ON THE BARYON NUMBER OF THE UNIVERSE*
 Savas Dimopoulos ${ }^{\dagger}$
 Enrico Fermi Institute
 University of Chicago
 and
 Leonard Susskind
 Stanford Linear Accelerator Center
 Stanford University, Stanford, 94305

ABSTRACT

We consider the possibility that the observed particle-antiparticle imbalance in the universe is due to baryon, C and $C P$ violation. We make general observations and describe a framework for making quantitative estimates.
(Submitted to Phys. Rev. D)

[^0]
I. INTRODUCTION

Evidence exists ${ }^{1}$ that the universe contains many more particles than antiparticles. A quantitative measure of this particle excess is given by the number of baryons within a unit thermal cell of size $R=T^{-1}$. Such a cell contains a single blackbody photon. ${ }^{2}$. In current cosmological theories it is a box, expanding according to ${ }^{2}$

$$
\begin{equation*}
R^{-1} \frac{d}{d t} R(t) \approx \sqrt{\frac{8 \pi}{3} G \rho} \tag{1.1}
\end{equation*}
$$

In the very early universe there was approximately 1 of every species of particle within a unit cell. However, the unit cell today contains only 10^{-9} baryons and essentially no antibaryons. If baryon number is conserved then the unit cell has always contained a baryon number of order 10^{-9}.

One cannot rule out the possibility that the universe was created with net baryon number and no explanation is needed. However, to quote Einstein, "If that's the way God made the world then I don't want to have anything to do with Him." In fact modern theories of particle interactions suggest that baryon number is not strictly conserved ${ }^{3,4}$. If this is true then todays baryon number is as much dependent on dynamical processes as on initial conditions. Indeed Yoshimura ${ }^{5}$ has made the exciting suggestion that baryon violation can combine with CP noninvariance to produce a calculable net baryon number even though the universe was initially baryon neutral. Yoshimura has also made estimates ${ }^{5}$ which indicate that this may be quantitatively plausible.

There are three interesting reasons to believe that baryon number is not exactly conserved.
$1 \rightarrow$ Black holes can swallow baryons ${ }^{6}$
2) Quantum mechanical baryon number violations have been discovered by 't Hooft in the standard Weinberg Salam theory. 4
3) Super unified theories of strong, electromagnetic and weak interactions naturally violate baryon number at super high energy ${ }^{3}$.

Although baryon violations are minute at ordinary energy, in cases 2 and 3 they may become significant at sufficiently high temperature.

Baryon number violation is not enough to create an excess of baryons. The process itself must be particle-antiparticle asymmetric. ${ }^{5}$ Otherwise the sign of the effect will be random and cancel in different cells. In this case the total baryon excess would be of order the square root of the total number of photons. However, the total number of photons in the observed universe is $\sim 10^{88}$ and the baryon number is $\sim 10^{7 \dot{9}}$.

The required particle-antiparticle asymmetry is known to exist. Indeed charge conjugation is maximally violated in ordinary weak interactions. Were this the only asymmetry CP invariance would destroy any possible effect because total baryon number changes sign under CP as well as C. Luckily CP violations are known to exist. ${ }^{7}$

CPT invariance also imposes a very interesting constraint on the expansion rate of the universe. As we shall see, CPT invariance insures vanishing baryon density in thermal equilibrium. Therefore the expansion rate must remain rapid enough to prevent the baryon violating forces from coming to equilibrium.

In this paper we will discuss how baryon, C and CP nonconservation can conspire with the early Hubble expansion to produce an observable baryon excess.

As we shall see, the baryon excess may originate at or close to the very earliest times $\sim 10^{-42} \mathrm{sec}$. At that time the temperature, energy density and local space-time curvature are assumed to be of order unity in units of the Planck mass. The metric in Planck units is of the Robertson Walker type ${ }^{2}$

$$
(d s)^{2}=d t^{2}-R(t)^{2} d x_{i} d x_{i}
$$

where $R(t) \sim 1$ at the Planck time $t=1$.
Let us follow the evolution of a single unit coordinate cell of dimensions $\Delta x_{i}=1$. At the earliest of times it is a cube of unit volume $\left(10^{-100} \mathrm{~cm}^{3}\right)$ in Planck units. We will assume that quantum fluctuations and gravitational interactions between gravitons and matter rapidly bring the universe to equilibrium at a temperature of unity. It follows that our unit cell initially contains about one elementary particle of each species. In current unified theories this means ~ 100 particles (photons, leptons, gravitons, intermediate bosons, quarks, vector gluons, higgs bosons, super-heavy bosons....).

As the unit cell evolves it expands and cools. The process is not too different from the slow expansion of a box containing radiation. As in this case, the entropy within the cell is not significantly changed during the expansion. Roughly speaking this implies that the number of particles within that cell is the same today as it was at creation. Of course, by now, the only particles left are photons, neutrinos and any excess protons and electrons. The others all annihilated or decayed when the temperature decreased below their mass.

The excess, expressed as a baryon number in the unit coordinate cell is a number of order

$$
n_{B}=\frac{N_{B}}{N_{\gamma}} n_{\gamma}
$$

where $N_{B} / N_{\gamma} \approx 10^{-9}$ and n_{γ} is the number of photons in the unit cell today. Assuming it is of order the number of elementary particle types, we must account for 10^{-7} baryons per box.

The estimates made in later sections for the baryon excess are too uncertain to be taken seriously. In addition to particle physics uncertainties, the properties of the initial conditions at creation are unknown and can influence the result. Our estimates are made for the most pessimistic case which we call "chaotic initial conditions". Such an initial condition is described by a density matrix ρ which is diagonal in baryon number and symmetric under the interchange of baryons and antibaryons. It is the sort of initial condition which would describe equilibrium if the earliest interactions respected baryon, C and CP invariance.
II. CPT AND EQUILIBRIUM

It is self-evident that if C or $C P$ are symmetries of the equations of motion then no global baryon excess can result from baryon violating processes. To illustrate the constraints imposed by CPT in an expanding universe we discuss some examples.

Consider a complex scalar field $\phi(x)$ in an expanding universe described by the metric

$$
\begin{equation*}
(d s)^{2}=(d t)^{2}-R(t)^{2}(d \vec{x})^{2} \tag{2.1}
\end{equation*}
$$

The action for this model is taken to be

$$
\begin{equation*}
s=\int d^{4} x \sqrt{-g}\left\{g^{\mu \nu} \partial_{\mu} \phi \partial_{v} \phi^{*}-V(\phi)\right\} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
V(\phi)=\lambda\left(\phi \phi^{*}\right)^{\mathrm{n}}\left(\phi+\phi^{*}\right)\left(\alpha \phi^{3}+\alpha^{*} \phi^{*} 3\right) \tag{2.3}
\end{equation*}
$$

and $\alpha \overrightarrow{i s}$ a complex phase. The baryon current density is

$$
\begin{equation*}
\mathrm{B}_{\mu}=\sqrt{-g} \mathbf{i} \stackrel{\leftrightarrow}{\partial_{\mu}} \phi \tag{2.4}
\end{equation*}
$$

Note that $V(\phi)$ violates baryon conservation, C-invariance ($\phi \rightarrow \phi^{*}$) and CPinvariance.

