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ABSTRACT 

The Hanbury-Brown and Twiss method for measuring the radii of stars 

also has interesting applications in other realms of physics. Intensity 

interferometry, the technique used by Hanbury-Brown and Twiss for their 

star measurements, should yield analogous information about the angular . - 

sizes of excited particles and nuclei, which emit secondary particles. In 

this report, we interpret such emissions and the correlation functions 

that arise from considering registration probabilities at two space or time 

points in terms of the language of optics and diffraction theory. Our 

objective is to review the physics involved in the Hanbury-Brown and Twiss 

effect and to point out possible applications to problems in nuclear and 

particle physics. 
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1. RADIO TRANSMITTERS 

As an introduction to interference phenomena and correlation functions, ~- 

it is%seful to consider the following experiment (see Fig. 1). Two radio 

transmitters are located at points (1) and (2) and emit spherical wave 

forms, which are- detected at points (3) and-(4). Points (3) and (4) are 

points of a circular arc, centered at C. Assuming that the transmitters 

emit independently, we can write the wave amplitudes at points (3) and (4) 

as follows: 

A = 3 exp i&l3 
( + "l(t-r13,v)) 

&24 + f$2(t-r24,v exp-i& 

A4 = + Vt-r14/v 

+ s2 exp i(k24 
'24 

+ '2(t-r24/v exp-Gt 

where 

r13 = Ii&T1 1 '23 = I&s,1 

r14 = litG,i r24 = lii1-Z21 

and v is the velocity of the outgoing wave. 
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Remarks 

1. We have assumed that both detectors emit wave packets strongly 

peake;about the wave number, K. 

2. The functions $1 and c$, are, in general, time dependent (real) 

functions which set the phases of the transmitters. 

3. For convenience, we will assume Sl =S and that these amplitudes 2 

are time independent. 

In most situations of interest, IQ ” lq,lq’ 
Using this inequality, we can write: 

I$-gil = [(g-?i)*(ft-:i)]h = (R2 + r: - 2g.gi)& 

Second-order terms in have been ignored. 

Similarly, lit'-;;1 z (R-fi'*:i) . 

Hence, we can estimate A3 and A4 as follows: 
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In classical electromagnetic theory, we might think of A 3 and A4 as components 

of the electric or magnetic field. The intensity of the electromagnetic 

disturbance at points (3) and (4), then, is respectively: 

+ exp -i[~(ff.(~2-:1)+(02-~~)l] 

2ls1 I2 
= R2 

II 

For fixed phase functions ($1 and c$~ independent of time), the conditions 

on the argument of the cosine functions that define the intensity maxima 

and minima are easily found. However, if 41 and $I, are random functions 

of time (such that the phase jumps around a lot in the time interval necessary 

to make the measurement), then it is necessary to average I3 and I4 over 

a time interval long compared to the interval between an average jump. In 

this case, I3 and I4 reduce to (constant) x 21S112/R2, and it is seen that 

all spatial dependence is lost. 

However, a harmonic spatial dependence results when the product of 

I3 and I4 is taken prior to performing the average, provided that points 

(3) and (4) are within a "coherence" length of each other: 
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1314 c IAJ2/~J2 = 4'~$+(1 + co.+] + cosb] + cos [a]cosb]) 
~- 

where 
4 

Making use of the trigonometric identity 

we find: 

cos a cos b ,= k cos(a-b) + % cos(a+b) , 

+ cos k]+l+% cos([a]-[b])3, ' cos( b]+[b] )] 

+ cos b] + cos @I+% cos 
R-6’ -?2 

V 

33 cos(-[a]+@] ) 1 . 
Now, if the detectors are sufficiently close such that (R'-i).s, and 

(&ii> ';tl are small compared to the coherence length (the distance over 

which interference phenomena are appreciable or, for this example, (v X 

the average time between phase jumps Z Rcoherent)), then 

Thus 
41s114 

<I,I,>’ = R4 [1+$ cosIK(l[i-lP)'(~2-:1)~ 
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It may be concluded that even if the average intensity shows no variation over 

the circle, the product of the intensities at two points sufficiently near 

each c&her will still display a harmonic variation (in spatial coordinates). 

