
SLAC-PUB-2137 
PEP-Note-270 
July 1978 

THE RADIATION OF THE ELECTRONS CHANNELED BETWEEN PLANES OF A CRYSTAL* 

S. Kheifets 
Stanford Linear Accelerator Center 

Stanford University, Stanford, CA 94305 

1. Introductory Remarks 

The theoretical predictions of the new.type of radiation [I] of the 

ultra-relativisticelectron by passage through properly oriented crystals 

arouse a lot of interest. In particular, there is a proposal of an ex- 

periment at SLAC to detect the radiation and to measure its chdracterist- 

its. 

The interactions of an electron with the fields of the crystal atoms 

can be described by an average continuum potential [2]. For the case of 

the electron moving in the vicinity of a crystal plane the following form 

was suggested by J. Lindhard: 

U(y) = A [b=-- ,y,] . - (1) 

Here, A = -ZIT Z e2 N dp, N is the number of atoms with atomic number Z 

per volume unit, dp is the distance between crystal planes, y is the 

distance of the particle from the plane, C = Jx, a is the screening 

length of electron-atom interaction for the Thomas-Fermi atom model. 

The negative sign of the constant A makes the potential U(y) attractive 

for electrons. In the following, we consider the case of electrons, 

A < 0 (for positrons, the sign should be reversed). 

The continuum potential (1) is a fairly good approximation only for 

distances y bigger than the characteristic length Ca even though the 

energy E is very large. 

y/Ca L 1 . (2) 

For smaller y the deflection angle in the collision with separate atoms 

could be bigger than the deflection angle due to collective potential 

(1) (23. Strictly speaking, for y < Ca, either potential (1) or Thomas- 
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Fermi potential for an isolated atom should be used in the motion equation 

depending on where the trajectory of electrons happened to go. However, 

due to finite values of U(y) for y + 0 and relatively slow variation of 

U(y) with y we may assume that the small impact parameters play relatively 

small role in the overall radiation intensity. We shall apply-the con- 

tinuum potential (1) for all y. 

On the other hand, y should not be too large compared to the distance 

dp, between planes, since for 
I I 
y > 1 or xp > dp/Ca (x = y/Ca) the elect- 
dP 

ron moves through many different planes rather than being channeled in 

the vicinity of only one plane. For such a motion, instead of the simple 

form for potential (1) one should consider the periodicity of the crystal 

planes with y. This condition can be formulated in the following way: 

;/c = a ‘c ap = 
I 

(2 u(x,) - E&E G , 
I - 

where cc = 2U(o) is the barrier energy for the potential (1). 

I Figure 1 represents the potential U/A Ca as a function of x and 

shows also one possible energy level in the well. The calculations of 

the radiation intensity fulfilled in the paper [l] (both in the classical 

and quantum approaches) are based on the expansion of the potential (1) 

into series on y/Ca. The aim of this note is to find the expression of 

the intensity for the motion in the potential (1). For ultra-relativistic 

particle the classical treatment is a very good approximation since the 

corresponding quantum numbers are very large.[3] 

2. Intensity of Radiation 

We start with the expression of the instant radiation intensity of 

the ultra-relativistic particle, in the electric field E [4]: 

Iin = f e4 E2 y2 

m2c3 
(4) 
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where Y = c/mc2. The field E should be taken on the (classical) traject- 

-ory Tf the particle and hence, in general, we need the solution of the 

motion equation in the y direction: 

dPY - = eE(y) 
dt 

& P - 
y = c2 

f, eE(y) = U(y)/ay 

However, we are interested in the intensity averaged over the period 

T of the particle oscillations: 

T 

I=+- 
J 

I in dt 
0 

Let us now change integration over time by integration over y. Then we 

get 

I = 

We shall further neglect the energy change due to transverse electric 

field (in the same manner as it was done in [l] , E = const). Then 

,Ym 

(8) 

(9) 
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.The Wlue y, in the above expressions is the maximum distance of the 

particle from the plane. Its magnitude depends upon the initial value 

of y, and y', of the particle (also see Figure 1). 

Combining now (7-g) we get:- 

I=2 e2 A2 y2 
3 m2 c3 

F(x,) z 

where xm = ym/La and 

xm 

/[ 

x 2 

,I [ 3 
-b* 

0 
1 - Jx2+1 Gq- - Jx,2+1 - x + Xm dx 

Fb,") = xm 

f[ 

-.- ~ Jx2tl - Jx,2+1 - X + Xm 
0 1 

-b2 
dx . 

(10) 

(11) 

For xm < 1 F(xm) 'L 1 - 4x,/3 

Fox xm > 1 F(x,) 2 0.3/x,3/2 . 

