> Inclusive Hadron Production in $e^{+} e^{-}$Annihilation $$
\text {at }\langle s\rangle=53 \mathrm{GeV}^{2} \div
$$

D. G. Aschman, D. G. Coyne, D. E. Groom, G. K. O'Neill, H. F. W. Sadrozinski, and K. A. Shinsky Princeton University, Princeton, New Jersey 08540
and
D. H. Badtke, B. A. Barnett, L. H. Jones, and G. T. Zorn University of Maryland, College Park, Maryland 20742
and
M. Cavalli-Sforza, G. Goggi, F. S. Impellizzeri,
M. Livan, F. Pastore, and B. Rossini
Istituto di Fisica Nucleare dell' Università, Pavia, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy
and
L. P. Kcller
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

ABSTRACT

We report on inclusive hadron production in $e^{+} e^{-}$annihilation at $<s>=53 \mathrm{GeV}^{2}$, using a small solid-angle magnetic spectrometer with good particle identification at 90° to the beams at SPEAR II.

The cross sections of $\pi^{ \pm}$and $K^{ \pm}$when compared with data at $s=23 \mathrm{GeV}^{2}$ exhibit scaling in $(s / \beta) d \sigma / d x$ with $x=2 E / s^{1 / 2}$. The invariant cross section depends on the momentum as p^{-4}.
(Submitted to Phys. Rev. Letters)

[^0]We measured the inclusive hadronic cross section with a small solid-angle spectrometer at the highest SPEAR II energies between $s=49$ and $58 \mathrm{GeV}^{2}$. This was an extension of a previous experiment at SPEAR I. ${ }^{1}$

The single-arm magnetic spectrometer used in this experiment was similar to that used in our earlier experiment. ${ }^{1,2}$. It was situated at $(90 \pm 13)^{0}$ with respect to the beams. The minimum momentum required for traversal of the spectrometer was $0.3 \mathrm{GeV} / \mathrm{c}$, and the geometrical acceptance for high-momentum particles was 0.084 sr . Trajectories were measured with proportional wire chambers (PWC) before and within the magnet giving a momentum resolution of $\Delta \mathrm{p} / \mathrm{p}=0.011 \mathrm{p}(\mathrm{GeV} / \mathrm{c})^{-1}$. The entrance of the magnet was covered by a threshold Cerenkov ($\stackrel{(}{\mathrm{C}}$) counter filled with propane at 90 psig with thresholds of $0.8,1.05$ and $3.7 \mathrm{GeV} / \mathrm{c}$ for μ, π and K , respectively. Time-of-flight (IOF) was measured along a 4.7 -m-long path with a standard deviation of 0.36 ns using a small start scintillation counter near the interaction region and an array of stop counters at the magnet exit. Following the TOF counters were a $\mathrm{Pb}-\mathrm{scintilla}-$ tion shower counter and a slotted iron hadron filter ($799 \mathrm{gm} / \mathrm{cm}^{2}$) containing 3 planes of scintillation counters. A set of PWC's, shower counter and hadron filter on the opposite side helped identify $e^{+} e^{-}$and $\mu^{+} \mu^{-}$pairs. The central detector, ${ }^{3}$ consisting of 4 cylindrical layers of proportional tube counters, covered a solid angle of $0.9 \times 4 \pi$. An inclusive one-particle trigger required a coincidence between the $T O F$ start and stop counters, hits in a combination of spectrometer PWC's, and the beam crossing signal.

Tn the analysis, beam-gas background was determined from the origin distribution and subtracted. Cosmic rays were removed by cuts on the event's origin and their TOF. The information from the C-counter, TOF, shower detector and hadron filter was then used to identify the particle. ${ }^{4}$ fuon events with
$p>0.8 \mathrm{GeV} / \mathrm{c}$ were identified with the C -counter together with penetration of the hadron filter. There were 118 collinear $\mu \mu$ events, from which we determined 5 the integrated luminosity: $\int \mathscr{L} \mathrm{dt}=8.74 \pm 0.78 \mathrm{pb}^{-1}$. A sample of anomalous muon events in excess of QED has been discussed elsewhere. ${ }^{6}$ The contribution to the hadronic spectra below $0.8 \mathrm{GeV} / \mathrm{c}$ from misidentified $\mu^{\prime} \mathrm{s}$ is less than 5% from leptonic decays of the heavy lepton $\tau,{ }^{7}$ less than 3% from semi-leptonic decays of charmed mesons based on inclusive electron data, 8 and less than 4% from the 2 -photon process ee \rightarrow eeph. ${ }^{9}$ Electrons were recognized by the large pulse height in the counter and the shower counter.