For this reason,<1314> is called a correlation function. An explanation 

for such a correlation is not hard to come by; it is a reflection of the 

fact that any phase change that affects the wave amplitude at a given point 

on the circle will simultaneously affect the amplitudes at all points 

within a coherence length of the given point. This implies that the degree 

of correlation between points (3) and (4) is preserved: For example, if 

a maximum at (3) implies a maximum at (4), then a minimum at (3) implies 

a minimum at (4). 

The circular arrangement of detectors that we have been discussing is 

special in the sense that for ~~2~,~~1~ << kCOHERENCE <IRIS> is spatially 

dependent for every pair of points on the circle. For our example, then, 

. - 
we need not be too concerned with coherence length and times as long as the 

above condition on j:2/ and jZ,l is met. 

II. TIME CORRELATIONS 

Time correlations are a natural extension of what has been done so 

far. The precise meaning of a time correlation (as opposed to the spatial 

correlation considered above) is made evident by examining once more our 

experiment with two radio transmitters. Now, however, the transmitters 

will be emitting at different frequencies, w 1 and w 2' Moreover, the two 

detectors will be placed at the same spatial point. The correlation 

function that will be of interest is of the form 13(t)13(t +r ), where 

13(t) is the intensity reading at point (3), at time t, and 13(t+'r) is 

the intensity reading at the same point but at the delayed time, t+r. 



A3(t) = R exp "' [ (t - 'i3)-ilt)+ exp i(K2r23+$2 (t - +)G2t)] - 

A3 (t+r) = :[exp i(Rlr13+ml(t+r - %)-cl(t+l)) 

+ exp i(E2r23+$2 (t+= - F)-i2(tfT )] 

The intensities at the two time points are proportional to: 

ISl12 
IA,(t)12 = '7 (t - %)-o, (t - %)+G2-;1) t) 

( - g-o2 (t - t 

-iir +$ 2 23 1 (t - F)-$2 (t - ~)+(G2-q t 

and 

2/q2 - IA3W-d I2 = R2 [ l+cos Klr13-!?2r23+$1 / 

-9, +(W,-W,) (t+T) 

Hence, the time average of the product of intensities is given, to within 

a proportionality factor, by: 
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Now, for T < tC (the coherence time), we have: 

41s114 

Hence, there is a harmonic variation in T only if r < tC and w2 # G1. 

Applications of the concept of time correlation and further disGussion of 

coherence time, as related to the spectral width, can be found in Born 

and Wolf, Principles of Optics, 5th Ed., § 10.7.3. 

III. CONTINUOUS, ALMOST MONOCHROMATIC SOURCE 

We now take up the more complicated problem of determining the correl- 

ation function for two points on a screen illuminated by a continuous 

monochromatic source. ' This problem serves both to expand the notion of 

the correlation function and to provide a connection between the correlation 

function and diffraction theory (via the Van Cittert-Zernike Theorem). 

This connection will prove useful when we discuss the emission of particles 

from an excited nucleus. 

The extended source (x',y')--see Fig. 2--is taken to be parallel to 

the plane, (x,y). Moreover, the overall dimensions of the source are 

assumed to be small compared to the distance R. For the purpose of cal- 

culating the total disturbance at a point, P, it is useful to divide (x',y') 

into sections small compared to the wavelength of the disturbance and, 

then, to sum the 

countable number 

p1 and P2 are 

11 

contributions from each of these sections. For a 

of sections, the total disturbances registered at points 

y ,(t> = c VlmW , v2(t) =-xv 
m 2m 

(t> 
m 

respectively. 



-9- 

Making use of the fact that 

<( v1 REAL1 (t) VdRML) (t)) 
- 

is proportional to <Vl(t)Vt(t)>, and that Vi(t) and V,(t) are complex, 2 

we define the following correlation function: 

W1,P2) = <vl(tN;w> = (yJml~“~$2w> 

= c (Vml wv~2w> 
m,n 

= z<vrnl w;2(t)) 
m 

+ c c <Vmlw~2w> 
mn 

Now, for m # n, we can write m#n 

<vml (t)vz2(t)) = <vml(t,)(V~2(t)\) = 0 

The first equality follows from the statistical independence of the sources 

whereas the second equality can be confirmed by allowing-the functions 

Vml(t) or Vn2(t) to have the functional form: 

a 
Vml(t> = + exp i(mmlk- +))exp i(iir-Gt) 

(This form of Vml(t) is derived under the assumption that the wave packet 

is very strongly peaked about the wavenumber E). Hence, 

<Vml(t)$2(t)) = F? <exp iQml(t))<exp-iBm2(t)) 
ml n2 

= 0 . 
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This result allows us to write: 