The Hamiltonian for this model is

$$
\begin{align*}
H(t)=\int & d^{3} x\left\{\frac{\pi \pi^{*}}{R^{3}(t)}+R(t)|\nabla \phi|^{2}\right. \\
& \left.+R^{3}(t) V(\phi)\right\} \tag{2.5}
\end{align*}
$$

This Hamiltonian is invariant under the following CPT transformation ${ }^{9}$

$$
\begin{align*}
& \phi(x) \longrightarrow \phi(-x) \tag{2.6}\\
& \pi(x) \longrightarrow-\pi(-x) \tag{2.7}
\end{align*}
$$

The baryon number

$$
B_{\mu}(x)=\left\{\begin{array}{ll}
i\left(\phi \pi-\pi^{*} \phi^{*}\right) & \mu=0 \tag{2.8}\\
\sqrt{-g} i \phi \widehat{\nabla} \phi^{*} & \mu=i
\end{array}\right\}
$$

changes sign under 2.6-2.7.
The CPT transformation is a symmetry of the spectrum of the instantaneous Hamiltonian but not of the equation of motion because of the $\operatorname{explicit}$ time dependence of H .

Now consider the case where the universe expands so slowly that at every instant it is in thermal equilibrium with respect to the instantaneous hamiltonian $H(t)$. The density matrix at time t is

$$
\begin{equation*}
\rho(t)=\exp \{-\beta(t) H(t)\} \tag{2.9}
\end{equation*}
$$

Since CPT conjugate states carry equal energy but opposite baryon charge B the expectation value of B vanishes

$$
\begin{equation*}
\langle B\rangle=\operatorname{Tr}\left(e^{-\beta(t) H(t)} \hat{B}\right)=0 \tag{2.10}
\end{equation*}
$$

Therefore the only hope of generating baryon excess is for the baryon violating interactions to remain out of thermal equilibrium. This implies that the rate of expansion of the universe has to be faster than the baryon number violating reaction rates.

Now we will discuss a second model to illustrate the possibility of baryon number generation if we are out of equilibrium.

Consider a time independent Hamiltonian $H=H_{0}+V . H_{0}$ is baryon, C and CP conserving and V is a small perturbation which violates these quantum numbers. Suppose that at time $t=0$ the system is in thermal equilibrium with respect to the Hamiltonian H_{0}

$$
\begin{equation*}
\rho(o)=e^{-\mathrm{BH}_{0}} \tag{2.11}
\end{equation*}
$$

Under the action of the full Hamiltonian the density matrix at time t has evolved to

$$
\rho(t)=e^{-i H t} e^{-\beta H} 0 \quad e^{+i H t}
$$

The mean baryon number is

$$
\begin{equation*}
<B(t)>=\operatorname{Tr}\left\{e^{-\beta H_{0}} \hat{B}(t)\right\} / \operatorname{Tr} \rho \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{B}(t)=e^{i H t} \hat{B} e^{-i H t} \tag{2.13}
\end{equation*}
$$

The CPT invariance of H and H_{0} implies that $\langle B(t)\rangle$ is an odd function of time.

$$
\begin{align*}
\langle B(t)\rangle & =\operatorname{Tr} e^{-\beta H_{0}} \hat{B}(t) \tag{2.14}\\
& =\operatorname{Tr}\left\{\theta e^{-\beta H_{0}} \theta^{-1} \theta \hat{B}(t) \theta^{-1}\right\} \\
& =\operatorname{Tr}\left\{e^{-\beta H_{0}}(-\hat{B}(-t))\right\} \\
& =-\operatorname{Tr}\left\{e^{-\beta H_{0}} \hat{B}(-t)\right\} \\
& =-\langle B(-t)\rangle \tag{2.15}
\end{align*}
$$

where $\theta=C P T$. This antisymmetry of $$ with time is the only constraint implied by CPT.

Interesting information can also be extracted by looking at the rate of change of B.

$$
\begin{equation*}
<\dot{B}(t)>=i \operatorname{Tr}\left\{e^{-i H t}\left[e^{-\beta H} 0, v\right] e^{i H t} \hat{B}\right\} \tag{2.16}
\end{equation*}
$$

If we approximate $e^{-i H t}$ by $e^{-i H_{0} t}$ then $\left\langle\dot{B}>\right.$ must vanish since $\left[B, H_{0}\right]=0$. This implies $\langle\dot{B}\rangle$ is at least second order in V and first order in time, $\langle\dot{B}\rangle n$, . But since $\langle B\rangle$ is an odd function of $t,\langle\dot{B}\rangle$ must be even and cannot be of order t. It follows that $\langle\dot{B}\rangle$ is at least second order in t and is third order.

$$
\begin{equation*}
<B(t)>n t^{3} \tag{2.17}
\end{equation*}
$$

That baryon number excess vanishes to first order in V is to be expected. The nontrivial part of the time translation operator U is antihermitian to first order. Therefore amplitudes changing B by opposite amounts have equal magnitude and cancel. The relation $\sim t^{3}$ shows that baryon excess builds up slowly in the beginning.

In this example, a period of time will elapse during which is not zero. Eventually the interactions in V will restore the system to true thermal equilibrium with vanishing . If however the baryon violating force is switched off after a finite time the system will retain a finite net baryon excess.

