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Abstract 

It is pointed out that the ambiguity which charac- 

terizes gauge conditions of the type 3' S Aa(x)V = 
PJU 

C;(x) for nonAbelian gauge theories is also characteristic 

of the so-called axial-like gauge conditions n.Aa = C;(x), 

where, here, A; is the nonAbelian gauge potential, B = 
IJJV 

g orp 'g -66 n is a four-vector such that 
ClV PV PV PO vo' p 

n2 = 0, 1, or-l,andCt 2 are usually Aa-independent functions 
, CL 

ofx; g is the Minkowski metric and 6.. is the Kronecker 
PV 13 

delta. 
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.- 
As has been emphasized by ~andelstamand Gribov, the specification of 
-cI 

the gauge in nonAbelian gauge theory is a delicate matter in the Coulomb 

gauge and is, in fact, ambiguous in this gauge. 1 It appears to be generally 

accepted 2,3 that the Mandelstam-Gribov problem is also present in gauges 

which have gauge conditions 

aiL Aa' = C;(x) , (1) 

where Aa 
14 

is the Yang-Mills field and C;(x) is an Aa-independent function of 
c1 

the space-time coordinate x. However, it does not seem 2,4 to be general 

knowledge that the ambiguity of Mandelstam and Gribov is also present in 

gauges of the type 
(2) 

where n' is a four-vector such that n2 = 0, 1, or -1, and C;(x) is an Aa- 
14 

independent function of x. We should like to clarify this particular point 

t in this note. 

Specifically, we use a matrix realization of the Yang-Mills theory so 

that we introduce 
A 

P 
= A;ta 

where the hermitian matrices t a carry the adjoined representation of the 

respective gauge group 8: 

eta, tb3 =if t C 

abc (3) 

where f abc are the real structure constants of & and 

(talbc = -ifabc . 

We normalize ta according to 

(4) 

t Recently, A. Balachandran et al., Phys. Rev. Lett. 40, 988 (1978),have 
discussed the ambiguities associated with the U-gauge. 



tr(tatb) = N bab . (5) 

Then, 72) reads 
n*A = C 2 (6) 

where c2. = c;ta . (7) 

Now, under a gauge transformation U = exp[-iz*?], A transforms by 

A +uAPu -' P (aclu)u -1 
(8) 

when we take the Yang-Mills field strength tensor F to be 
CLV 

F =aA - aYAP + ig[A $ Avl , (9) 
pv PV 

t 
where g is the gauge coupling constant. Thus, the gauge condition (6) becomes 

nP(UAPU -1 +A g tabu)u3 = c2 (10) 

or 
uc2u -' + a (n.au)u -1 = 

c2 - (11) 

Thus, it has been commonly accepted that, for C2 3 0, for example, the only 

ambiguity in (6) is an uninteresting Agindependent U(x) which only depends on 

4 
X I, where 2 are the three coordinates orthogonal to nP. For, if 

I 
c2 z 0, 

then, (11) reads 

i (n.au)u-' = 0 (12) 

so that (see footnote (4)) 
n-au=0 . (13) 

However, the la'st equation, Eq. (13), for a simple compact Lie group, 

has other solutions than U(x) = U(:i), since 

au n.SJ(Z(x)) = 3 . n.aGJ . (14) 

Hence, Eq. (13) can be satisfied if 

t The Yang-Mills Lagrangian is GM = - z FtiV FPv in our convention. 
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(ii) 

but 7.2 = 0. 

Here \\z\l denotes the norm of the array a ij as 

l$ll = max{(C (F ak ijhj)2)ki tc A;? =l] . 
ij j 

Clearly, case (i) is the well-discussed case 

(15a> .- 

(15b) 

(16) 

(17) 

Notice that (17) could still be interesting because we may have, for example, 

Go(zA) =3( F d""(x) Av(x) dn, :,-) (18) 
-m 

for some weighting field o'"(x) and some functional ?. Here dn is the line 

element along 2. Thus, U may be Av-dependent. 