J (5 ,P2) = C em1 (t)$, (t>> 
4 m 

=C m lcrn2 (exp i(m,(t- %)-Qm(t- +))> exp iK(rml-rm2) 

which becomes, after a change of variables 

orno: 'mlwrm2 
JP1,P2) = C v exp ii?(rml-rm2) 

m rmlrm2 

Now, if rl-r2 is small compared to the coherence length (the concept intro- 

duced in Section I), then 

J(P1,P2) = C 
m 

m m exp iE(rml-rm2) . 
rmlrm2 

Since orno& characterizes the intensity of the source, in the continuum 

limit, we may write: 

J(P1,p2) = JI(S) 
exp it(r,-r,) 

rlr2 
dS , 

where I(S) is the intensity per unit area of the source. For a source of 

uniform intensity: 

J(P1,P2) = Ij 
exp iK(rl-r2)dS 

rlr2 

The integral in the above expression corresponds to the Huygen-Fresnel 

result in scalar diffraction theory. This correspondence is expressed 

formally by the Van Cittert-Zernike theorem (which is found in Born and 

Wolf, Principles of Optics, 5th Edition, § 10.4). The theorem, however, 

as stated in Born and Wolf, applies to the complex degree of coherence, 

u(P1,P2), defined as 
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U(P1,P2) = 
J (P1 3,) 

J(P1,P1)J(P2,P2) 2 

Born and Wolf go on to show that 

lJ(pl,P2) = 
(exp iY)/fi(x',y')exp-iE(px'+qy')dx'dy' 

/I" I(x',y')dx'dy' 

where (x',y') are the coordinates of a typical source point, S; (X1,Y1) 

and (X Y ) 2' 2 are the coordinates of P1 and P2; and p, q, and Y are defined 

as follows: 

(x1-x2> 
R 'P 

(V2) = 
R 4 

Y = &[( x;+y;, - (x$+Yy 

For the particular example of a uniform circular source of radius, a, 

Born and Wolf3 compute: 

exp iY 

where 

f ((xl-x2)2+(Yl-Y2)2)L . v=- 

IV. APPLICATION TO NUCLEI 

The approach of Hanbury-Brown and Twiss to the measurement of stellar 

radii (which involves the computation of a correlation function related 

to 6314)) is applicable to the emission of particles from an excited 

nucleus4; in place of a star, we deal with an excited nucleus that emits 

neutrons or pions. It is necessary, however, to distinguish the pion 

problem from the neutron one in terms of the statistics the particles 
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obey. Pions are spin 0 particles and must be described by overall 

symmetric wave functions whereas neutrons are spin $ and have antisymmetric 

wave Qnctions. The consequences of this distinction will be discussed 

below. 

As a first attempt at understanding the nuclear problem, we will 

consider the nucleus to have been excited since the beginning of time 

(t=O) and to be kept excited by a continual input of energy. In a proper 

treatment, the nucleus is excited at a particular time and decays exponentially. 

Suppose now that we examine the particle emissions from the point of 

view of Section I. Two points on the nuclear surface may be regarded as 

independent emittersg that is, if we consider a large ensemble of similarly 

excited nuclei, then any two points on the nuclear surface will be completely 

uncorrelated after averaging over the ensemble. Next, we set up two 

detectors and ask what the probability is for registering one particle in 

. - each detector at a time, t. The two surface elements lie sufficiently close 

to each other that it is impossible to decide from which source a particular 

particle came: The wave functions of the two emitted particles overlap. 

The means by which this ambiguity is incorporated into the formal description 

of the system is to treat the outgoing particles as identical bosons or 

fermions and, accordingly, to symmetrize or antisymmetrize the wave function. 

When pions are simultaneously detected, the wave function is given by 

(see Fig. 3): 

A zi 
exp i(p3r13-E3t) /A exp i(p4r24- E t)/A 4 

R '13 '24 

+ 
ew i(P4r14 -E t)//I exp i(p3r23-E3t)& 4 

'14 '23 
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It should be noted that the detectors record the energies of the particles. 

There is no need to worry about the spin part of the wave function 
4 

since pions are spinless particles. Under particle exchange, which is 

effected most easily by switching the "1" and “2” indices, the amplitude 

A= is seen to be symmetric. 

