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ABSTRACT 

A method is given for defining gauge-invariant actions for the 

lattice theory. The basic idea is to first define the theory without 

respecting gauge-invariance, and then study its gauge-invariant 

projection. The constraints that the lattice theory exhibit free-field 

behavior for weak-coupling and disorder for strong-coupling limits us 

to a special set of possible actions. We study the simplest of these 

non-trivial theories, which involves a nonlinear nearest-neighbor 

scalar coupling. This theory has a phase transition which separates 

the weak and strong coupling sectors. For dimension near 4, the phase 

transition from the strong coupling phase to the weak coupling phase is 

shown to be a continuous (second-order) phase transition. 

(Submitted to Phys.Rev.D) 

* 
Work supported by the Department of Energy 



-2- 

1. The Action _~ 

The lattice gauge theory1 as defined by Wilson takes as its start- -. 

-ing p?int the continuum Yang-Mills action. In the lattice theory, the 

Yang-Mills continuum action is understood as describing a classical non- 

Abelian gauge field. 'To quantize the theory, a lattice (cut-off) is 

introduced; the quantum action is then defined. The Yang-Mills theory 

is recovered in the classical (weak field) limit. In the lattice theory, 

the salient feature of the quantum action is exact local gauge 

invariance for the cut-off field theory. The way this was obtained by 

Wilson1 was to discretize the classical theory, and then to directly 

generalize theclassicalactionto the appropriate quantumaction. Whathe then 

obtainedwas anaction forthelatticetheorywhichinvolvedthelocalcoupling 

of four gauge fielddegreesof freedom. Thisactionis fairlycomplicatedand 

isparticularlyformidableintheweakcouplingsector. Wehenceattemptto 

redefinethelattice actionsothatwe achieve asimplertheorywithessentially 

the samephysics. Wewillfailinthis attempt due to aphase transition. 

The essential idea is that gauge-invariance is produced by the 

interaction of the gauge-field with an unobservable scalar quantum 

field. The coupling of the gauge-field to the unobservable field is via 

a (lattice) gauge-transformation. It is this interaction which is 

responsible for gauge-invariance when one looks at only the gauge-field 

sector after having summed over all possible interactions of the gauge- 

field with the underlying medium. In essence, this means defining the 

gauge-invariant action via a path integral. To quantify these ideas 

consider a d-dimensional Euclidean lattice; let U 
w 

be the local space- 

time gauge-field degree of freedom at the lattice point n. U is a 
nu 
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finite group element of the gauge group, which is SU(N). (See Wilson1 

for the connection of U nl-l with the continuum quantum field.) Let Vn be 
-h 

a lattice scalar quantum field, and a finite element of the gauge group. 

Recall that the gauge-transformation is defined for the latticetheoryby 

U 
w -t unp> =- vnunllv+n+p (1.1) 

Let A rU-1 be an arbitrary functional of the gauge-field {U - - nu). Note 

that 

eA PI z <,APJl > 
nl.r 

(1.2') 

We choose A[U3 such that it needs no gauge-fixing for weak coupling 

calculations. We then define the gauge field action functional by 

eAGFIUl E ; dVne 
s 

AtWO] (1.2) 

(where dVn is the invariant group measure and the integration runs over 

the group space). It is clear that AGF[U] is manifestly' gauge-invari- 

ant by construction. 

We discuss the gauge-invariant sector for the gauge-field. Let 

K[U]= K [U<V>:l b e an arbitrary gauge-invariant functional of the 
" 

gauge-field. Then 

<K [VI\ AG'CU'>=JdV<K CUfl e 
A Cw>l 

e - > 

={ dV) l <K [U] eA ['II> 
/ 

(1.3') 

=<K[Ug eALul> (1.3) 

where we used a gauge-transformation to obtain (1.3) from'(l.3') and 

the fact that K TV-1 is gauge-invariant. In particular 

- -'&Ii 
<e >=<eACUl> = Z - (1.4) 
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Hence, as far as the gauge-invariant sector is concerned, removing 
.- 

the interaction with the underlying field {Vn} is equivalent to choosing 
-c, 

a particular gauge for A GF [':I * One can view A[UIl as the result 

obtained by performing gauge-fixing on A GFLU) * There is, however, a 

significant difference between this approach and the approach which 

starts with AGF I33 * In our case, A[u~ will always be chosen as 

local, and AGF [U-I will usually be non-local, whereas in the other 

approach, AGF[U-\ is chosen to be local and the gauge-fixed action turns 

out to be non-local (at least for those cases where one needs ghosts). 

From (1.4), we see that the phase transitions for the gauge theory 

given by AGF is the same as that of the non-gauge-invariant-action A, 

since they both have the same Z. 