The process of early expansion can disturb thermal equilibrium and lead to a temporary excess. If the universe expands and cools sufficiently rapidly the baryon violating forces may not have time to come back to equilibrium. This is especially true if the reaction rates for these processes are rapidly falling with decreasing temperature. In order to estimate if this is so we consider the quantity \dot{R} / R which measures the rate of expansion of the universe. The condition for equilibrium is

$$
\begin{equation*}
\frac{\dot{R}}{R}<\text { reaction rate } \tag{2.18}
\end{equation*}
$$

The expansion rate in the radiation dominated epoch is given by

$$
\begin{equation*}
\frac{\dot{\mathrm{R}}}{\mathrm{R}} \approx \mathrm{~T}^{2} \tag{2.19}
\end{equation*}
$$

where the temperature T and time are in units $C=h=G=1$.
The dependence of the reaction rate on temperature can be obtained from dimensional considerations. For example, in a renormalizable theory with all mass scales much lower than T the reaction rate must be proportional to T. This is because coupling constants in renormalizable theories are dimensionless. Accordingly the condition for equilibrium is

$$
\begin{equation*}
\mathrm{T}^{2}<\mathrm{T} \tag{2.20}
\end{equation*}
$$

or

$$
\begin{equation*}
T<1 \tag{2.21}
\end{equation*}
$$

Therefore the condition for thermal equilibrium in renormalizable theories is increasingly satisfied as the universe cools. This continues as long as explicit masses can be ignored. From these arguments it is easy to see that ordinary strong electromagnetic and weak interactions are in thermal equilbrium from superhigh temperatures ($\sim 10^{15} \mathrm{GeV}$) down to ordinary temperatures ($\sim 1 \mathrm{GeV}$).

In super unified theories baryon violating processes are effectively non-renormalizable Fermi interactions below energies $\sim 10^{18} \mathrm{GeV}$. This energy corresponds to the mass \tilde{M}, of the superheavy bosons which mediate the process. The effective Fermi coupling constant is

$$
\begin{equation*}
\tilde{\mathrm{G}} \approx \frac{\dot{\alpha}}{\tilde{\mathrm{M}}^{2}} \quad \sim 10^{-38} \mathrm{GeV}^{-2} \tag{2.22}
\end{equation*}
$$

The reaction rate is proportional to \widehat{G}^{2} and by dimensional arguments is

$$
\text { (reaction rate) } \approx \tilde{G}^{2} \mathrm{~T}^{5}
$$

The condition for equilibrium becomes

$$
\mathrm{T}^{2}<\mathrm{G}^{2} \mathrm{~T}^{5} \quad \text { (in Planck units) }
$$

or

$$
\begin{equation*}
T>\left(\frac{\tilde{\mathrm{M}}^{4}}{\alpha^{2}}\right) \tag{2.23}
\end{equation*}
$$

For $\tilde{M} \sim M_{\text {Planck }}$ it is unlikely that the baryon violating forces were ever in equilibrium.

Note that the baryon violations are of order α at temperatures $\approx 10^{18} \mathrm{GeV}$. Effectively we are in the situation where these interactions are switched on for a brief time interval and are then switched off. These considerations indicate that the possibility of generating baryon excess is viable.
III. MODELS WITH BARYON VIOLATION

By a unified theory ${ }^{3}$ we mean a theory in which the strong, weak and electromagnetic gauge invariances are embedded in a simple unifying group. Such theories involve a single coupling constant of order the electric charge. Both leptons and quarks appear in the same multiplets. Therefore quarks can turn into leptons by the emission of vector bosons called \tilde{W}. For example in the SU_{5} theory of Georgi and Glashow the
process shown in Fig. 1 is possible. This process implies that a proton can decay into a positron and photons.

In order to suppress the decay of the proton, the mass of the \tilde{W} must be made large. Consistency with the empirical bounds on the lifetime of the proton require

$$
\begin{equation*}
\tilde{M}>10^{15} \mathrm{GeV} \tag{3.1}
\end{equation*}
$$

We will assume \tilde{M} is approximately the P lanck mass and set it equal to unity. This assumption simplifies our discussion.

At energies below \tilde{M} the baryon violating processes are effectively described by 4 -fermi interactions. The coupling constant is approximately

$$
\begin{align*}
G & =\frac{\alpha}{\tilde{M}^{2}} \tag{3.2}\\
& =\alpha
\end{align*}
$$

in Planck units. The baryon changing interactions obviously are unimportant for temperatures very much smaller than \tilde{M}.

The other ingredient needed for baryon excess is CP violation. ${ }^{7}$ In principle the observed $C P$ violation could arise spontancously ${ }^{15}$ or from explicit asymmetry of the Lagrangian. ${ }^{16}$ If it arises spontaneously then it disappears at temperatures well above 1 TeV . In this case the CP and baryon processes cannot combine to yield an excess.

We will assume that a CP violation, perhaps unrelated to observed CP violation, exists at the superheavy scale. We might suppose that this breaking is also spontaneous. However in this case it could not be effective in producing an excess. The reason is because the radius of an event horizon is very small at the time when the baryon excess is produced. This means that uncorrelated domains of different $C P$
directions must occur with small spatial extent. Within these domains the baryon excess will have opposite sign and therefore cancel. Thus -we muet have an explicit $C P$ violation in the part of the lagrangian which is relevant at superheavy scales. This does not exclude the idea ${ }^{15}$ that the observed CP violation is spontaneous.

For definiteness we will assume explicit four Fermi vertices which break both CP and baryon conservation.

A second source of baryon violation has been discovered in the standard Weinberg Salam theory. In this model the baryon violation is of purely quantum mechanical origin. ${ }^{4}$ There exists a discrete infinity of classical degenerate vacua ${ }^{11}$ labeled by the "winding number" n. Quantum mechanical transitions between these classical vacua can occur by tunneling through an energy barrier. These events are called instantons. The physics is analogous to tunneling between the minima of a periodic potential. As 't Hooft first noted ${ }^{4}$ each instanton event is accompanied by a change in baryon number. A change in lepton number also occurs in order to compensate the electric charge. The tunneling amplitude at zero temperature is proportional to ${ }^{4}$

$$
e^{-\frac{8 \pi^{2}}{g^{2}}}
$$

which is of the order of 10^{-93} ! At very high temperatures $\mathrm{T} \geqslant 250 \mathrm{GeV}$ two qualitatively new things happen. First, the Higgs vacuum expectation value goes away. ${ }^{12}$ Second, there exists a lot of thermal energy available. This can be used to overcome the potential barrier.

To estimate the importance of this effect we must compare the barrier height with the available thermal energy. Consider an instanton of space-time radius ρ. For temperatures $\gg 250 \mathrm{GeV}$ the expectation value
of the Higgs potential vanishes and the action of an instanton is roughly what it would be for pure Yang Mills theory.

$$
\begin{equation*}
\text { Action }=\frac{8 \pi^{2}}{g^{2}} \tag{3.3}
\end{equation*}
$$

The tunneling barrier is estimated by dividing this action by the duration of the event ρ

$$
\begin{equation*}
V=\frac{8 \pi^{2}}{g^{2} \rho} \tag{3.4}
\end{equation*}
$$

(We remind the reader that Eq. 3.4 only applies above the transition temperature for the Higgs field to disappear).

