
SLAC-PUB-2126 
June 1978 
CT) .- 

ON THE BARYON NUMBER OF THE UNIVERSE* 

Savas Dimopoulos+ 
Enrico -Fermi Institute 

University of Chicago 

and 

Leonard Susskind 
Stanford Linear Accelerator Center 

Stanford University, Stanford, 94305 

ABSTRACT 

We consider the possibility that the observed particle-antiparticle 

imbalance in the universe is due to baryon, C and CP violation. We make 

general observations and describe a framework for making quantitative 

estimates. 

(Submitted to Phys. Rev. D) 

t Address after September 1st: Physics Department, Columbia University, 
New York, N.Y. 10027 

*Supported in part by N.S.F. contract 76-16992 



-2- 

1. INTRODUCTION 

Evidence exists1 that the universe contains many more particles than 

antipafticles. A quantitative measure of this particle excess is given 

by the number of baryons within a unit thermal cell of size R=T -1 . Such 

a cell contains a single blackbody photon. 2 In current cosmological 

-* 

theories it is a box, expanding according to 2 

R-l & R(t)% $$ (1.1) 

In the very early universe there was approximately 1 of every species of 

particle within a unit cell. However, the unit cell today contains only 

1o-g baryons and essentially no antibaryons. If baryon number is con- 

served then the unit cell has always contained a baryon number of order 

1o-g. 

One cannot rule out the possibility that the universe was created 

with net baryon number and no explanation is needed. However, to quote 

Einstein, "If that's the way God made the world then I don't want to have 

anything to do with Him." In fact modern theories of particle inter- 

actions suggest that baryon number is not strictly conserved 354 . If this 

is true then todays baryon number is as much dependent on dynamical proc- 

esses as on initial conditions. Indeed Yoshimura' has made the exciting 

suggestion that baryon violation can combine with CP noninvariance to 

produce a calculable net baryon number even though the universe was ini- 

tially baryon neutral. Yoshimura has also made estimates5 which indicate 

that this may be quantitatively plausible. 
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There are three interesting reasons to believe that baryon number is 

not exactly conserved. 

l+ Black holes can swallow baryons6 

2) Quantum mechanical baryon number violations have been discovered 

by 't Hooft in the standard Weinberg Salam theory.4 

3) Super unified theories of strong, electromagnetic and weak inter- 

actions naturally violate baryon number at super high energy3. 

Although baryon violations are minute at ordinary energy, in cases 

2 and 3 they may become significant at sufficiently high temperature. 

Baryon number violation is not enough to create an excess of baryons. 

The process itself must be particle-antiparticle asymmetric.5 Otherwise 

the sign of the effect will be random and cancel in different cells. In 

this case the total baryon excess would be of order the square root of 

the total number of photons. However, the total number of photons in the 

observed universe is %lO 88 and the baryon number is ~10 79 . 

The required particle-antiparticle asymmetry is known to exist. 

Indeed charge conjugation is maximally violated in ordinary weak inter- 

actions. Were this the only asymmetry CP invariance would destroy any 

possible effect because total baryon number changes sign under CP as well 

as C. Luckily CP violations are known to exist. 7 

CPT invariance also imposes a very interesting constraint on the 

expansion rate of the universe. As we shall see, CPT invariance insures 

vanishing baryon density in thermal equilibrium. Therefore the expansion 

rate must remain rapid enough to prevent the baryon violating forces from 

coming to equilibrium. 
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In this paper we will discuss how baryon, C and CP nonconservation 1 

can conspire with the early Hubble expansion to produce an observable 

baryon-excess. 

As we shall see, the baryon excess may originate at or close to the 

very earliest times %lo-42 sec.. At that time the temperature, energy 

density and local space-time curvature are assumed to be of order unity 

in units of the Planck mass. The metric in Planck units is of the Robertson 

Walker type' 

(ds)2 = dt2 - R(t)2 dxidxi 

where R(t)%1 at the Planck time t=l. 

Let us follow the evolution of a single unit coordinate cell of 

dimensions Axi=l. At the earliest of times it is a cube of unit volume 

(1o-1oo cm3) in Planck units. We will assume that quantum fluctuations 

and gravitational interactions between gravitons and matter rapidly bring 

the universe to equilibrium at a temperature of unity. It follows that 

our unit cell initially contains about one elementary particle of each 

species. In current unified theories this means%100 particles (photons, 

leptons, gravitons, intermediate bosons, quarks, vector gluons, higgs 

bosons, super-heavy bosons....). 