Consider the case of nearest-neighbor interaction and without any 

coupling of the vector indices, i.e. an essentially scalar nearest- 

neighbor interaction 

A[UJ =--&- c Tr (UnvUi+;,il + h.c.) g wv 

Let 

6 f =fn+v-fn. Then 
un 

lC A = - -2- g nw 
Tr(6 U v nu 

(1.5) 

which is the SU(N) non-linear model and has a SU(N) x SU(N) global sym- 

metry. This action has been studied2 for its phase diagram. We will 

study this action in the rest of this paper. 

II. Strong and Weak Coupling Limits 

Consider the coupling constant g to be very large. We can then 

expand the exponential of A[U(V)II into a power series (since the Vn 
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integrations are compact). The path integral SdV is then reduced to the 

integration over a 
- 

finite number of variables. Note 

c Tr(V U Vf + + 
wv n w n+~vn+j4+vun+G,~vn+v +h.c.) (2.1) 

From equation (L.2) we have 

A CUII 
e GF =sdV {l+A[U(V)I/ ++- A2rU(V)1 +... 1 (2.2) 

The Vn integrations are performed, giving (upto a constant KILO(~)) 

AGF c”] = K&2 nqv Tr (Un,,Un+;, vu;+; &) + 0 (-+ ) , g (2.3) 

Note from (2.3) that AGF is simply the Wilson action but with a coupling 

constant renormalization. This action confines quarks for large enough 

g and is manifestly gauge-invariant. 

To study the system for its weak coupling, we consider the limit 

g2+o. We represent U 
nu 

= exp(iB" 
w 

Xc), where Xc are the generators of 

SU(N) and BC1 
w 

the spacetime quantum field. Then, as shown in Ref. 2, 

AU- &2 nTvr GSvBnJ2 - & 03 ’ B 
w. n+O,V I2 

- & { j$ (6&J2 (“&,> 2 + (~VBny*~VBnu)2 >--I + O(B6/g2) 

where 

(2.4) 

a*b=ab ' a, (axb)o = C"oy$Bby, (a*b)e = deBYaBbY . 

(+Y , d UBY are completely anti-symmetric, symmetric tensors. We want to 

compute A GF[B] for g2=0. Hence, we have to perform a gauge-transfor- 

mation on U 
nv 

and integrate over all possible gauge-transformations. 

From Ref. 3, in vector notation, the gauge-transformed field for 

'n = exp(iXef$E), from (l.l), is 

J&(9) = Bnp - 6& - + (9,+O,,)xB,, 
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+LJl xc$ 
2 n n+p +O(W2, 03) (2.5) 

.m 

where&j ) specify the gauge-transformation. Then from (1.2), using n 

dVn = p($n);d$z , we have for g2 = 0, 

(2.6) 

A straightforward Feynman perturbation, using eqns. (2.4), (2.5) 

and (2.6) gives 

A = GF 
(2.7) 

+ L c fAro(n,m,R)BnX l B XBkT+O(B2,B4/g2) 
g2 3% ma 

We see that to lowest order, AGF is simply the abelian sector of the 

Yang-Mills lagrangian. However, AGF has cubic and quartic plus higher 

order terms, andtheseinteractingpiecesoftheactionAGF,u.nliketheYang- 

Mills action, arenon-local. Since theweak-couplinglimitofAGFisnon-local, 

wemayexpectittobeseparated fromtheyang-Millstheorybyaphasetransi- 

tion. We will in fact show in the next section that AGF has a phase 

transition at finite coupling, whereas the Yang-Mills theory is known 

to have no such phase transition for d=4. 

III. The Phase Transition 

A criterion (order parameter) for assessing the phases of the 

gauge field is .the expectation value of the Wilson loop integral. 

Consider the contour p of a closed square loop given by Fig. 1. Then 

ew = <Tr(IIUm,)e AGF PI > /z r 
= <Tr(IIUmh)e ALuI> /z 

r 

(3.1) 
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where we have used (1.3) to obtain (3.1). We use the fact that the 

action A does not couple the vector indices to obtain (see Fig. 2) 
* 

W e = (eW')2 (3.2) 

where, dropping the prime on W' and the vector indices on U 
nu 

gives 

W 
e lII =--- 

Zn I 
dUn II Urn exp (3.3) 

r' { 
i c Tr(UnUL+P+h.c.)) 
g2 nu 

The set of points r' is shown in Fig. 3 and consists of two parallel 

lines of length L separated by a distance L. 

For large g2 , we can do the strong coupling expansion, and obtain 

W 1 L2 
e - C-1 

g2 
(3.4) 

which is the expected area-law confinement. 

For weak coupling, we use lowest order Feynman perturbation theory 

(whichisnot justifiedinyang-Mills duetoinfrared divergences) to obtain 

W e - e-g2L (3.5) 

We see (naively) that there is a phase transition in the theory, since 

there is a change in the behavior of W. 