Equation 3.4 suggests that we can always lower the barrier as small as we like by considering arbitrarily big instantons. This is not so. The reason is that a tunneling event is a coherent process in which the instanton density $F_{\mu \nu} \tilde{F}_{\mu \nu}$ is of a definite sign over the size of the tunneling region. Thus ρ cannot exceed the coherence length which is given by the Debye screening length in the gauge field plasma. ${ }^{13}$ This is given by the plasmon Compton wave length which for pure Yang-Mills is

$$
\begin{equation*}
\lambda \text { plasma } \approx\left(\frac{\mathrm{gT}}{\sqrt{6}}\right)^{-1}=\rho_{\max } \tag{3.5}
\end{equation*}
$$

The thermal energy within such a volume is $n \frac{\pi^{2}}{2} \rho_{\max }^{3} T^{4} \sim \frac{\pi^{2}}{2} T^{4} \lambda_{P}^{3}$. The condition that this thermal energy overcomes the barrier V is

$$
\begin{equation*}
\frac{\pi^{2}}{2} \mathrm{~T}^{4} \lambda_{\mathrm{P}}^{3}>\frac{8 \pi^{2}}{\mathrm{~g}^{2}} \frac{1}{\lambda_{\mathrm{P}}} \tag{3.5}
\end{equation*}
$$

or

$$
\left(18-8 g^{2}\right) \frac{\pi^{2}}{g^{4}} \geqslant 0
$$

This appears to be satisfied for the coupling constants characteristic of weak-electromagnetic theories.

These crude estimates only suggest the possibility that baryon number violating interactions are not suppressed at $T>250 \mathrm{GeV}$. Quantitative calculations are needed to decide the importance of this effect. In particular the effects of fermions will probably suppress the tunneling. For the remainder of this paper we will ignore this quantum mechanical source of baryon violation although it is possible for it to seriously alter the results of this paper.

IV. BARYON GENERATION MECHANISM IN FIELD THEORY

In this section we will describe field theoretic methods for computing the baryon number excess in an expanding universe. For definiteness we will consider a model in which both baryon and $C P$ violation are mediated by superheavy bosons of mass $\sim \mathrm{M}_{\text {Planck. }}$. In practice this means that these interactions are described as 4-fermi couplings.

We are going to consider a field theory in an expanding universe described by the metric

$$
\begin{align*}
d s^{2} & =(d t)^{2}-R(t)^{2} d \vec{x}^{2} \tag{4.1}\\
& =(d t)^{2}-t(d x)^{2} \tag{4.2}
\end{align*}
$$

The choice $R=\sqrt{t}$ is appropriate to a radiation dominated epoch. We will illustrate such a system by considering a scalar field with action

$$
\begin{equation*}
\mathrm{S}=\int \mathrm{d}^{4} \mathrm{x} \sqrt{-g}\left\{g^{\mu \nu} \frac{\partial \phi}{\partial \mathrm{x}^{\mu}} \frac{\partial \phi^{*}}{\partial \mathrm{x}^{\nu}}+\mathrm{V}(\phi)\right\} \tag{4.3}
\end{equation*}
$$

Now the metric in Equation 4.2 is of the conformally flat type meaning that by a change of variables it can be brought to the form

$$
\begin{equation*}
d s^{2}=\rho^{2}(x)\left\{\left(d x_{0}\right)^{2}-(d \vec{x})^{2}\right\} \tag{4.4}
\end{equation*}
$$

In particular if we change variables from t to $\tau=(2 t)^{\frac{1}{2}}$ then

$$
\begin{equation*}
d s^{2}=\tau^{2}\left(d \tau^{2}-d \vec{x}^{2}\right) \tag{4.5}
\end{equation*}
$$

Now the reader can verify that if the field ϕ is replaced by

$$
\begin{equation*}
s=\rho^{-1} \phi \tag{4.6}
\end{equation*}
$$

Then the free part of the Lagrangian becomes

$$
\begin{align*}
\mathrm{S}= & \int \mathrm{d}^{3} \mathrm{x} d \tau\left\{\left(\frac{\mathrm{ds}}{\mathrm{~d} \mathrm{\tau}}\right)^{2}-(\nabla \mathrm{s})^{2}\right\} \tag{4.6}\\
& + \text { pure divergence }
\end{align*}
$$

Furthermore if a renormalizable ϕ^{4} interaction is present in V then it is replaced by s^{4}. If on the other hand non-renormalizable terms such as $\phi^{4+2 n}$ are present they are replaced by

$$
\begin{equation*}
V(s)=\frac{s^{4+2 n}}{\tau^{2 n}} \tag{4.7}
\end{equation*}
$$

Thus, in the new time coordinate, the free and renormalizable terms in the action take their flat-space form and appear τ-independent. The nonrenormalizable terms appear time dependent with rapidly falling coefficients.

Similar results hold for more general theories. If we consider the usual type of theory containing scalar spinor and vector fields ϕ, ψ, A_{μ} and define conformal fields by

$$
\begin{gather*}
\phi \longrightarrow \rho^{-1} \phi \\
\psi \longrightarrow \rho^{-3 / 2} \psi \tag{4.8}\\
A_{\mu} \longrightarrow A_{\mu}
\end{gather*}
$$

then the free and renormalizable terms take their flat space form. The non-renormalizable Fermi couplings are replaced by their flat space counterparts times the factor $\frac{1}{\tau^{2}}$. Thus the form that the action for our model takes is

$$
\begin{equation*}
\mathrm{S}=\int \mathrm{d}^{3} \mathrm{x} d \tau\left\{\mathrm{~L}_{0}+\frac{1}{\mathrm{~T}^{2}} \mathrm{~L}_{\mathrm{I}}\right\} \tag{4.9}
\end{equation*}
$$

where \bigsqcup_{0} is a renormalizable τ-independent Lagrangian containing all the usual interactions and L_{I} is a 4 -Fermi coupling containing the superheavy mediated effects.

We will make two cautionary remakrs before proceeding to study baryon excess generation. The first is that the flat space form for renormalizable theories ignores mass effects. Since we only use if for very high temperatures this is no problem. The second remark concerns ultraviolet divergences. The above analysis was purely classical and fails when renormalization is accounted for. However, because the unified coupling is small at the Planck length, the failure only involves very weakly varying logarithms. In fact, these effects would show up as logarithms of τ multiplying the renormalizable interactions. They are completely unimportant for our problem.

Let us now return to the baryon excess problem. We write the hamiltonian resulting from Eq. 4.9 as

$$
\mathrm{H}=\mathrm{H}_{0}+\mathrm{V}(\tau)
$$

where H_{0} is baryon and $C P$ conserving. $V(\tau)$ contains the violating terms and scales like τ^{-2}.