The probability for detecting two pions simultaneously is given by: 

1 AT 1 2 = &- b+cos (p3(r13-r23)+P4 (r24-r14$] 

with 

Next, we assume that the particles received by the detectors are spin 

k nucleons. In this case, there is a spin component of the wave function 

as well as a spatial part to consider. Assuming that the polarization of . - 

the nucleons is not fixed, we must give equal weight to the six possible 

antisymmetric wave functions for a two-state system: 

(1 .) G = i(la>lb>-lb>la>) 1 -t--f> 

a> 

space spin 

b>-lb>la>) 

(5) G = la>la> L(lfG>-IC+>) 
LT 

(6) $ = /b>lb,;(/W-I++>) 
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However, states (5) and (6) are not consistent with the bounds set by the 

experimental conditions. To see this, observe that if state a> corresponds 

to a p8rticle being at detector 3 and state lb> to a particle being at 

detector 4, then amplitudes (5) and (6) in the list above are the amplitudes 

for both partic1e.s bein,g at a single detector. But the.experiment we are 

discussing is blind to this possibility. The total probability for the 

simultaneous registration of two nucleons at detectors 3 and 4 involves 

. - 

only the first four amplitudes: 

P spin%C3P4) = 14” 

where s=spatial part signifies the part of the wave function dependent on 

the spatial variable: for example, <"= I(la>lb>-lb>la>)- 
J2 

sz 
exp i(p3r13-E3t)fi exp i(p4r24-E4t)kK 

R R 

exp i(p4r14-E4t)fi -( exp i(p3r23-E3t)/r; 

R R 

The reason for neglecting the spin part of the wave function in the above 

computation of P spin+ stems from the orthonormality of the spin states. 

The absolute square of the wave function separates into the-product of the 

space part times its complex conjugate and the inner product of the spin 

state with itself, which is l(e.g.<f+lf+>). 
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V. APPLICATION TO NUCLEI: CONTINUOUS SOURCE 

S: far, we have dealt only with a source composed of two independent 

emitters. The next step is to calculate the registration probability for 

an extended source. A'useful example is the uniformly radiating sphere. 

Before turning to this example, we would like to treat a continuous 

source in some generality. The tools needed for such a treatment can be 

found in Section III. If Vml and Vm2 represent the wave amplitudes at Pl 

and P 2, respectively, for particles originating from the mth source element, 

then the total registration probability, W(P,,P,), for a countable set of 

emitters is proportional to: 

Nucleons: (1) 

‘NC’1 ,‘+ xz 3<bml ctjVn2 (tbVnl (t>Vm2 tt) I’> 
mn 

+ (I vml wn2 w+vnl WVm2 (t) 12> 

Pions: (2) 

WIT (5 J+ = = <km1 wn2 (t)+Vnl (mm2 (t> I’> mn 

Some remarks are in order at this point: 

1. The registration probabilities given above are those that enter 

into the calculation of exclusive (as opposed to inclusive) cross sections. 

In order to get a better feel for the sort of information contained in 

either WN(P1,P2) or W,(P1,P2), let us consider a specific example. Suppose 

that the source is composed of three distinct surface elements, each of 

which emits particles independently of the other two. At any time, the 

number of particles that may be emitted is zero, one, two, or three. 

Clearly, since it takes two particles to trigger the detectors in the 
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experiment we have in mind, zero and one particle emissions are not 

detectable events. With three particle emissions, however, it is possible 

to havg one particle at each detector (and a third particle somewhere 

else). But the final state of the source after the emission of three 

particles is different from the state after a two-particle emission. 

In computing WN(Pl,P2) and W,(P1,P2), we consider only events arising 

from two particle emissions. This is what is meant by an "exclusive" 

cross section. On the other hand, the "inclusive" cross section for our 

two detector experiment would include all processes that lead to a final 

state with one particle at each detector, regardless of the final state of 

the source. 

2. The second remark concerns the reason behind summing the individual 

probabilities rather than summing the amplitudes first and then taking the 

absolute square of the total amplitude. The reason is that the emission 

of particles by a particular pair of nuclear surface elements leads to a 

final state distinguishable from the rest. 