Protons and antiprotons were identified by TOF. Only antiprotons were used and their number doubled. Pions and kaons with $\mathrm{p}<1.2 \mathrm{GeV}$ were identified by TOF. 15% of all hadron events with momentum below C threshold were found to have a \mathcal{C}-counter pulse above pedestal. This contamination was corrected for in the π, K sample with momenta above 1.2 GeV where the $\stackrel{\vee}{C}$-counter was used for π, K separation. The final sample of 950 hadrons contained 863π 's, 74 K 's and $13 \overline{\mathrm{p}} \mathrm{s}$. Using a Monte Carlo simulation the data were corrected for geometrical acceptance, nuclear interaction, hadronic punch-through and π, K decay in flight.

The inclusive momentum spectra $4 \pi\left(\mathrm{~d}^{3} \sigma / \mathrm{d} \Omega \mathrm{dp}\right)$ at $\langle\mathrm{s}\rangle=53 \mathrm{GeV}^{2}, \theta=90^{\circ}$ for $\pi^{ \pm}, K^{ \pm}, 2 \cdot \bar{p}$ are shown in Figure 1. The error bars include the statistical errors and the uncertainty of the applied corrections. Not included is an additional 10% overall normalization error. We calculate the following particle fractions: for $400 \mathrm{MeV} / \mathrm{c}<\mathrm{p}<100 \mathrm{MeV} / \mathrm{c}, \mathrm{f}_{\pi}=0.8 \% \pm 0.01$, $\mathrm{f}_{\mathrm{K}}=0.12 \pm 0.02, \mathrm{f}_{\mathrm{p}}=0.014 \pm 0.005$; for $\mathrm{p} \geq 1000 \mathrm{MeV} / \mathrm{c}, \mathrm{f}_{\pi}=0.76 \pm 0.02$, $\mathrm{f}_{\mathrm{K}}=0.16 \pm 0.03, \mathrm{f}_{\mathrm{p}}=0.07 \pm 0.02$.

In order to test predictions of scaling models, we compare the present data with our results at $s=25 \mathrm{GeV}^{2}$. The latter represent a reanalysis of
previously published data, ${ }^{1}$ extending them to lower momenta ($p_{\min }=400$ and $700 \mathrm{MeV} / \mathrm{c}$ for $\pi^{ \pm}$and $\mathrm{K}^{ \pm}$respectively) with improved reconstruction and identification methods. ${ }^{2}$ One form of scaling predicts ${ }^{10}$ that the invariant cross section $E\left(d^{3} \sigma / \mathrm{dp}^{3}\right)$ should behave as $f(x) \cdot p^{-4}$ with $x=2 E / s^{1 / 2}$. Figure 2 shows the invariant cross sections for $\pi^{ \pm}$for $s=53$ and $23 \mathrm{GeV}^{2}$ as a function of momentum. The data for both $C M$ energies are well described by p^{-4} (see Table I), i.e., the structure function $f(x)$ is only a weak function of x. The p^{-4} behavior should be compared with the $\mathrm{p}_{\perp}{ }^{-8}$ form of the $\mathrm{pp} \rightarrow$ hadrons inclusive cross sections. ${ }^{11}$

In analogy to deep inelastic ep-scattering, scaling has been predicted ${ }^{10}$ in the form of $(s / \beta)(d \sigma / d x)=F(x)$. Figures $3 a$ and $3 b$ show these cross sections for $\pi^{ \pm}$and $\mathrm{K}^{ \pm}$, respectively, at $\mathrm{s}=25$ and $53 \mathrm{GeV}^{2}$. The π and -K cross sections separately exhibit scaling; furthermore, the scaling functions $F(x)$ have similar x dependence for π and K and show the x^{-3} behavior corresponding to scaling in p^{-4} mentioned above (see Table I).

