,4 To describe 
0 

this particle distribution, it is necessary and sufficient to specify 

the distribution parameters which include the 6 first-moments <xi> and the 21 

second-moments <x.x.>, i,j = 1,2,...6 with x.'s 
iJ 1 

denoting the canonical 

coordinates of the state vector X. Various storage ring quantities, such 

as the closed orbit trajectory of the beam, the beam width, beam height, 

bunch length, tilting angle in the x-y plane, beam energy spread, etc., 

are directly given by those distribution parameters. Since the closed 

- 
orbit and the beam size and shape must fulfill the requirements set by 

the design goals of storage ring, we must be able to obtain the distri- 

bution parameters for any storage ring lattice being designed. The 

matrix formalism presented in this paper will serve as a straightforward 

method of obtaining the beam distribution parameters under a wide variety 

of storage ring operating conditions. 

II. BACKGROUND 

As an electron circulates in the guiding magnetic field, it emitts 

photons due to synchrotron radiation. The energy loss of an electron 

due to emitting a photon excites the transverse and longitudinal occil- 

lations of the electron in its subsequent motion. In general, this 

effect of quantum excitations causes the beam size to diffuse in all 
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three dimensions. As the beam emittances grow due to diffusion, the 

effect of radiation damping 2,3,5 becomes significant and an equilibrium 

- - beam dLstribution is reached as the quantum diffusion and radiation 

damping balance each other. 

Assuming anideal storage ring and ignqring any coupling between 

x, y and z dimensions, most beam distribution parameters simply vanish 

and the remaining parameters can be obtained by relatively elementary 

2,3 considerations . However, in practice, some coupling effects may not 

be negligible. For example, x- and z-motions are coupled if the rf cavi- 

ties are located at positions with finite energy dispersion; 6 x- and y- 

motions are coupled if there are skew quadrupole fields in the storage 

ring. One possible way to include coupling in the evaluation of distri- 

bution parameters is to assume that the coupling effects can be approxi- 

mately described by a set of coupling coefficients which specify the 

coupling strength averaged over one revolution of the storage ring. 4 Distri- 

bution parameters are then obtained by solving the corresponding Fokker- 

Planck diffusion equation. 192 Another method ignores couplings to the 

longitudinal z dimension and the relevant distribution parameters are ob- 

tained by a careful analysis of the balance between quantum diffusion and 

radiation damping. 798 In the above theories, it has been necessary to 

introduce the horizontal and vertical energy dispersion functions' in 

order to carry out the analysis. 

In the following we describe a general framework which determines 

the distribution parameters in a coherent manner and with the above- 

mentioned coupling effects fully taken into account. In this method, each 

linear element in the storage ring lattice is represented by a 6x6 
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TRANSPORT matrix 10 which transforms the state vector X as an electron 

passes through the element. Nonlinear elements are approximated by 

1inearTzing their electromagnetic fields around the center of particle 

distribution. Knowing the TRANSPORT matrix transformations around the 

storage ring, the distribution parameters can be obtained from the eigen- 

values and eigenvectors of some proper matrices yet to be described. In 

particular, no knowledge of the energy dispersion functions is needed. 

III. TRAJECTORY OF THE BEAM CENTER 

Relative to the design orbit, the motion of an electron can be de- 

composed into two components, X0 and X, with X0 describing the trajec- 

tory of the beam distribution center and X being the oscillatory devia- 

tion from X 0' The fact that the trajectory of the beam distribution 

center does not coincide with the design orbit (i.e. x0+ 6) could be due 

to several causes: (i) A quadrupole magnet misaligned in-its transverse 

position is the same as superimposing a dipole magnetic field to the 

magnet. This accidental dipole field kicks the beam orbit transversely; 

(ii) Additional dipole magnets may exist in the lattice for orbit correc- 

tion or beam injection purposes; (iii) The energy loss of an electron 

due to synchrotron radiation is compensated by the acceleration provided 

at the rf cavities. Since the rf cavities are usually not located at 

places where synchrotron radiation occurs, the beam distribution center 

can deviate from the, design trajectory as a result. 11,12 

Existing methods of obtaining X0 treat each orbit distortion 

mechanism individually and ignore the possibility of couplings among x, 

y, and z motions. In the following of this section, we present a method 

which includes various orbit distortion mechanisms simultaneously and 

taking into account the coupling effects. 
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We first form a 7-dimensional vector V by adding to X0 a seventh 

component which is always given by unity. 
13 

The vector Vf at the exit of 
- 

a given lattice element is linearly related to the vector Vi at the 

entrance by Vf = MV.. 1 The 7 x 7 transformation matrix M can be obtained 

from the electromagnetic fields in the lattice element. For simplicity, 

we assume that all lattice elements aside from the drift spaces are short 

compared with the focal lengths so that a thin-lens approximation applies. 