As the unit cell evolves it expands and cools. The process is not 

too different from the slow expansion of a box containing radiation. As 

in this case, the entropy within the cell is not significantly changed 

during the expansion. Roughly speaking this implies that the number of 

particles within that cell is the same today as it was at creation. Of 

course, by now, the only particles left are photons, neutrinos and any 

excess protons and electrons. The others all annihilated or decayed when 

the temperature decreased below their mass. 
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The excess, expressed as a baryon number in the unit coordinate cell 

is a number of order -* 

NB 
nB=Nn 

Y y 

where NB I -9 

NY =l” 
and n 

Y 
is the number of photons in the unit cell today. 

Assuming it is of order the number of elementary particle types5 we must 

account for 10 -7 baryons per box. 

The estimates made in later sections for the baryon excess are too 

uncertain to be taken seriously. In addition to particle physics uncer- 

tainties, the properties of the initial conditions at creation are unknown 

and can influence the result. Our estimates are made for the most pessi- 

mistic case which we call "chaotic initial conditions". Such an initial 

condition is described by a density matrix p which is diagonal in baryon 

number and symmetric under the interchange of baryons and antibaryons. 

It is the sort of initial condition which would describe equilibrium if 

the earliest interactions respected baryon, C and CP invariance. 

II. CPT AND EQUILIBRIUM 

It is self-evident that if C or CP are symmetries of the equations 

of motion then no global baryon excess can result from baryon violating 

processes. To illustrate the constraints imposed by CPT in an expanding 

universe we discuss some examples. 

Consider a complex scalar field 4(x) in an expanding universe de- 

scribed by the metric 

(ds)' = (dt)2 - R(t)2 (d%)2 

The action for this model is taken to be 

(2.1) 

s = d4x 6 
/ - V(4) 

> 
(2.2) 



-6- 

where 

V($) = w$*P(~+~*)b~3 + ,*$*3) 

and c1 is a complex phase. The baryon current density is 

(2.3) -c 

B 
11 (2.4) 

Note that V(4) violates baryon conservation, C-invariance ((I+$*) and CP- 

invariance. 

The Hamiltonian for this model is 

H(t) =/d3x {.$-&- + R(t) /V+12 

+ R3 (t)V(+) > (2.5) 

This Hamiltonian is invariant under the following CPT transformation' 

$44 ----* @d-x) (2.6) 

T(X) + -lr(-X) (2.7) 
. - 

The baryon number 

i(@r-T*$*) p=O 
B$x) = 

rg i(X$* p=i 
(2.8) 

changes sign under 2.6-2.7. 

The CPT transformation is a symmetry of the spectrum of the instan- 

taneous Hamiltonian but not of the equation of motion because of the 

explicit time dependence of H. 

Now consider the case where the universe expands so slowly that at 

every instant it is in thermal equilibrium with respect to the instan- 

taneous hamiltonian H(t). The density matrix at time t is 

P(t) = exp{-@(t)H(t)j (2.9) 
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Since CPT conjugate states carry equal energy but opposite baryon charge 

B the expectation value of B vanishes -. 

-c, 
<B> = Tr -B(t)H(t)i = o (2.10) 

Therefore the only hope of generating b-aryon excess is for the 

baryon violating interactions to remain out of thermal equilibrium. This 

implies that the rate of expansion of the universe has to be faster than 

the baryon number violating reaction rates. 

NOW we will discuss a second model to illustrate the possibility of 

baryon number generation if we are out of equilibrium. 

Consider a time independent Hamiltonian H=HO+V. Ho is baryon, C and 

CP conserving and V is a small perturbation which violates these quantum 

numbers. Suppose that at time t=O the system is in thermal equilibrium 

with respect to the Hamiltonian Ho 

~(0) = e 
-fiHo 

(2.11) 

Under the action of the full Hamiltonian the density matrix at time 

t has evolved to 

p(t) = ewiHt e 
-gHO ,-I-iHt 

The mean baryon number is 

<B(t)> = Tr (2.12) 

where 

ii(t) = e iHt iie -iHt (2.13) 

The CPT invariance of H and Ho implies that <B(t)> is an odd function of 

time. 
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<B(t)> = Tr e 
-q) ,+ 

B(t) (2.14) 

= Tr Be +Ho& B(t)e-l 
> 

= Tr .{e-""" (-2(-t))} 

= -Tr e 
-1 

= -<B(-t)> (2.15) 

where 8=CPT. This antisymmetry of <B> with time is the only constraint 

implied by CPT. 