Suppose the initial density matrix at the Planck time $\tau=1$ is given by $\rho(1)$. The expectation value of the baryon number at this time is

$$
\begin{equation*}
\langle B(1)\rangle=T_{r} \rho(1) \hat{B} \tag{4.10}
\end{equation*}
$$

At a later time τ the value of $\langle B\rangle$ is

$$
\begin{align*}
\langle B(\tau)\rangle & =\operatorname{Tr} \rho(1) U^{\dagger}(\tau) \hat{B} U(\tau) \tag{4.11}\\
& =\operatorname{Tr} U(\tau) \rho(1) U^{\dagger}(\tau) \hat{B}
\end{align*}
$$

where $U(\tau)$ is the time translation operator from $\tau=1$ to τ.
For the case that $V(\tau)$ is τ-independent (renormalizable interactions) we may immediately conclude that as $\tau \rightarrow \infty+0$. This is bccause a ficld theory with time independent hamiltonian will eventually come to thermal equilibrium and we have seen that $T C P$ insures $B=0$ in this case.

On the other hand if $V(\tau) \rightarrow 0$ fast enough we can use ordinary perturbation theory in V to compute the baryon excess as $\tau \rightarrow \infty$. To do this we use the standard interaction picture formalism to obtain

$$
\begin{align*}
& U(\tau)=U_{0}(\tau) U_{V}(\tau) \\
& U_{0}(\tau)=e^{-i H_{0}(\tau-1)} \tag{4.12}\\
& U_{V}(\tau)=T \exp \left\{-i \int_{1}^{\tau} V_{I}\left(\tau^{\prime}\right) d \tau^{\prime}\right\} \\
& V_{I}(\tau)=U_{0}^{\dagger}(\tau) V(\tau) U_{0}(\tau)
\end{align*}
$$

Thus using $\left[B, \mathrm{U}_{0}\right]=0$

$$
\begin{equation*}
\langle\mathrm{B}(\tau)\rangle=\operatorname{Tr} \rho(1) \mathrm{U}_{\mathrm{V}}^{\dagger}(\tau) \hat{\mathrm{B}} \mathrm{U}_{\mathrm{V}}(\tau) \tag{4.13}
\end{equation*}
$$

Graphical rules are derived in the appendix for the evaluation of 4.13. The following features emerge from an analysis of these rules

1) For the case $V(\tau) \sim \frac{1}{\tau^{2}}$ each order has a finite limit as $\tau \rightarrow \infty$. These limits give an order by order expansion of the final baryon excess.
2) The first order in which a nonvanishing excess occurs depends on certain features of $\rho(1)$. In particular if $[\rho(1), B]=0$ then the first order vanishes.
3) If in addition to $\rho(1)$ being diagonal in baryon number it is CP symmetric then the second order also vanishes. Thus in the case of
initially chaotic conditions, baryon excess is a third order effect. Thus, since we suppose (see Eq. 3.2) that $V \sim_{\alpha}$, baryon excess will be $w_{0}{ }^{3}$ fon initially chaotic p.

We are presently constructing Feynman rules for the evaluation of Eq. 4.13. These rules will be applied to some unified models in a future paper.

V. SCALAR TOY MODEL

Consider the model introduced in Section IT (Eq. 2.2). In conformal coordinates the action becomes

$$
\begin{equation*}
S=\int d^{3} x d \tau\left\{\left|\frac{\partial \phi}{\partial \tau}\right|^{2}-|\nabla \phi|^{2}-\frac{\lambda}{2 n}\left(\phi \phi^{*}\right)^{n}\left(\alpha \phi^{3}+\alpha^{*} \phi^{*}\right)-g\left(\phi \phi^{*}\right)^{2}\right\} \tag{5.1}
\end{equation*}
$$

where we have added the renormalizable term $g \phi^{4}$ to represent all the renormalizable interactions. In this section we will make some very crude approximations which reduce the system to a single degree of freedom.

First we shall assume that the initial density matrix is in thermal equilibrium at a temperature ~ 1. If we ignore the small (v_{α}) nonrenormalizable couplings then the system will remain in equilibrium at this temperature for all τ. (Note that in transforming to the original coordinates the temperature becomes $1 / \tau$ since it scales like energy). Thus the average value of $|\phi|$ will remain constant of order unity. Indeed the first simplification will be to replace $|\phi|$ by unity.

The other drastic simplification will be to focus on a single unit coordinate cell over which ϕ will be assumed spatially constant. Putting $\phi=e^{i \theta}$ we obtain a system described by the Lagrangian

$$
\begin{equation*}
\mathscr{L}=\left(\frac{\mathrm{d} \theta}{\mathrm{~d} \tau}\right)^{2}-\tau^{-2 \mathrm{n}} \mathrm{~V}(\theta) \tag{5.2}
\end{equation*}
$$

The baryon number of a unit cell is given by Eq. 2.4

$$
\begin{align*}
B & =R^{3}(t) i \phi{\overleftrightarrow{\partial_{\mathbf{t}}}}^{*}{ }^{*} \\
& =2 \frac{d \theta}{d \tau} \tag{5.3}
\end{align*}
$$

Equation 5.2 describes.a pendulum in a time dependent unsymmetric potential and Eq. 5.3 says that the baryon number of a single cell is given by its angular velocity. The CPT invariance of the original instantaneous hamiltonian corresponds to the time reversal invariance of the pendulum.

The approximation of ignoring the interaction of neighboring cells is surely too severe to correctly describe the high temperature nonequilibrium properties of the subsystem. In particular it is impossible for the single pendulum to relax to thermal equilibrium if it is disturbed. For example, if the pendulum is given a hard "clockwise" swing it will forever continue to rotate so that $\dot{\theta} \nrightarrow 0$. But in thermal equilibrium $\langle\dot{\theta}\rangle=0$ by the same arguments which we used to prove $\langle B\rangle=0$.

By ignoring the surrounding heat bath we have eliminated the possibility of dissipation. A simple method for incorporating it is to introduce a dissipative damping term into the equation of motion. Thus we write the equation of motion

$$
\begin{equation*}
\frac{d^{2} \theta}{d \tau^{2}}+\tau^{-2 n} \frac{\partial V}{\partial \theta}+f(\tau) \frac{d \theta}{d \tau}=0 \tag{5.4}
\end{equation*}
$$

The computation of friction coefficients in nonequilibrium statistical mechanics typically involves the computation of the absorptive (imaginary) part of some thermal Green's function. ${ }^{14}$ That is to say, we calculate the width of some excitation which propagates in the medium.