Generalization to the thick-lens case is straightforward. Under this condi- 

tion, the diagonal elements of M are always equal to unity and off-diagonal 

elements except those listed in Table 1 vanish. In Table 1, we have de- 

fined R=length of the lattice element, Bp = particle rigidity, 

27rR = circumference of the storage ring, E. = design particle energy, 

C 47T 
Y = 3 re/(mec2)3 with re the classical electron radius and me the elec- 

tron mass; and for the rf cavities, 3 n V = peak applied voltage, h = har- 

monic number, @s = synchronous phase. The upper left 6x6 corners of 

these matrices are the thin-lens version of the usual TRANSPORT matrices. 10 

The trajectory of the particle distribution center, described by 

V(s) = (X,(s), 1) = (x0, x6, yo, y;, zo, 60, l), with s indicating the 

position around the storage ring, must satisfy 

X0’ xi* YO’ y;, (s+2~rR) = x0’ x6, YO’ Y;, (s), 

and 

net energy change per turn = 0 (1) 

net path length travelled per turn = exactly 2~rR, 

where the last condition is imposed by the fact that the rf cavity frequency 

is accurately fixed. To find V(s), we first look for the transformation 

matrix for one revolution, W(s), by multiplying the M-matrices of all 
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lattice elements successively from s to s + 2rR. V(s) is then simply 

given by the eigenvector of W(s) with eigenvalue 1, i.e., 

- 
W(s) v(s) = V(s) . (2) 

That one of the eigenvalues of W(s) is equal to 1 can be easily proved. 

The trajectory of the particle distribution center obtained here, X&s), 

will also be referred to as the closed orbit of the beam. 

Effects on closed orbit due to nonlinear elementscan only be treated 

by iteration. A sextupole magnet is thus represented by a horizontal and 

a vertical kicker with the nontrivial transformation matrix elements 

SEX: m26 = - m51 = -m27 = + (xg-Y$ , (3) 

-m46 = m53 = m47 = A xoyo , 

where X = L Bp a2B I Y 
ax2 is the strength of the sextupole field. Nonlinear 

effects due to radiation energy losses in quadrupole, skew quadrupole and 

sextupole magnets can also be included by inserting the following addi- 

tional matrix elements: 

SEX: m67 = Y 0 
-C E3X2(x; + Y@~/~ITP. 

SKQ: m67 = -C 'xi + yp2lTa 

QUA: m67 = -C 

(4) 

The iteration steps are: (i) calculate V without nonlinearities, 

(ii) evaluate transformation matrices for nonlinear elements according 

to Eqs. (3) and (4), (iii) Recalculate V with the new matrices, (iv) iter- 

ate. A few iterations should be enough for convergence. The total energy 

loss per turn due to synchrotron radiation can be obtained from 
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c. 

h 
u. = 

= i 
eV sin$s + $ ~~cos9~ . (5) 

CAV - 

IV. RADIATION DAMPING CONSTANTS2Y3'5y7'8 

Once the closed orbit is obtained, a particle's motion can be de- 

scribed by the state vector X=(x, x', y, y', z, S), which is the deviation 

from closed orbit. The transformation matrices for X are given by the 

upper left 6x6 corner for lattice elements listed in Table 1. The trans- 

formation for sextupoles, linearized around the closed orbit, is a combi- 

nation of HK, VK, SKQ and QUA; 

1 

-XX0 

0 

xyO 

0 

0 0 0 0 0 

1 xyO 0 0 $x;-Y;) 

0 1 0 0 0 

0 
AxO 1 0 - .XXoYo 

0 AxOyO 0 1 

0 0 0 0 

0 

1 

(6) 

From here on, we will concentrate on these 6x6 TRANSPORT transformations. 

By successively multiplying all M-matrices from s to s+27rR, one gets the 

transformation for one revolution, T(s), which will be extensively used 

in the next section. To obtain the radiation damping constants, however, 

further modifications on the matrix elements are necessary. 
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As an electron passes through an rf cavity, it receives a boost in its 

longitudinal momentum, while keeping the transverse momentum unchanged. 

ConseqZkntly, the slopes x' and y' of the electron's trajectory is reduced 

in magnitude by a factor of 1 - e , where u = eV 
0 

the energy gain of the .electron at the rf cavity. This'effect provides 

the transverse radiation damping to the motion of an electron. In the 

matrix formalism, it is taken into account by replacing the following 

diagonal element in the CAV matrices: 
h 

eV 
m22 

-- 
= m44 = l E. i 

sin$s + i ~~cos@~ 
1 

. 

The longitudinal radiation damping comes from the fact that an 

electron with higher energy tends to lose energy by radiating more in a 

magnetic field. This results in the following changes: 

HB, VB, HK, VK: m 
66 = 1 - C,E$&BX,J2 /7rR 

QUA, SKQ: m66 = 1 - Aq(xg + ys) (8) 

SEX: m66 = 1 -$hs(xg + Yi> , 

where A 
4 

/~a and As = C E3X2(x; + y;)/2nL In addition, 
YO 

energy radiated in quadrupole, skew quadrupole and sextupole magnets also 

depends on the transverse displacements of an electron. This contributes 

to the mixing among the transverse and longitudinal damping effects. 