Let us calculate WN(P1,P2): 

wN(p1,p2) a<cc ~31Vml(t>Vn2(t)-Vn 
mn 

I2 1 wm2 (t) 

+ Ivml(t>vn2(t>+vnl(t)Vm20 I’)> 

The first term arises from those states involving one of the three symmetric 

spin states, whereas the second term is the spatial part of an overall anti- 

symmetric wave function with an antisymmetric spin part. Observe that particles 

originating from the same source element can make a finite contribution 

to WN(P1,P2) so long as the spins of the particles are different. 



-17- 

WN(P1,P2) can be evaluated further: 

w,(p1’p2)cc3cc <1vm~vn2-vn~vm2 I”> 
mn 

+ 2 $ <~vmlvn2+vnlvm2 ! 2> 

= 32% ( <lvm1121 v,,12)<IvnJ21vm212~ 

+” <lv~~121V~~12>+(lVn1121vm212> mn ( 

4! r, lVml 1 2 7; [vn2 1% <gvmlv;2 y;1vn2> 
m n 

. - 

-4<zv*v xv v*> . m ml m2 n nl n2 

Renaming dummy indices, we have: 

wN(p1,p2)ar2 [ ~Ivrnl12 zjvn212-%( z ml m2 
m n 

v v* > (ynl$2)*>] 
or 

3J(p1’p2)a2 kjv,, 1 2 c,jvn2 I’-+( i’lvmlv;, 1 2)] * m 

The sums in the first expression on the R.H.S. of the proportionality are 

independent of time; thus, the time-average brackets have been dropped. 

This result resembles the expressions of Section III, where the function 

of major interest was J(P1,P2) =C, (ml(t)VE2(t)) . As long as rml-rm2 

is small compared to the coherence length, we need not fret that 

< ;vrng2 ~Nnlv~2,*> fi c <vm1v;2> ~<07nlv;2)*> : 
m 
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for with (rml-rm2) 'RCOHERENCE, (V,l (t> Vz2 (t> > 3 as written in Section 

III, loses all time dependence, and hence, there is no longer a time 

aver:ge to take. Since the wave functions of the particles have the 

same form as the wave amplitudes in Section III, we can write in the 

continuum limit (just' as we did in Section III), 

wN(p1,p2) + 2[/-1($ds /'(:ids - +i,E exp iK(rl-r2)dS/2] 

which for a uniformly radiating nuclear surface in the shape of circular 

disk becomes: 

wN(p1,~2)a2J(P1,P1)J(P2,P2) 1 [ _ gJ;q . ’ 

The correlation functions, J(P1,P1) and J(P2,P2), and the argument of the 

Bessel function, V, are defined precisely as they were in Section III; 

here, however, i? can be i nterpreted as F/&I, where 5 is the average momen- 

tum of an outgoing particle. 

Since the argument of the Bessel function contains the radius of the 

source, we have a means of measuring the dimensions of the source: as the 

detectors, located initially at the same point, are moved apart, the 

function [2J1 (V)/V] d ecreases from a maximum value of 1 to O(V=3.83). 

Hence, by knowing the detector separation and the average energy of the 

outgoing particles as well as the distance of the detector from the center 

of the source disk, the radius, a, of the disk can be, in principle, 

determined. 

We now have solved the problem that we originally set out to solve: 

the total probability for observing a simultaneous registration of two 

particles emitted by a uniformly radiating sphere. To see that we have 
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the solution at hand, it is necessary to show that the problem of a 

uniformly radiating sphere reduces to the one of a uniformly radiating - 

disk.- Consider an infinitesimal surface element on the radiating sphere. 

The contribution of this element to the number of emitted particles in a 

particular direction is proportional to the-projection'of the surface 

onto a plane lying perpendicular to the direction line, D (which is defined 

by the polar angles (u,@)--see Fig. 4). 
6 

The projection of a spherical 

surface onto a plane normal to the direction (a,B) is just a circular 

disk of radius equal to the radius of the sphere. Hence, the reduction 

to a disk problem is accomplished. 

VI. PROTON COLLISIONS 

An interesting application of the ideas presented so far is the 

mechanism for particle exchange between two colliding protons. The 

. - particle that is exchanged can itself emit secondary particles. This 

exchanged particle will be termed a gluon, although reggeon would be an 

equally good term. If the pattern of emissions from the exchanged particle 

is distinguishable from the emission pattern of the colliding protons, 

then it might be possible to measure the size and shape of the "inter- 

action" region by applying what was learned in the earlier sections. 

Since opposing theories predict differently shaped reaction regions, 

correlation measurements of secondary-particle emissions might be able to 

point to the right theory. 