In the case of electrical resistance we calculate the absorptive part of the plasmon propagator. ${ }^{14}$ In our case, a non zero baryon charge
must dissipate as equilibrium is restored. Accordingly we must compute the width of the charge-carrying excitation described by the field ϕ due to baryon violating processes. In the model field theory with interaction $V(\phi)=\lambda\left(\phi^{*} \phi\right)^{n}\left(\phi+\phi^{*}\right)\left(\alpha \phi^{3}+\alpha^{*} \phi^{*} 3\right)$ the relevant width is described by graphs shown in Fig. (2). Dimensional arguments require the temperature dependent width to be

$$
\begin{equation*}
\gamma(T) \approx \lambda^{2} T^{4 n+1} \tag{5.5}
\end{equation*}
$$

Thus if the number of baryons in the unit cell is B, the number lost by dissipation is

$$
\begin{equation*}
\left(\frac{d}{d t} B\right)_{\text {dis }}=-B \gamma=-B \lambda^{2} T^{4 n+1} \tag{5.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{d B}{d t}\right)_{\text {dis }}=-\frac{\lambda^{2} B}{\tau^{4 n}} \tag{5.7}
\end{equation*}
$$

Recalling that B is identified with $\frac{d \theta}{d \tau}$ we interpret Eq. 5.7 to mean that the coefficient f in Eq. 5.4 is $\frac{\lambda^{2}}{\tau^{4 n}}$

$$
\begin{equation*}
\frac{d^{2} \theta}{d \tau^{2}}+\tau^{-2 n} \frac{\partial V}{\partial \theta}+\frac{\lambda^{2}}{\tau^{4 n}} \frac{d \theta}{d \tau}=0 \tag{5.8}
\end{equation*}
$$

Equation 5.8 defines the toy model.
To see how the toy model can lead to an asymmetric distribution of baryons and anti-baryons consider a $V(\theta)$ which looks like Fig. 3, i.e. it has no point of reflection symmetry. Now suppose the initial probability density in θ and $\dot{\theta}$ is uniform in θ and symmetric under $\dot{\theta} \rightarrow-\dot{\theta}$. We observe that a particle has a large probability to get a small kick to the left and a small probability for a large kick to the right. Thus the probability distribution becomes asymmetric. However, to first
order in time no average change in $\dot{\theta}$ occurs. This is because the average force $\frac{\partial V}{\partial \theta}$ vanishes for a uniform distribution in θ. In fact $\& \dot{\theta}\rangle$ onty becomes nonzero in order τ^{5}. Furthermore the first nonvanishing order in V is third order.

If the universe was a non-expanding box at fixed temperature then no net baryon excess can be maintained at long times. Indeed the toy model is consistent with this. In a non-expanding universe the form of the toy model is

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}+\lambda T^{2 n+2} \frac{\partial V}{\partial \theta}+\lambda^{2} T^{4 n+1} \frac{d \theta}{d t}=0 \tag{5.9}
\end{equation*}
$$

Let us suppose after a long time that the baryon number $T^{2} \frac{d \theta}{d t}$ is constant. Then

$$
\begin{equation*}
\lambda T^{2 n+2} \frac{\partial V}{\partial \theta}+\lambda^{2} T^{2+n+1} \dot{\theta}=0 \tag{5.10}
\end{equation*}
$$

Integrating this over a period and using the periodicity of $V(\theta)$ we see that the baryon number has to vanish. Note that both the periodicity of the potential and the existence of the friction term are important in reaching this conclusion.

Now we find the conditions that will allow a nonvanishing baryon number at large times. Multiplying equation 5.8 by $\tau^{2 \mathrm{n}}$ and integrating over a period we obtain

$$
\begin{equation*}
\oint \tau^{2 n} \frac{d K}{d \tau} d \tau=-2 \lambda^{2} \oint \frac{K}{\tau^{2 n}} d \tau \tag{5.11}
\end{equation*}
$$

where $K=\frac{1}{2}\left(\frac{d \theta}{d \tau}\right)^{2}$. After a long time, this equation effectively becomes

$$
\begin{equation*}
\frac{d K}{d \tau}=-2 \lambda^{2} \frac{K}{\tau^{4 n}} . \tag{5.12}
\end{equation*}
$$

For the renormalizable case $n=0$ we see that baryon number is exponentially damped. This agrees with our previous expectations. For $n>\frac{1}{4}$ this equation heas solutions for which the baryon number tends to a constant. Thus we see that for nonrenormalizable theories the friction term can be neglected, and baryon excess occurs as $\tau \rightarrow \infty$.

VI. CONCLUDING REMARKS

In this paper we have argued that a baryon excess may be produced in an expanding universe even though the initial conditions are symmetric. For the case of unified theories the excess is developed at times of order $10^{-40} \mathrm{sec}$ while the temperature is comparable to the Planck mass. An admittedly oversimplified model yields a small number of baryons per unit cell of the order α^{3}.

The conclusion that the effect is α^{3} does not appear to be general. It is a consequence of replacing the superheavy interactions by 4-fermi interactions. While this helps us visualize the process it is not entirely consistent. This is because the main action occurs at energies of order \tilde{M} and not much lower energies. Therefore it is important to open up the "black box" hiding the superheavy boson exchange. As far as we can tell there are then order α^{2} effects. This is somewhat too large empirically but we must keep in mind that there are effects which we ignored which decrease $N B / N \gamma$. We have treated the universe expansion as if it were a reversible process with respect to the ordinary interactions. In fact there are possible sources of irreversibility which can heat up the system. ${ }^{17}$ Eventually this heat must appear as photons.

Unfortunately this optimistic picture which emerges in unified theories may be drastically changed if the baryon violating tunneling
events are really important. The point is that the rates for these processes are of the renormalizable type for $T>250 \mathrm{GeV}$. Thus they can allow the system to return to equilibrium and may wash out any excess which developed at super high temperature.

Of course as the temperature goes below 250 GeV the tunneling processes also go out of equilibrium. In principle the observed baryon excess could be attributed to this final stage of baryon violation. In this case the number of baryons in the universe is independent of the initial conditions and the details of the particular unified model.