Interesting 

of change of B. 

information can also be extracted by looking at the rate 

<g(t)> = i Tr{giHt[e-BHo,V] eiHtg} (2.16) 

If we approximate e -iHt -iHot 
by e then &D must vanish since ~,H~]=o. 

This implies <8> is at least second order in V and first order in time, 

. - &-bt . But since <B> is an odd function of t,<i> must be even and cannot 

be of order t. It follows that & is at least second order in t and 

<B> is third order. 

<B(t)=t3 (2.17) 

That baryon number excess vanishes to first order in V is to be 

expected. The nontrivial part of the time translation operator U is 

antihermitian to first order. Therefore amplitudes changing B by opposite 

amounts have equal magnitude and cancel. The relation <B>%t3 shows 

that baryon excess builds up slowly in the beginning. 

In this example, a period of time will elapse during which <B> 

is not zero. Eventually the interactions in V will restore the system 

to true thermal equilibrium with vanishing <B>. If however the baryon 

violating force is switched off after a finite time the system will re- 

tain a finite net baryon excess. 
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The process of early expansion can disturb thermal equilibrium and 

lead to a temporary excess. If the universe expands and cools suffic- 

iently rapidly the baryon violating forces may not have time to come back 

to equilibrium. This is especially true if the reaction rates for these 

processes are rapidly falling with decreasing temperature. In order to 

estimate if this is so we consider the quantity i/R which measures the 

rate of expansion of the universe. The condition for equilibrium is 

i < reaction rate R (2.18) 

The expansion rate in the radiation dominated epoch is given by 

(2.19) 

. - 

where the temperature T and time are in units C=-h=G=l. 

The dependence of the reaction rate on temperature can be obtained 

from dimensional considerations. For example, in a renormalizable theory 

with all mass scales much lower than T the reaction rate must be propor- 

tional to T. This is because coupling constants in renormalizable 

theories are dimensionless. Accordingly the condition for equilibrium is 

T2<T (2.20) 

or 

T<l (2.21) 

Therefore the condition for thermal equilibrium in renormalizable theories 

is increasingly satisfied as the universe cools. This continues as long 

as explicit masses can be ignored. From these arguments it is easy to 

see that ordinary strong electromagnetic and weak interactions are in 

thermal equilbrium from superhigh temperatures (~10 15 GeV) down to 

ordinary temperatures (~1 GeV). 
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In super unified theories baryon violating processes are effectively 

non-renormalizable Fermi interactions below energies ~10 18 GeV. This -. 

energjP corresponds to the mass M, of the superheavy bosons which mediate 

the process. The effective Fermi coupling constant is 

E z cl ,10-38 GeV -2 (2.22) 
R2 

The reaction rate is proportional to G2 and by dimensional arguments is 

(reaction rate) Z G2T5 

The condition for equilibrium becomes 

or 

T2 < G2T5 (in Planck units) 

$4 T> -7 c i a (2.23) 

For M Q MPlanck it is unlikely that the baryon violating forces were ever 

in equilibrium. 

Note that the baryon violations are of order a at temperatures 

%1018 GeV. Effectively we are in the situation where these interactions 

are switched on for a brief time interval and are then switched off. 

These considerations indicate that the possibility of generating baryon 

excess is viable. 

III. MODELS WITH BARYON VIOLATION 

By a unified theory3 we mean a theory in which the strong, weak and 

electromagnetic gauge invariances are embedded in a simple unifying 

group. Such theories involve a single coupling constant of order the 

electric charge. Both leptons and quarks appear in the same multiplets. 

Therefore quarks can turn into leptons by the emission of vector bosons 

called W. For example in the SU5 theory of Georgi and Glashow the 
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process shown in Fig. 1 is possible. This process implies that a proton 

can decay into a positron and photons. -. 

An order to suppress the decay of the proton, the mass of the W 

must be made large. Consistency with the empirical bounds on the life- 

time of the proton require 

fi > 1015 GeV (3.1) 

We will assume M is approximately the Planck mass and set it equal to 

unity. This assumption simplifies our discussion. 