Upon linearization, it yields 

QUA, SKQ: m61 = -hqxO, m63 = -hqyo 

(9) 
%X: m61 = -Asxo, m6S = -Asyo . 
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After making the modifications (7), (8) 

again the transformation matrix for one 

and (9), one calculates once 

revolution, D(s), by multiplying 

M-matr?I'ces from s to s+~ITR. The eigenvalues of D(s) are expressed as 

exp(-ok+i2xvk), k=I, II, III, where k is the mode index, vk is the tune' 

of mode k and % 's are .the radiation damping-constants.' In particular, 

if any one of the % 's is negative, the motion will be unstable. By eval- 

uating the eigenvalues of D(s), we have thus derived a method of calcu- 

lating the radiation damping constants in the presence of various cou- 

pling effects. Furthermore, it follows from the property of eigenvalues 

that 

e 
-2(ol~ ' %I + "III) = det(D(s)) . (10) 

For weak damping with /ok/ << 1, it reduces to the usual sum rule 5 

aI + ciII + cxIII = 2Uo/Eo . (11) 

In the special case of no closed orbit distortion and no coupling, the 

damping constants are given by 

a =a 
X Y 

= UO/2E0 , a = Uo/Eo . 
Z 

(12) 

V. BEAM SIZES AND SHAPES 

Our method can be used to determine quantities like the horizontal 

and vertical beam sizes, the tilt angle in the x-y plane, the natural 

bunch length and energy spread, etc. To do this, let us consider a pho- 

ton being emitted at position s 
0 with energy deviating from the mean value 

by a random amount 6E. Let T(so) be the coupled 6x6 transformation matrix 

for one revolution obtained in the previous section without radiation 

damping. The eigenvalues, Ak, and eigenvectors, Ek(sO), of T(so) with 

k = +I, &II, +I11 are defined by 
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T (so) Ek(sO) = AkEk(SO) 

E;(so> = Ewk(SO) (13) 

ti2Tv 
A k 

+k=e 

Following the photon emission, the subsequent motion of the electron is 

described by 

x(s) =I %Ek(S) , _ 0 s > s 

k 
(14) 

where E k (s) is the eigenvector of T(s) obtained from E (s k 0 ) by the matrix 

transformation from so to s. Equation (14) satisfies the initial condi- 

tion 

(15) 

where the left-hand side is the impulse perturbation to electron state 

due to the photon emission event. It should be pointed out that the 

transverse dimensions of the electron are not excited at the instance 

of photon emission and consequently no knowledge of the energy dispersion 

functions is needed. 

From the symplecticity condition' of T(s), i.e. , 

&T=S , (16) 

where a tilde means taking the transpose of a matrix and 
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0 0 0 

0 0 0 

0 -1 0 

10 0 

0 0 0 

0 0 1 

0 

0 

0 

0 

-1 

0 ! , 

EjSEi = 0 unless j = -i . (17) 

We will normalize the eigenvectors so that 

-* 
Ek~~k = i , k = I, II, III . (18) 

This normalization condition is preserved as a function of s due to the 

symplecticity of T(s). Using Eqs. (17) and (18), Eq. (15) yields 

%= 6E * (s ) -iEgEk5 0 (19) 

where Eki means the i th component of the vector Ek. Assuming all photon 

emission events are uncorrelated, one obtains the quantum diffusion rate 

of ]$I2 by averaging Eq. (19) around the storage ring: 

In Eq. (20),5 is the number of photons emitted per unit time and2y3 

. 6E2 <NE'= 
0 

(20) 

(21) 

where C 55 = ___ L 48fi 
r,"k/m, with d the reduced Planck's constant, y is the 

relativistic factor and p(s) is the bending radius. 
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So far we have ignored the radiation damping which, when taken into 

account, gives an additional contribution 
4 

, 

with TO the revolution.time and ok the radiation damping constants found 

in the previous section:.. The equilibrium values of <jAlJ2> is given by 

a balance between quantum diffusion and radiation damping, which gives 

It fol lows from Eq. (14) that the particle distribution parameters at 

%12’ = <IA-k 2>=c - y5 
L Cclk P 

ds pk5(S)'2 . 

IPW I 3 
(23) 

position s are given by 

<XiXj'(S) = 2 c ‘IA-J 2> Re E [ ki('> E~j (')I . (24) 
k=I,II,III 

Equations (23) and (24) are our final expressions. The tilt angle 8 of 

the x-y beam profile relative to the horizontal axis can be found from 

tan28 = 2<xy> 
<x2>-<y2> (2.5) 

and the transverse beam area (for luminosity calculation) is given by 

A=I& <x2><y2>-<xy>2 . (26) 
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