APPENDIX A
Graphical Rules for Computing $\langle B(\tau)>$
Consider a theory of fermions interacting with baryon, C and CP violating 4-Fermi forces. The Hamiltonian of this theory in the expanding universe in terms of the conformed coordinates is of the form

$$
H=H_{0}+V(\tau)
$$

The baryon number violating piece $V(\tau)$ is of the form

$$
V(\tau)=\frac{\alpha}{\tau^{2}} \int d^{3} \vec{x}(\bar{\psi} \Gamma \psi)^{2} \equiv \frac{v}{\tau^{2}}
$$

The graphical rules for the evaluation of $\langle B(\tau)\rangle$ can be deduced from the expression

$$
\langle B(\tau)\rangle=\operatorname{Tr} \rho(1) \mathrm{U}_{\mathrm{V}_{\mathrm{I}}}^{+}(\tau) \mathrm{U}_{\mathrm{H}_{0}}^{+}(\tau) \hat{\mathrm{B}} \mathrm{U}_{\mathrm{H}_{0}}(\tau) \mathrm{U}_{\mathrm{V}_{\mathrm{I}}}(\tau)
$$

where

$$
\begin{align*}
& \mathrm{U}_{\mathrm{H}_{0}}(\tau)=\mathrm{T} \mathrm{e}^{-\mathrm{i} \int_{1}^{\tau} \mathrm{H}_{0}\left(\tau^{\prime}\right) \mathrm{d} \tau^{\prime}}=\mathrm{e}^{-\mathrm{i} \mathrm{H}_{0}(\tau-1)} \tag{A2}\\
& \mathrm{U}_{\mathrm{V}_{\mathrm{I}}}(\tau)=\mathrm{T} \mathrm{e}^{-\mathrm{i} \int_{1}^{\tau} \mathrm{V}_{\mathrm{I}}\left(\tau^{\prime}\right) \mathrm{d} \tau^{\prime}} \\
& \mathrm{V}_{\mathrm{I}}(\tau)=\mathrm{U}_{\mathrm{H}_{0}}^{+}(\tau) \mathrm{V}(\tau) \mathrm{U}_{\mathrm{H}_{0}}(\tau)
\end{align*}
$$

Since H_{0} conserves baryon number expression Al simplifies to

$$
\langle B(\tau)\rangle=\operatorname{Tr} \rho(1) \mathrm{U}_{\mathrm{V}_{\mathrm{I}}}^{+}(\tau) \hat{B} \mathrm{U}_{\mathrm{V}_{\mathrm{I}}}(\tau)
$$

The graphical rules for the evaluation of this quantity are the following:

1) Draw the closed loop shown in Fig. 4 in order $\ell+\mathrm{r}$. -
2) For each cross on the right write $i e^{i H_{0}\left(\tau^{\prime}-1\right)} v e^{-i H_{0}\left(\tau^{\prime}-1\right)}$. For each cross on the left write -i $e^{i H_{0}(\tau-1)} v e^{-i H_{0}(\tau-1)}$.
3) Write down the terms indicated in Fig. 4 in anticlockwise order and take the trace.
4) Carry out the time integrations with weight $\frac{1}{\tau^{2}}$. Respect time ordering.

Do the same for all $\ell+r+1$ graphs appearing in order $\ell+r$.
Note that the lines in Fig. 4 are not particle lines. They represent propagation of states.

APPENDIX B

Here we will show explicitly that for the model discussed in Appendix A the second order contribution to $\langle B(\tau)\rangle$ vanish. We shall label each state solely by its baryon number $|n\rangle$. The CPT conjugate state will be denoted by $\mid-n>C P T$ invariance of $\rho_{n}(1)=\rho_{-n}(1)$

Since $[B, \rho(1)]=0 \rho_{n m}(1) \equiv \rho_{n m}=\rho_{n} \delta_{n m}$. Since B is CPT odd $B_{-n}=-B_{n}$. The second order contributions to $\langle B(\tau)\rangle$ arise from the graphs of Fig. 5 . The coftribution of graph (a) is

$$
i(-i) \int_{1}^{\tau} \frac{d \tau_{1}}{\tau_{1}} \int_{1}^{\tau} \frac{d \tau_{2}}{\tau_{2}^{2}} \rho_{n} e^{i \varepsilon_{n} \tau_{1}} v_{n m} e^{-i \varepsilon_{m} \tau_{1}} B_{m} e^{i \varepsilon_{m} \tau_{2}} v_{m n} e^{-i \varepsilon_{n} \tau_{2}}=0
$$

In deriving this we used the CPT invariance of the Hamiltonian H

$$
\varepsilon_{\mathrm{n}}=+\varepsilon_{-\mathrm{n}} \text { and }\left|v_{\mathrm{nm}}\right|^{2}=\left|v_{-m,-\mathrm{n}}\right|^{2}
$$

The contribution of graph (b) is

$$
(-i)^{2} \int_{1}^{\tau} \frac{d \tau_{2}}{\tau_{2}^{2}} \int_{1}^{\tau} \frac{d \tau_{1}}{\tau_{1}{ }^{2}} \rho_{n} B_{n} e^{i \varepsilon_{n} \tau_{2}} v_{n m} e^{-i \varepsilon_{m}{ }^{\tau} 2} e^{i \varepsilon_{m}{ }^{\tau} 1} v_{m n} e^{-i \varepsilon_{n}{ }^{\tau} 1}=0
$$

This vanishes for the same reason with graph (a). The vanishing of the second order contribution to $\langle B(\tau)\rangle$ is not a general feature of all models. It only happens because the explicit time dependence of $V(\tau)$ can be factored out.

APPENDIX C

In this Appendix we write down the third order contributions to $<B(\tau)\rangle$ for the model of Appendix A. The graphs contributing are those of Fig. 6.

Graph (a) contributes

$$
\begin{aligned}
& \left.(-i)^{3} \int_{1}^{\tau} \frac{d \tau}{\tau_{3}} \int_{1}^{\tau} \frac{d \tau}{\tau_{2}^{2}} \int_{1}^{\tau} \frac{d \tau}{\tau_{1}{ }^{2}} \rho_{n} B_{n} e^{i \varepsilon_{n}{ }^{\tau} 3} v_{n m} e^{-i \varepsilon_{m}\left(\tau_{3}-\tau\right.}\right)^{2} v_{m e} \\
& \left.\times e^{-i \varepsilon_{e}\left(\tau_{2}-\tau\right.}\right)_{v_{e n}} e^{-i \varepsilon_{n} \tau_{1}} \\
& =(-i)^{3} \int_{1}^{\tau} \frac{d \tau_{3}}{\tau_{3}{ }^{2}} e^{i \tau_{3}\left(\varepsilon_{n}-\varepsilon_{m}\right)} \int_{1}^{\tau} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{i \tau_{2}\left(\varepsilon_{m}-\varepsilon_{e}\right)} \int_{1}^{\tau 2} \frac{d \tau_{1}}{\tau_{1}^{2}} e^{i \tau_{1}\left(\varepsilon_{e}-\varepsilon_{n}\right)} \\
& \times \rho_{n} B_{n} v_{n m} v_{m e} v_{e n}
\end{aligned}
$$