At energies below i the baryon violating processes are effectively 

described by 4-fermi interactions. The coupling constant is approxi- 

mately 

G=C” 
r;12 

(3.2) 

=a 

in Planck units. The baryon changing interactions obviously are unimpor- 

tant for temperatures very much smaller than i. 

The other ingredient needed for baryon excess is CP violation. 7 
In 

principle the observed CP violation could arise spontaneously 15 or from 

explicit asymmetry of the Lagrangian. 16 If it arises spontaneously then 

it disappears at temperatures well above I TeV. In this case the CP and 

baryon processes cannot combine to yield an excess. 

We will assume that a CP violation, perhaps unrelated to observed 

CP violation, exists at the superheavy scale. We might suppose that 

this breaking is also spontaneous. However in this case it could not be 

effective in producing an excess. The reason is because the radius of 

an event horizon is very small at the time when the baryon excess is 

produced. This means that uncorrelated domains of different CP 
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directions must occur with small spatial extent. Within these domains 

the baryon excess will have opposite sign and therefore cancel. Thus 

.we must have an explicit CP violation in the part of the lagrangian 

which is relevant at superheavy scales. This does not exclude the idea 15 

that the observed CP violation-is spontaneous. 

For definiteness we will assume explicit four Fermi vertices which 

break both CP and baryon conservation. 

A second source of baryon violation has been discovered in the 

standard Weinberg Salam theory. In this model the baryon violation is 

of purely quantum mechanical origin. 4 There exists a discrete infinity 

of classical degenerate vacua 
11 

labeled by the "winding number" n. 

Quantum mechanical transitions between these classical vacua can 

occur by tunneling through an energy barrier. These events are called 

instantons. The physics is analogous to tunneling between the minima 

-: 

of a periodic potential. As 't Hooft first noted4 each instanton event 

is accompanied by a change in baryon number. A change in lepton number 

also occurs in order to compensate the electric charge. The tunneling 

amplitude at zero temperature is proportional to4 

87r2 

e -g" 

which is of the order of 10 -9x! At very high temperatures T Z+ 250 GeV 

two qualitatively new things happen. First, the Higgs vacuum expecta- 

tion value goes away. 12 Second, there exists a lot of thermal energy 

available. This can be used to overcome the potential barrier. 

To estimate the importance of this effect we must compare the 

barrier height with the available thermal energy. Consider an instanton 

of space-time radius p. For temperatures >>250 GeV the expectation value 
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of the Higgs potential vanishes and the action of an instanton is roughly 

what it would be for pure Yang Mills theory. .* 

-c, 
HIT* Action = - 
g2 

(3.3) 

The tunneling barrier .is estimated by dividing this action by the dura- 

tion of the event p 

87~ 2 

v=&- (3.4) 

. - 

(We remind the reader that Eq. 3.4 only applies above the transition 

temperature for the Higgs field to disappear). 

Equation 3.4 suggests that we can always lower the barrier as small 

as we like by considering arbitrarily big instantons. This-is not so. 

The reason is that a tunneling event is a coherent process in which the 

instanton density F i 
w ?Jv 

is of a definite sign over the size of the 

tunneling region. Thus p cannot exceed the coherence length which is 

given by the Debye screening length in the gauge field plasma. 
13 This 

is given by the plasmon Compton wave length which for pure Yang-Mills is 

A plasma x 
i i 
s-lzp 
v% max (3.5) 

6 .2 
The thermal energy within such a volume is %T pi,, T4 'L 2 T4 Xz. The 

condition that this thermal energy overcomes the barrier V is 

IT2 21 7T4 A; >+x 
P 

(3.5) 

or 

(18 - 8g2> 2 >/ 0 
84 

. 
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This appears to be satisfied for the coupling constants characteristic 

of weak-electromagnetic theories. 
-s 

These crude estimates only suggest the possibility that baryon -c, 

number violating interactions are not suppressed at T > 250 GeV. Quanti- 

tative calculations are needed to decide the importance of this effect. 

In particular the effects of fermions will probably suppress the tunneling. 

For the remainder of this paper we will ignore this quantum mechanical 

source of baryon violation although it is possible for it to seriously 

alter the results of this paper. 