Data on inclusive hadron production in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation 12,13,14 are published in the form of the scaling cross section in x. We find that at $s \sim 25 \mathrm{GeV}^{2}$ our $\pi^{ \pm}$data are about 30% higher than the data of DASP ${ }^{12}$, while the $K^{ \pm}$spectra agree. Adding up the different hadrons allows us to compare the data at $s=53 \mathrm{GeV}^{2}$ with preliminary non-particle-separated inclusive cross sections of SLAC-LBL ${ }^{13}$ at the same s-value. We find agreement at low $x_{p}\left(x p=2 p / s^{1 / 2}\right)$ but at higher $x_{p}\left(x_{p} \sim 0.7\right)$ the cross sections of Reference 13 are higher by a factor of 2. If we correct for the observed angular distribution of the jet structure, ${ }^{15}$ our high momentum points at $s=53 \mathrm{GeV}^{2}$ increase by less than 25%. It is interesting to note that our $\mathrm{K}^{ \pm}$data agree with the $2 \cdot \mathrm{~K}_{\mathrm{S}}^{\mathrm{O}}$ data of SLACLBL^{16} at $\mathrm{s} \sim 50 \mathrm{GeV}^{2}$.

In the statistical or hydrodynamical model ${ }^{17}$ the invariant cross section of all hadrons separately is described by an universal function $\exp \left(-E_{h} / \mathrm{kT}\right)$, where E_{h} is the hadron energy and $k T \approx 160 \mathrm{MeV}$. For $s=23 \mathrm{GeV}^{2}$, the data are well described by the function $\exp \left(-E_{h} / 206\right)$ (Figure 4b), while at $s=53 \mathrm{GeV}^{2}$ neither an exponiential. with the slope parameter $1 / 206 \mathrm{MeV}$ nor any other slope fits the data (Figure 4a).

We wish to thank the staffs at SLAC and the three universities for their extensive support of this experiment. Our work was supported in part by the U. S. Department of Energy, by the Istituto Nazionale di Fisica Nucleare, and by the National Science Foundation under Contracts Nos. PHY76-06642 and PHY77-03318.

REFERENCES

1. T. L. Atwood, et al., Phys. Rev. Lett. 35, 704 (1975).
2. T. L. Atwood, Ph:D. Thesis, U. of Maryland, T. R. ${ }^{2} 777-040$ (1976) (unpublished).
3. D. G. Aschman, et al., Phys. Rev. Lett. 39, 129 (1977).
4. A detailed description of the spectrometer and the data analysis can be found in: D. A. Badtke, Ph.D. Thesis, U. of Maryland (1978) (unpublished) ; K. A. Shinsky, Ph.D. Thesis, Princeton U. (1978) (unpublished).
5. F. A. Berends, K. J. F. Gaemers and R. Gastman, Nuc1. Phys. B57, 381 (1973).
6. D. H. Badtke, et al., Phys. Rev. Lett, 40, 827 (1978).
7. M. Perl, in Proceedings of the International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, Germany, 1977, edited by F. Gutbrod (DESY, Hamburg, Germany, 1977), p. 145; H. F. W. Sadrozinski, ibid., p. 47.
8. A. Barbaro-Galtieri, ibid., p. 21.
9. G. Grammer, Jr. and T. Kinoshita, Nucl.Phys. B80, 461(1974). We thank G. P. Lepage for making available to us the program computing the exact ee \rightarrow eен cross section.
10. S. M. Berman, J. D. Bjorken, J. B. Kogut, Phys. Rev. D4, 3388 (1971); S. D. Drell, D. J. Levy, T. M. Yan, Phys. Rev. D1, 1617 (1970).
11. H. J. Frisch, in Particles and Fields '76, edited by H. Gordon and R. Peierls (BNL, Upton, N.Y. (1977)),p. F59.
12. R. Brandelik, et al., Phys. Lett. 67B, 358 (1977).
13. R. Schwitters, in "Proceedings of the XVIII International Conference on High Energy Physics," Tbilisi, 1976 (Dubna, 1977) p. B34.
14. T. Burmester, et al., Phys. Lett. 67B, 367 (1977).
15. G. Hanson, et al., Phys. Rev. Lett. 35, 1609 (1975).
16. V. Lüth, et al., Phys. Lett. 70B, 120 (1977).
17. R. Hagedorn, Nucl. Phys. B24, 93 (1970); E. L. Feinberg, Phys. Rep. 5C, 237 (1972).