As an illustration of future work that might be done, we will present 

a multiperipheral picture of the proton-proton collision process (see 

Figures 5 and 8a,b). Two well-collimated beams of protons, traveling in 

opposite directions, are allowed to scatter off each other. When any two 
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protons are sufficiently close, there is a possibility that they will 

interact by exchanging a gluon. The gluon leaves one proton and dis- 

'appeals at the other one. In-between, the exchanged gluon emits a few 

secondary particles. To make the picture especially simple, we will 

assume that the path, ,which the'exchanged gluon takes between the protons, 

is straight and that the emission of a secondary particle at one point 

along the path is completely uncorrelated with emissions at any other 

point (We could equally well assume that the path taken by the gluon is 

curved.). The important point is that after averaging over all curved 

paths, the mean width of the path is small compared to its length. A 

third assumption is that there is an equal probability for emission along 

the path. Finally, the emission pattern of the secondary particles is 

completely unaffected by any motion of the exchanged gluon. In some 

sense, then, the exchanged gluon within this picture does not travel from 

one proton to the other. 

When an average over many collisions is taken, the emission problem 

reduces to that of a uniformly radiating surface, almost rectangular in 

shape but very narrow. 7 If two detectors are placed parallel to the radi- 

ating slit (see Fig. 5), then the total probability for particles to 

arrive simultaneously at the detectors can be determined. The registration 

WN(P1,P2)" 

[ 

jI(;$ds/-I(:$ds - + 
I/ 

I(s)exp iE(r,-r,) ' 
dS 

'lr2 II 
2 

= J(P1,P1)J(P2,P21 [I - $ V(P1’P2) II 

probability for fermion particles is given in Section III): 

= J(P1,P1)J(P2,P2) 
~(x',y')exp[-i~(px'+qy')dx'd~'] 

I(x',y')dx'dy' jl 
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When the surface radiates uniformly, then I(x',y') can be taken outside 

the integral, leaving only the integral, [[exp[-ii?(px'+qy')]dx'dy' to be 

evafiated. But this integral is the Fraunhofer diffraction result. For 

a rectangular surface of the dimensions given in Fig. 6, 

I exp-iif(px'+qy')dx'dy' = sinKpa sinEqb 

Rpa iiqb 

Hence, 

WN(P1,P2)4J(PI,P1)J(P2,P2) 1 [ -i(F) (d$.T 

For b sufficiently small such that Eqb << 1, 

5,+p19p2) - J(P1,P,)J(P2,P2> 1 [ -q-py- 

These diffraction results can be readily applied to two different 

experiments. In one experiment, the scattering angle of the protons is 

measured along with the two-particle registration probabilities. From 

this information, the orientation of the "radiating slit", the source of 

the secondary particles, can be inferred. This allows us to select those 

events at the detectors that correspond to a particular orientation of 

the slit. 

It should be stressed that the region from which the secondary particles 

emmanate need not have spherical symmetry: we have assumed that the region 

has a rod-like shape, and, therefore, the configuration of the detectors 

with respect to a proton trigger must be considered with care. Perhaps 

the most advantageous orientation of the detectors is the arrangement 

pictured in Fig. 7, with the detectors placed symmetrically about the 

perpendicular bisector of the rod and away from the line containing the 
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rod. The radiation pattern for this situation is that of a slit, the 

projection of the rod onto a plane normal to the perpendicular bisector 

(whichalso defines the direction of the detectors). If the registration 

probability goes as 

then as the detectors are further separated by moving them along line A 
xp1-xP2 

(see Fig. 7), the argument of the sine function will vary 

and variations in the registration probability will be recorded. 

Another reason for selecting the arrangement of detectors suggested 

above lies with the angular distribution of the emitted secondary particles. 

Though the rod is assumed to emit uniformly-each surface element radiates 

in the same manner as any other surface piece-this does not rule out the 

possibility that the distribution of particle emissions is peaked at some 

angle relative to the axis lying along the length of the rod (the "long 

axis"). In fact, we can argue from the uncertainty principle that there 

is a preferred direction of emission. The particle exchanged by two inter- 

acting protons is confined to the region defined by the parameters of the 

rod. Because of the narrowness of the rod, the position of the exchanged 

particle in the direction normal to the long axis is known very well. By 

the uncertainty principle, this implies a large uncertainty in the corre- 

sponding component of momentum. In general, then, the emitted particles 

will have more momentum in the direction defined by the perpendicular 

bisector than along the long axis of the rod; this means that the distri- 

bution of secondary particles is peaked about 8=90° (orthogonal to the 

long axis). 
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In the second experiment we have in mind, the proton scattering 

angles are not measured. The data collected by the detectors cannot be 

assign??d to a particular orientation of the radiating rod. Instead, the 

data represent an averaging over all possible orientations and should 

roughly correspond to the diffraction pattern for a uniformly radiating 

disk. A measurement of the radius of the "average" disk provides useful 

information about the proton-proton interaction region. 