IV. BARYON GENERATION MECHANISM IN FIELD THEORY 

In this section we will describe field theoretic methods for com- 

puting the baryon number excess in an expanding universe. For definite- 

ness we will consider a model in which both baryon and CP violation are 

mediated by superheavy bosons of mass Q Mp lanck' In practice this means 

that these interactions are described as 4-fermi couplings. 

We are going to consider a field theory in an expanding universe 

described by the metric 

ds2 = (dt)2 - R(t)2 dz2 (4.1) 

= (dt)2 - t (dx)2 (4.2) 

The choice R=& is appropriate to a radiation dominated epoch. We will 

illustrate such a system by considering a scalar field with action 

S = d4x 6 

Now the metric in Equation 4.2 is of the conformally flat type 

meaning that by a change of variables it can be brought to the form 

ds2 = p2(x) {(d~~)~ - (d$)2) 

(4.3) 

(4.4) 
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In particular if we change variables from t to r= (2t)' then 

ds2 = ~~(d~~-d$~) 

Now thz reader can verify that if the field 4 is replaced by 

s = p-?$ 

Then the free part of the Lagrangian becomes 

S =/d3x dr{($ -(Vs)2} (4.6) 

(4.5) -s 

(4.6) 

+ pure divergence 

Furthermore if a renormalizable $4 interaction is present in V then it 

is replaced by s4. If on the other hand non-renormalizable terms such 

as @ 
4+2n are present they are replaced by 

4+2n 
V(s) = .!z---- 

T2n 
(4.7) 

Thus, in the new time coordinate, the free and renormalizable terms in 

the action take their flat-space form and appear T-independent. The non- 

renormalizable terms appear time dependent with rapidly falling coeffi- 

cients. 

Similar results hold for more general theories. If we consider the 

usual type of theory containing scalar spinor and vector fields 4, $, 

AP and define conformal fields by 

-1 
cp--*P 4 

JI + P-qJ (4.8) 

then the free and renormalizable terms take their flat space form. The 

non-renormalizable Fermi couplings are replaced by their flat space 

counterparts times the factor 5 . Thus the form that the action for 

our model takes is 
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s =Jd3x drjLO -t G2- L~/ (4.9) 

whereA is a renormalizable -c-independent Lagrangian containing all the 

usual interactions and LI is a 4-Fermi coupling containing the super- 

heavy mediated effects. 

We will make two cautionary remakrs before proceeding to study baryon 

excess generation. The first is that the flat space form for renormaliz- 

able theories ignores mass effects. Since we only use if for very high 

temperatures this is no problem. The second remark concerns ultraviolet 

divergences. The above analysis was purely classical and fails when 

renormalization is accounted for. However, because the unified coupling 

is small at the Planck length, the failure only involves very weakly 

varying logarithms. In fact, these effects would show up as logarithms 

of rmultiplying the renormalizable interactions. They are completely 

unimportant for our problem. 

Let us now return to the baryon excess problem. We write the 

hamiltonian resulting from Eq. 4.9 as 

H = HO + V(z) 

where Ho is baryon and CP conserving. V(T) contains the violating terms 

-2 and scales like T . 

Suppose the initial density matrix at the Planck time r=l is given 

by p(l). The expectation value of the baryon number at this time is 

<B(l)> = Tr p(l)5 (4.10) 

At a later time r the value of <B> is 

<B(r)> = Tr p(l)Ut(-c)B U(r) 

= Tr U(r)p(l)Ut(r)B 

(4.11) 
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where U(r) is the time translation operator from r=l to T. 

For the case that V(T) is r-independent (renormalizable interactions) 

we may;^immediately conclude that as -C-W <B>-+O. This is because a field 

theory with time independent hamiltonian will eventually come to thermal 

equilibrium and we have seen tha.t TCP insures B=O in this case. 

On the other hand if V(r)+0 fast enough we can use ordinary pertur- 

bation theory in V to compute the baryon excess as T-W. To do this we 

use the standard interaction picture formalism to obtain 

U(T) = uowJv(T) 

UO(T) = e 
-iHo(~-l) 

(4.12) 

VI(r')dr' 

V*(d = u@wJ,(~) 

Thus using [B,Uo]=O 

<B(r)> = Tr p(l)U:(r)i U,(r) (4.13) 

Graphical rules are derived in the appendix for the evaluation of 4.13. 