Table I: Results of cross section fits

$\mathrm{s}\left(\mathrm{GeV}^{2}\right)$			53	23	$53+23$	
$E \frac{d^{3} \sigma}{d p^{3}}=\frac{A}{p^{n}}$	π	$\begin{gathered} A \\ n \\ x^{2} / D F^{(a)} \end{gathered}$	$\begin{gathered} 0.65 \pm 0.04 \\ 4.0 \pm 0.1 \\ 16.7 / 12 \end{gathered}$	$\begin{gathered} 0.82 \pm 0.06 \\ 4.3 \pm 0.2 \\ 13.4 / 9 \end{gathered}$	$\begin{aligned} & 0.70 \pm 0.03 \\ & 4.1 \pm 0.1 \\ & 37.5 / 23 \end{aligned}$	Fig. 2
	π	$\begin{gathered} B \\ m \\ \left.x^{2} / D F^{a}\right) \end{gathered}$	$\begin{gathered} 30 \pm 5 \\ 3.1 \pm 0.1 \\ 14.9 / 12 \end{gathered}$	$\begin{gathered} 28 \pm 5 \\ 3.5 \pm 0.2 \\ 12.1 / 9 \end{gathered}$	$\begin{gathered} 33 \pm 4 \\ 3.1 \pm 0.1 \\ 36.8 / 23 \end{gathered}$	Fig. 3a
	K	B m $x^{2 / D F}$	$\begin{gathered} 6.8 \pm 2.9 \\ 3.8 \pm 0.4 \\ 4.6 / 6 \end{gathered}$	$\begin{gathered} 15 \pm 8 \\ 3.6 \pm 0.7 \\ 3.2 / 5 \end{gathered}$	$\begin{aligned} & 10.9 \pm 3.0 \\ & 3.5 \pm 0.3 \\ & 11.6 / 13 \end{aligned}$	Fig. 3b

(a) Fits without the highest momentum point yield the same results with considerably increased confidence level.

Figure Captions

Figure 1. Momentum spectrum at $\langle s\rangle=53 \mathrm{GeV}^{2}$ and $\theta=90^{\circ}$ for $\pi^{ \pm}, \mathrm{K}^{ \pm}, 2 \cdot \overline{\mathrm{p}}$.
Figure 2. Invariant cross sections for $\pi^{ \pm}$as a function of momentum p at $\langle s\rangle=53$ and $25 \mathrm{GeV}^{2}$. The curve is the fit to the combined data: $\operatorname{Ed}^{3} \sigma / \mathrm{dp}^{3}=0.72 \cdot \mathrm{p}^{-4}$.
Figure 3. Scaling cross sections for (a) π and (b) K at $\langle s\rangle=53$ and $23 \mathrm{GeV}^{2}$. The curves are fits to the data at both s values combined of the form B / x^{m} (see Table I).

Figure 4. Invariant cross section as a function of hadron energy E_{h} at (a) $\langle s\rangle=53 \mathrm{GeV}^{2}$ and (b) $\mathrm{s}=23 \mathrm{GeV}^{2}$ for $\pi^{ \pm}, \mathrm{K}^{\text {and } 2 \cdot \mathrm{p}}$. The curves are of the form $\exp \left(-E_{h} / 206 \mathrm{MeV}\right)$.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

[^0]: *Work supported by the Department of Energy