As was pointed out above the region x, < 1 has little physical impact 

and all considerations should start from the value x, 2 1. 

The period T can also be expressed in the form of: 

T(x,) = 4d2$ jrn [&% - J,m2+1-/& - x+xm]+dx (12) 

0 

The expression (10) depends on ym in quite a different way than the 

corresponding expression (1.8) in [l] . The reason for that can be 

clearly seen from Fig. 1: The shape of the potential well nowhere re- 

sembles the parabolic well. Figs. 2a and 2b present functions F(x) 
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and T(x), respectively. 
-n 

3. Discussion'of.thYe Spectral Characteristic of the Radiation. 

Since radiation is.emitted in a narrow cone of angle A0 Q y -1 along 

the instant particle velocity, the frequency range G in which maximum 

numbers of quanta are emitted depends, of course, on the ratio of the 

angle cx of the trajectory to AB. This ratio can be found from (8). Since 

a=j max/c, we get 

a /A0 ‘L y [-g bU(Ym)]li 

1 9 
a /A0 s 2-y (-U(ym)lmc2) ‘- - 

03) 

(13’) 

a.) Let us consider first the case where 

a/A0 ?> 1 . (14) 

Then the radiation in the given direction comes from a very small part 

of the trajectory parallel to this direction. We may assume that the 

field on this part of the trajectory is almost constant and apply all 

the expressions for synchrotron radiation. In particular, the main 

part of rad iation will be em itted on the frequencies: 

1 alJi2Y I max y2 
mc 

(15) 

au/ay as a function of y for small values of y is a rather slow function 

so it is Of little importance at which point the derivative is evaluated. 

If we assume that (au/ay)should be taken at y 'L Ca, then G, 2 0.3 y2/mc. 



b.) For the opposite limit 
- 

a/A0 << 1 (16) 

the radiation is gathered from all the trajectory of particle. . In this 

case, the maximum spectra occurs at the frequencies 

(17) 

which diverge for y,-+O. (See Fig.Zb) The physical reason for that 

divergence is connected with limited validity of the potential (1) for 

very small y. It is quite reasonable to assume that the maximum fre- 

quency should be taken at x 'L 1: 

h 

W2max = v2/T(l) = 2/A/ r3'2 
cam K ’ 

. - 
where 

1 

J 

dx 
K z = 3.7 

0 c vyt1 - x - /?t 1 1 + 

ller values of y/Ca as was discussed above, particle def For sma lections 

will occur not on the continuum lattice field but rather on a separate 

abom. In this case, considered radiation will go smoothly over into 

the bremsstrahlung type of radiation. 

(18) 

3. Discussion of the Experimental Situation. Numerical Example. 

Let us consider more closely the meaning of derived expressions from 

the point of view of the experimental possibliity to detect the channel- 

ing radiation. First of all, this type of radiation will occur with the 

background of bremsstrahlung. The conditions of the experiment should 

allow for resolution one from the other, for example, by using the 

difference in their spectra. That means that the value x, for the 
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.- particle should not be smaller than 1 or, in other words, the angle a of 

the tr;jectory should not be too small. 

The situation will be much more clear if we consider it numerically 

on an example. For such an example we take-the diamond, crystal as a 

device for producing the plane channeling radiation. 

Let us assume the following numbers [5]. Z = 6, N = 1.1 1023cm-3, 

dp = 3.57 x 10-8cm, La = Jjao x 0.8852 -l/3 = 0.42 x lo-8cm and, con- 

sequently IA] = 2.13 x lo4 MeV/cm. The barrier energy cc equals 1.8 x 

10D4 MeV. 

. - 

Let us look first at the maximum large cx consistent with (3). Then 

x, will be equal to 8.5 independent from y. The value F(Xm) from (10) 

is than 1.2 x 10m2. Table 1 represents the characteristic quantities 

for different values of y for this case. The intensity of radiation can 

be increased significantly by keeping a smaller. Table 1 also gives 

values for the case in which a is chosen in such a way that for all y 

xm = 1 (F = 0.24). 

As we see the wide beam has the disadvantage of producing relatively 

small amounts of radiation. Besides that the maximum of the photon 

spectrum is shifted toward very high frequencies. That will make it dif- 

ficult to resolve the channeling radiation from the bremsstrahlung type 

of radiation especially for very high values of y. If we try to reduce 

a more, for example to make it equal to y-l, then xm becomes very small. 

For y = lOa x, = 0.33, for y = 4 x lO-4 xm = 0.075. It would be very 

difficult to get convincing results in such a case. 
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