The following features emerge from an analysis of these rules 

1) For the case V(r) c\, -$ each order has a finite limit as T-W. 

These limits give an order by order expansion of the final baryon excess. 

2) The first order in which a nonvanishing excess occurs depends 

on certain features of p(l). In particular if [p(l), B]=O then the first 

order vanishes. 

3) If in addition to p(l) being diagonal in baryon number it is 

CP symmetric then the second order also vanishes. Thus in the case of 
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initially chaotic conditions, baryon excess is a third order effect. 

Thus, since we suppose (see Eq. 3.2) that VQ.JCL, baryon excess will be 

%a3 fozh an initially chaotic p. 

We are presently constructing Feynman rules for the evaluation of 

Eq. 4.13. These rules will be applied to some unified models in a future 

paper. 

V. SCALAR TOY MODEL 

Consider the model introduced in Section II (Eq. 2.2). In conformal 

coordinates the action becomes 

s =Jd3x d~{l~Y - lv4d2 - $ ($$*)n(a$3 + a*m*3)-p(mm*)2} 

(5.1) 

where we have added the renormalizable term g$4 to represent all the re- 

normalizable interactions. In this section we will make some very crude 

1 -  approximations which reduce the system to a single degree of freedom. 

First we shall assume that the initial density matrix is in thermal 

equilibrium at a temperature ~1. If we ignore the small (%,a> nonrenormal- 

izable couplings then the system will remain in equilibrium at this 

temperature for all r. (Note that in transforming to the original coor- 

dinates the temperature becomes l/-r since it scales like energy). Thus 

the average value of 141 will remain constant of order unity. Indeed the 

first simplification will be to replace I+/ by unity. 

The other drastic simplification will be to focus on a single unit 

coordinate cell over which $ will be assumed spatially constant. Putting 

$=eiO we obtain a system described by the Lagrangian 

(5.2) 
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The baryon number of a unit cell is given by Eq. 2.4 

B = R3(t)iQTt@* 
.- -c, 

-: 

(5.3) 

Equation 5.2 describes.a pendulum in a time -dependent unsymmetric poten- 

tial and Eq. 5.3 says that the baryon number of a single cell is given 

by its angular velocity. The CPT invariance of the original instantaneous 

hamiltonian corresponds to the time reversal invariance of the pendulum. 

The approximation of ignoring the interaction of neighboring cells 

is surely too severe to correctly describe the high temperature non- 

equilibrium properties of the subsystem. In particular it is impossible 

for the single pendulum to relax to thermal equilibrium if it is disturbed. 

For example, if the pendulum is given a hard "clockwise" swing it will 

forever continue to rotate so that & 0. But in thermal equilibrium 

<6>=0 by the same arguments which we used to prove <B>=O. 

By ignoring the surrounding heat bath we have eliminated the possi- 

bility of dissipation. A simple method for incorporating it is to intro- 

duce a dissipative damping term into the equation of motion. Thus we 

write the equation of motion 

d20 
G+T 

-2y+ f(r) g=o (5 -4) 

The computation of friction coefficients in nonequilibrium statis- 

tical mechanics typically involves the computation of the absorptive 

(imaginary) part of some thermal Green's function. 14 That is to say, 

we calculate the width of some excitation which propagates in the medium. 

In the case of electrical resistance we calculate the absorptive 

part of the plasmon propagator. 14 In our case, a non zero baryon charge 



must dissipate as equilibrium is restored. Accordingly we must compute 

the width of the charge-carrying excitation described by the field C$ due 

to barTon violating processes. In the model field theory with inter- 

action V(4) = X(+*C$)~($+$*)(C@~ + a*~$*~) the relevant width is described 

by graphs shown in Fig.' (2). Dimensional arguments require the.temper- 

ature dependent width to be 

y(T) z A2 T4n+1 (5.5) 

Thus if the number of baryons in the unit cell is B, the number 

lost by dissipation is 

or 

(5.6) 

dB ( 1 A2B -- 
dt = 4n (5.7) 

dis T 

Recalling that B is identified with 2 we interpret Eq. 5.7 to mean that 

the coefficient f in Eq. 5.4 is s 
T 

d2e 
d.r2 

+ r-2n aV A2 de 
-CT+--= 4n dr 0 

T 
(5.8) 

Equation 5.8 defines the toy model. 