- 

SUMMARY 

The first sections of this report were concerned with certain correl- 

ation functions that arise in the domain of electromagnetic interference 

phenomena. These functions have deep ties to the principle of super- 

position, which allows us to find the total disturbance at a given point 

by simply adding up the individual contributions of the source elements. 

I - In Section (I), the correlation function I(P1,P2)=ol(t)12(t)), where I1 

and I2 are the intensities at points Pl and P2, respectively, was intro- 

duced. The two source-two detector experiment demonstrated that <Il(t)12(t)> 

can have a harmonic spatial dependence even though the relative phases of 

the sources might be continually changing. The reason for this is that 

the instantaneous intensity patterns seen by the detectors vary coherently 

(provided the detectors are sufficiently close to each other). 

A second correlation function that entered the discussion was the 

"time" counterpart of I(P1,P2): I(t,t+r) = <Il(t)Il(t+r)>. -This function, 

as was shown in Section (II), samples the intensity reaching the same 

detector at two different time points. 
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In Section (III), the source of the disturbance was no longer re- 

stricted to two space points: the definition of source was broadened to 

.include extended, continuous surfaces. The pursuit of this problem led 

to the introduction of yet a third correlation function: J(P1,P2) = 

<v,(t) V;(t)) where V i is the total wave amplitude at ‘point pi. That 

J(P1,P2) is not the same as I(P1,P2) can be seen by writing 

UPpP2) = <I&> = <Iv 

= <I”1 w;(t) 12> 
J(Pl,P2) is an "amplitude" correlation function, whereas I(P1,P2) is an 

"intensity" correlation function. The experiment discussed- in Section (I) 

illustrates the foundations of I(P1,P2). A closely related experiment 

aids in interpreting the meaning of J(P1,P2). The experimental set-up 

for the second experiment is exactly like that for the first; however, 

instead of taking the product of the intensities at the two detector points, 

p1 and P2, we imagine these two points to be new sources, and we compute 

the total wave amplitude-originating from Pl and P2-at a third, Q, located 

behind Pl and P2. The intensity at Q is then 

<ppl (t) + VP2 (t) I”> 

which contains terms like 

<VP1 wV;2 w) * 

Such terms represent the correlation between the wave fronts incident at 

Pl and P2. 
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It was also shown in Section (III) that <Vpl(t)Vi2(t)> is formally 

tied to Fraunhofer diffraction theory. This connection is not too sur- 

prising in light of the fact that the form <Vpl(t)Vt2(t)> arises from 

regarding Pl and P 
2 

as secondary sources; the idea that space-points-away 

from physical sources-are themselves secondary sources ,is the basis of 

Huygen's principle and scalar diffraction theory. 

In Sections IV and V, an attempt was made to apply the ideas behind 

the correlation functions to the quantum mechanical problem of neutrons 

or pions emitted by an excited nucleus. The wave function that was 

written down to describe the simultaneous registration of two identical 

particles at two detectors contained terms of the form Vml(t)Vn2(t) and 

vm2 WVnl (t> - The probability for such a process to occur, which is given 

by the absolute square of the amplitude, involved terms like Vml(t)Vz2(t), 

suggesting a link to the function J(P1,P2). When the total registration 

. probability for an extended and continuous nuclear surface was computed, 

it was assumed that, at any given time, only two particles are sufficiently 

close in space and time to show quantum mechanical interference. Hence, 

the total probability was a sum of two-body probabilities. Evaluation 

of the expression for the total probability led to the same "diffraction" 

integral found in Section III. This allowed us to take over the results 

of the earlier section and apply them to the nuclear problem. 

Finally, in Section VI, further applications of correlation experi- 

ments were suggested', In particular, inelastic proton-proton collisions 

were briefly discussed using a simple multiperipheral type model. 
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