Graph (b) contributes

$$
\begin{aligned}
& i^{3} \int_{1}^{\tau} \frac{d \tau_{3}}{\tau_{2}^{2}} \int_{1}^{\tau 3} \frac{d \tau_{2}}{\tau_{2}^{2}} \int_{1}^{\tau_{2}} \frac{d \tau_{1}}{\tau_{1}{ }^{2}} \rho_{n} B_{n} e^{i \varepsilon_{n} \tau_{1}} v_{v_{n m}} e^{-i \varepsilon_{m}\left(\tau_{1}-\tau_{2}\right)} V_{m e} e^{-\varepsilon^{\left(\tau_{2}-\tau_{3}\right)}} \\
& x_{v_{\text {en }}} e^{-i \varepsilon_{n} \tau^{2}} \\
& =i \int_{1}^{\tau} \frac{d \tau_{3}}{\tau_{3}{ }^{2}} e^{i \tau_{3}\left(\varepsilon_{e}-\varepsilon_{n}\right)} \int_{1}^{\tau} \frac{d \tau_{2}}{\tau_{2}^{3}} e^{i \tau_{2}\left(\varepsilon_{m}-\varepsilon_{e}\right)} \int_{1}^{\tau} \frac{d \tau_{1}}{\tau_{1}^{2}} e^{i \tau_{1}\left(\varepsilon_{n}-\varepsilon_{m}\right)} \rho_{n} B_{n} v_{n m} v_{m e} v_{e n}
\end{aligned}
$$

Graph (b), of course, is just the complex conjugate of Graph (a).
Graph (c) yields

$$
\begin{aligned}
& (-i)^{2} i \int^{\tau} \frac{d \tau}{\tau_{1}^{\prime 2}} e^{i\left(\varepsilon_{n}-\varepsilon_{m}\right) \tau} \int^{\prime} \int^{\tau} \frac{d \tau_{2}}{\tau_{2}^{2}} e^{i\left(\varepsilon_{m}-\varepsilon_{e}\right) \tau} \int^{\tau} \frac{d \tau}{\tau_{1}^{2}} e^{i\left(\varepsilon_{0}-\varepsilon_{n}\right) \tau_{1}} \\
& 1 \\
& 1 \\
& 1 \\
& \times \rho_{\mathrm{n}} \mathrm{vnm}{ }^{\beta} \mathrm{v}_{\mathrm{me}}{ }^{\mathrm{v}} \text { en }
\end{aligned}
$$

Graph (d) yields the complex conjugate of (c)

$$
\begin{gathered}
i^{2}(-i) \int_{1}^{\frac{\tau}{\tau_{2}} \frac{2}{\tau_{2}^{\prime 2}}} e^{i \tau_{2}^{\prime}\left(\varepsilon_{m}-\varepsilon_{e}\right)} \int_{1}^{\tau \dot{2}} \frac{d \tau_{1}^{\prime}}{t_{1}^{2}} e^{i \tau_{1}^{\prime}\left(\varepsilon_{n}-\varepsilon_{m}\right)} \int_{1}^{\tau} \frac{d \tau_{1}}{\tau_{1}^{2}} e^{i \tau_{1}\left(\varepsilon_{e}-\varepsilon_{n}\right)} \\
\\
\times \rho_{n} v_{n m} v e^{B} e^{v} e n
\end{gathered}
$$

These expressions do not vanish in general. They, of course, vanish if we assume C or CP invariant matrix elements for v .

ACKNOWLEDGEMENTS

We would like to thank R. Wagoner for many critical insights without which could not have written this paper. We are also indebted to E. Liang, D. Sciama and G. Steigman for interesting comments.

One of us (S. D.) would 1ike to thank Sid Drell and Dirk Walecka
for hospitality at SLAC and Stanford University.

REFERENCES

1. G. Steigman, Annual Review of Astronomy and Astrophysics, Vol. $14,1976$.

2: S.-Weinberg, Gravitation and Cosmology, (Wiley, New York 1972).
3. II. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974);
J. C. Pati and A. Salam, Phys. Rev. D8, 1240 (1973) and Phys. Rev. D10, 275 (1974); F. Gürsey and P. Sikivie, Phys. Rev. Lett. 36, 775 (1976).
4. G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976) and Phys. Rev. D14, 3432 (1976); A. A. Belavin et al., Phys. Lett. 59B, 85 (1975).
5. M. Yoshimura, Unified Gauge Theories and the Baryon Number of the Universe, Tohoku University preprint TU/78/179 (March 1978).
6. S. Hawking, Commun. Math. Phys. 43, 199 (1975); R. M. Wald, Commun. Math. Phys. 45, 9 (1975).
7. T. D. Lee, R. Oehme and C. N. Yang, Phys. Rev. 106, 340 (1957); T. D. Lee and C. S. Wu, Annu. Rev. Nucl. Sci. 16, 511 (1966).
8. The remainder of this section is not essential to the rest of the paper.
9. We use Schwinger's definition of CPT transformation which differs from the standard (Wigner) definition by a hermitean conjugation.
10. This estimate varies from one unified model to the next.
11. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976); C. Callan, R. Dashen and D. Gross, Phys. Lett. 635, 334 (1976).
12. D. A. Kirzhnits and A. D. Linde, Phys. Lett. 42B,471 (1972); L. Dolan and R. Jackiw, Phys. Rev. D9, 3320 (1974) ; S. Weinberg, ibid 9, 3357 (1974).
13. M. B. Kislinger and P. D. Morley, Phys. Rev. D13, 2765 (1976) and Phys. Rev. D13, 2771 (1976).
14. A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems, (McGraw Hill, N.Y. (1971).
15. T: D. Lee, Phys. Rev. D8, 1226 (1973) and Phys. Rep. 3C, 143 (1974).
16. S. Weinberg, Phys. Rev. Lett. 37, 657 (1976).
17. See for example E.P.T. Liang, Phys. Rev. D16, 3369.

FIGURE CAPTIONS

1. Baryon violating process occuring in the SU_{5} 's unified theory.
2. Graph contributing to baryon dissipation.
3. A potential which violated $V(\theta)$.
4. Graphical notations. Solid lines represent propagating state vectors.

Crosses represent the action of V. The black dot represents the initial density matrix and wavy line represents the measurement of baryon number.
5. The second order contributions to $\langle B(\tau)\rangle$.
6. The third order contributions to $\langle\mathrm{B}(\tau)\rangle$.

Fig. 1

Fig. 2
(as

\qquad

Fig. 4

Fig. 5

Fig. 6

[^0]: $\dagger_{\text {Address }}$ after September lst: Physics Department, Columbia University, New York, N.Y. 10027
 *Supported in part by N.S.F. contract 76-16992