To see how the 'toy model can lead to an asymmetric distribution of 

baryons and anti-baryons consider a V(e) which looks like Fig. 3, i.e. 

it has no point of reflection symmetry. Now suppose the initial proba- 

bility density in 8 and (t is uniform in 8 and symmetric under 6 + -6. 

We observe that a particle has a large probability to get a small kick 

to the left and a small probability for a large kick to the right. Thus 

the probability distribution becomes asymmetric. However, to first 
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order in time no average change in 6 occurs. This is because the 

av average force ae vanishes for a uniform distribution in 8. In fact 
. 

-s 

c6> ox-&y becomes nonzero in order -r5. Furthermore the first nonvanishing 

order in V is third order. 

If the universe was a non-expanding box at fixed temperature then 

no net baryon excess can be maintained at long times. Indeed the toy 

model is consistent with this. In a non-expanding universe the form of 

the toy model is 

d20 + XT 2n+2 $. + X2 T 4n+l df3 
m 

- = 0 
dt 

Let us suppose after a long time that the baryon number T 23.. dt is constant. 

Then 

), T2n+2 g + A2 ,2+n+1i = 0 (5.10) 

Integrating this over a period and using the periodicity of V(0) we see 

that the baryon number has to vanish. Note that both the periodicity of 

the potential and the existence of the friction term are important in 

reaching this conclusion. 

Now we find the conditions that will allow a nonvanishing baryon 

number at large times. Multiplying equation 5.8 by -C 2n and integrating 

over a period we obtain 

2n dK T x dr = -2X2 -%- dr 
T2n 

(5.11) 

After a long time, this equation effectively becomes 

25. = -2x2 K 
dr 4n * T 

(5.12) 
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For the renormalizable case n=O we see that baryon number is exponentially 

damped. This agrees with our previous expectations. For n>% this equa- 

tion h.s solutions for which the baryon number tends to a constant. Thus 

we see that for nonrenormalizable theories the friction term can be 

neglected, and baryon excess occurs as 'I-.- 

VI. CONCLUDING REMARKS 

In this paper we have argued that a baryon excess may be produced 

in an expanding universe even though the initial conditions are symmetric. 

For the case of unified theories the excess is developed at times of 

order 10 -40 set while the temperature is comparable to the Planck mass. 

An admittedly oversimplified model yields a small number of baryons per 

unit cell of the order 03. 

The conclusion that the effect is %,a3 does not appear to be general. 

. - 
It is a consequence of replacing the superheavy interactions by 4-fermi 

interactions. While this helps us visualize the process it is not entirely 

consistent. This is because the main action occurs at energies of order 

I? and not much lower energies. Therefore it is important to open up the 

"black box" hiding the superheavy boson exchange. As far as we can tell 

there are then order o2 effects. This is somewhat too large empirically 

but we must keep in mind that there are effects which we ignored which 

decrease NB/NY. We have treated the universe expansion as if it were a 

reversible process with respect to the ordinary interactions. In fact 

there are possible sources of irreversibility which can heat up the 

17 system. Eventually this heat must appear as photons. 

Unfortunately this optimistic picture which emerges in unified 

theories may be drastically changed if the baryon violating tunneling 
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events are really important. The point is that the rates for these 

processes are of the renormalizable type for T>250 GeV. Thus they can 

allow+he system to return to equilibrium and may wash out any excess which 

developed at super high temperature. 

Of course as the temperature goes below 250 GeV the tunneling proc- 

esses also go out of equilibrium. In principle the observed baryon excess 

could be attributed to this final stage of baryon violation. In this 

case the number of baryons in the universe is independent of the initial 

conditions and the details of the particular unified model. 

APPENDIX A 

Graphical Rules for Computing <B(r)> 

Consider a theory of fermions interacting with baryon, C and CP 

violating 4-Fermi forces. The Hamiltonian of this theory in the ex- 

panding universe in terms of the conformed coordinates is of the form 

H = Ho + V(T) 

The baryon number violating piece V(r) is of the form 

The graphical rules for the evaluation of <B(r)> can be deduced from 

the expression 

<Bt T>> = Tr p(l) U+ (r) u+ (IZ) 6 u 
vI HO HO 
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where "T 
-i Ho(r')d-c' 

J 
UH (r) = T e 1 

-iHo(r-1) 
= e 

0 
!"T 

-i VI(r')dr' 

IJv (T) = T e l 
I. 