Case (ii) involves those functions w"(x) such that the gradient matrix 

of U(G) is orthogonal to n-3:. Thus, to be specific, we take & = SU(2) so 

that 

(tajkj = iekaj = -icakj (19) 

where 8 
akj is the totally antisymmetric symbol in three dimensions so that 

E123 = 1. Then, 

u(Z) = I - (;.;')2 (l- cosw) - i(ll;.?)sinu, , 
(20) 

where 



Therefore 

.- -cI au _ L2 - iL2.Z --- 
aw' 

{ 3 , IG.f'](l- cosw) 
w 

+2,+ 
- (6.t) w sino 

2w2 
-b A+ 

-if - t*WW 

w3 
lsiniu 

-IAs. -i t-W w cosu) , (22) 

where { , ] d enotes anti-commutation and 2 = (t', t2, t3>. There are ob- 

viously cases in which aLI/& is orthogonal to n-3:. For example, suppose 

cosu)=l, sinw = 0. Then, 

au = 
-bAA 

aw" 
-i t-u w 

cosm=l 

(23) 

will be orthogonal to n.?$ if 

j. (n.3): = 0 

=$3 naa(w2> = 0 

--r’ w2 = hQ . (24) 

Thus, 
;: = (fl(X), f2(x), f - f;(x)) (25) 

such thatt 
C(2nn) 0(x2- an>, an> 0, nintegral 
n * 

(26) 
will satisfy the condition (15b) for real functions fl (x> , f2 cx> l 

Hence, fl and f2 may be real functions ofAy(x) also: 

fi = fi(4$x), x) , i=1,2. (27) 

In practice, we expect that n S. 2 in (26) and that fl 2 must be such that w' 
> 

t Here, 0(s) = 0 for s < 0 and 9(s) = 1 for s 2 0. 
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is a real vector-valued function. Evidently, this question of gauge ambiguity is 

quite involved. 

mtes added : 

(1) Note that the condition 

cannot be satisfied for any real Go since the ta are linearly independent. Thus, 

it is only necessary to consider cases (i) and (li) in discussing the meaning of 

Eq. (13). 

(2) R. Jackiw, I. Muzinich, and C. Rebbi (Brookhaven preprint, 1977) have 

shown that Mandelstam-Gribov ambiguities exist in the Coulomb gauge even if one 

imposes the condition (here, r = 12 I ) 

lim ri = 0 r-00 

on transverse potentials. These authors show that, under this condition, a single 

potential in the A, = 0 gauge corresponds to several transverse Coulomb gauge 

potentials when the potentials are large enough - in agreement with Gribov and 

Mandelstam. However, these authors do not address the question of ambiguities 

in the temporal gauge itself. 

(3) As pointed-out by Jackiw in reference 4, I. Singer (unpublished), working 

in S4, has shown that Mandelstam-Gribov ambiguities must exist in all gauges for 

gauge theories defined in S4. However, as emphasized by Jackiw, S4 is not 

4-dimensional Minkowski space, not even up to homeomorphisms. 

(4) In the theory of functions of several variables (see, for example, 

L. M. Graves, Theory of Functions of Several Variables, (McGraw-Hill Book 

Company, Inc. , New York, 1956) pp. 76-78) the theorem that, at xa! = Xa, 

du= i (a u/ax )dx 
cr=l a! o! 



if and only if 8 U/3xa’ a! = 1,. . . ,4, are all finite at z is not true. 
- 

There is the additional requirement that all 8 U/8xa! must be continuous in a 

neighborhood of x = (zl, . . . , x4). The example of Eq. (15b) given in 

Eqs. (19)-(27) does not even have all 8U/i3xi finite. Thus, for this example 

SO that a U/ax4 = 0 does not imply that 8 TJ/3xj, j = 1,2,3, are independent of 

x4. Here, dU is the change in UC;;> due to the changes FQ - Xa + tie. 

This research was supported in part by the Department of Energy, The 

work was partially completed while the author was a visitor to the Theory Group 

at SLAC. The author is grateful to Professor S. D. Drell for the hospitality of 

the SLAC Theory Group. 
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