V,(T) = Uio(r) V(r)UHo(r) 

Since Ho conserves baryon number expression Al simplifies to 

<B(T)> = Tr p(l) U+ (T) G U 
vI vI 

(T) 

A2 

A3 

The graphical rules for the evaluation of this quantity are the following: 

1) Draw the closed loop shown in Fig- 4 in order Rfr. - 

2) For each cross on the right write i e 
iHo(r'-1) -iHo(r'-1) 

ve . 

For each cross on the left write -i e 
iHo+1) -iHo(T-1) 

ve . . 

3) Write down the terms indicated in Fig. 4 in anticlockwise order 

and take the trace. 

4) Carry out the time integrations with weight -$ . Respect time 

ordering. 

Do the same for all R+r+l graphs appearing in order R+r. 

Note that the lines in Fig. 4 are not particle lines. They repre- 

sent propagation of states. 

APPENDIX B 

Here we will show explicitly that for the model discussed in Appendix 

A the second order contribution to <B(T)> vanish. We shall label each 

state solely by its baryon number In>. The CPT conjugate state will be 

denoted by I-n> CPT invariance of p,(l) = p-,(l) 
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Since [B, p(l)] = 0 pnm(l> f pnm = pndnm. Since B is CPT odd Bvn = -B,. 

The second order contributions to <B(T)> arise from the graphs of Fig. 5. 

The cofitribution of graph (a) is 

-: 

T T 

iS T n -1 -is T ml ic r m2 -ic r 
B e 

n2 
V e V es =O m mn 

1 1 

In deriving this we used the CPT invariance of the Hamiltonian H 

E = + cmn and Ivnm12 = Ivmrn I2 . n ,-n 

The contribution of graph (b) is 

dTl iC T n2 -iC T m2 i& T ml -iE T 

2 PnBn e 
nl v e e v e = 0 

Tl nm mn _ 

1 1 

This vanishes for the same reason with graph (a). The vanishing of the 

second order contribution to <B(T)> is not a general feature of all 

models. It only happens because the explicit time dependence of V(T) 

can be factored out. 
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APPENDIX C 

In this Appendix we write down the third order contributions to 

<B(T)> for the model of Appendix A. The graphs contributing are those 
-s 

of Fig: 6. 

Graph (a) contributes 

-iEm(T3-T2) 
e V me 

-iEe(-c2--cl) -lEnTl 
xe V e en 

T 

I 

T3 T2 
d'c3 iT (E 3 nWEm) 

/ 

dT2 iT2 (Em-Eel 

/ 

i-c 1 be--En> 

= (-i)3 
dTle _ 

---y e 
T3 

---Fe 
T2 

7 1 
1 1 1 

' 'nBnvnmvmeven 

Graph (b) contributes 

i3f3(3?r2? PnBn :EnTlvnm e-iEm(Tl-T2)vme [Ee(T2-T3) 

1 1 1 
-iE T 

Xv e n3 
en 

T T2 

dT3 i'c3 (Ee-En) i-r2 tEm-Ee) dTl iTltEn-Em) 
. = 1 2e 

T3 i / 
---Ye 
Tl 

'nBnVnmVmeVen 
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Graph (b), of course, is just the complex conjugate of Graph (a). 

Graph (c) yields 

d-r1 i(Ee-En)Tl 

---Ye 
'1 

1 1 1 

xpv gv v n nm m me en 

Graph (d) yields the complex conjugate of (c) 

T 

/ 

T2 T 

dr; 2 iT’(E 

i2(-i) 2 mVEe) 

I 

dTi i.Ci(En-Em> dTl iTl(ce-En) 
T'2e 

t'2e 1 I T2 1 
1 1 1 

' 'nvnmVmeBeVen 

These expressions do not vanish in general. They, of course, vanish if 

we assume C or CP invariant matrix elements for v. 
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FIGURE CAPTIONS 

1. Baryon violating process occuring in the SU5's unified theory. 

2.. GXaph contributing to baryon dissipation. 

3. A potential which violated V(0). 

4. Graphical notations. Solid lines represent propagating state vectors. 

Crosses represent the action of V. The black dot represents the 

initial density matrix and wavy line represents the measurement of 

baryon number. 

5. The second order contributions to <B(r)>. 

6. The third order contributions to <B(T)>. 
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