The action 

A=l g2 & Tr (UnUL+,, +h. c. > (3.6) 

has been studied for its phase transition in Ref. 2. We will study the 

theory for d=4. The critical coupling constant of the lattice theory 

for d=4 is given by g: =1.086 (d=4). Let Ngi be the effective coupling 

constant for distance on the lattice of size 2 R . Then the phase 

diagram is given by Fig. 4; note Ngz=Ng2 is the initial (bare) coupling 

constant. The arrows on the lines in Fig. 4 indicate the direction of 

the change in Ngi as R is increased. 
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We want to approach the phase transition at gz from the strong 

coupling phase. However, the calculation performed to deduce the 

existrnce of the phase transition was done on the assumption that g2=0. 

The question is, can we use this weak coupling result to say anything 

about the strong coupling phase? We assume that near Ng2=l, there is an 

intermediate domain where both the weak and strong coupling expansions 

are valid (see Fig. 5). Since g$l.O86, we assume we are in the inter- 

mediate domain. 

We consider Ng'>g:, i.e. we are in the strong coupling phase. In 

studying the phase diagram of the nonlinear scalar action A, a one-loop 

calculation was done for its coupling constant renormalization. The 

one-loop renormalized action is given by Ref. 2 as 

A= - 1 c (6UBn)2 
2g2 w 

a T --Y B XB 
24g2 nmu n n+p r(n-m)B XB +... 

m &l-l 

and'where, for [nl>>l 

(3.7) 

(3.8) 

r2 = c(Ng2/g2 -1) 
C 

(3.9) 

rcrand c are constants and are given in Ref. 2.1 r(n) is well defined 

for all n and is finite for n=O. 

For the case of d=4 

I'(n) = (const.) E Kl(rn) (3.10) 

where K1(x) is a modified Bessel function of the second kind (seeFig. 6). 

It gives the two asymptotic expansions 
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*- ! 

1 r2 =0 
lim 

n2, 
no r(n) Q 

Y2 r -rn 
-72 

e ,r2>0 
n 

.* 
(3.11) 

Hence we see that for r2>0, the vertex-function has a mass-like 

term eBrn which cuts-off the interaction range and makes it (short- 

ranged) finite. For r2=0, the interaction becomes long-ranged and 

scale-invariant, and the limit r2+0 approaches the phase transition at 

g: from the strong-coupling (massive) phase. In the ordered (weak 

coupling) phase characterized by the weak coupling perturbation theory, 

there are no masses. We therefore conclude that in the ordered phase, - 

r2=0. In terms of the effective mass r Q &gz/gz-1 , we hence have the 

phase diagram given by Fig. 7, and where the mass term r vanishes for 

Ng2=gc. 

We have not computed r2 for Ng2<g and shown that it is zero. The 
C 

one-loop summation that was carried out to obtain the renormalized 

action becomes divergent for r2<0, so this summation is no longer 

permissible. We, however, still have the (order by order) well-defined 

Feynman perturbation theory in the g2=0 neighborhood with which to 

calculate r for Ng2<g2 
C’ 

The critical properties of the model under consideration are very 

analogous to that of the N component spinor interaction G(it1$i$i)2 

studied by Wilson (Ref. 4). 

To complete the picture we evaluate ew at the critical point. 

Although we calculated the critical action using the expansion about 

g2 = 0, we assume that since g2 2 1.086, the strong coupling 
C 

expansion is also valid for the critical action. This 
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in effect means that we can freely exponentiate the linear variables 

Bg into the non-linear variables Un = exp(iBy). 

Gence, we exponentiate the action given by (3.7) as follows: 

A= - -i-e c (6PBn)2 
2g2 n.u - s n&, BnXBn+p' r b-dBmxBeu (3.7) 

= --$ gP Tr(U U+ n n+$ +h.c.) 
> 

(3.12) 

The new term is purely non-abe:ian. For r2>0 the new term in (3.12) 

gives short ranged coupling and is, for large g2, an irrelevant pertur- 

bation on the initial nearest-neighbor coupling action. 

Doingastrongcouplingexpansionusing (3.12) gives forthepropagator 

Dn = i <Tr(ULUo)eA> % (L)n + -!?- 
82 6g2 W-d. (3.13) 

For r2=0, i.e. at the phase transition, we have using (3.11) and (3.13) 

. - 
Dn s --& + O(emn) (3.14) 

From (3.14) we find that the compact variables Un exhibit scale 

invariance at g2 
C’ 

and is a reflection of the %l/n2 interaction term 

between the compact variables in the critical action. 

Computing ew using the strong coupling expansion gives, ignoring 

certain constant matrices and using (3.k3) 

W e = (DLjL 

or, ew r(L)jL+ lower order 

For L>>l, using (3.11) gives, for r2>0 

W 1 L2 
= $1 + (const.) e -rL2 

e 

(3.15') 

(3.15) 

(3.16) 

Hence, r2>0 is still the strong-coupling phase with the area dependence 
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for W. Note that the strong coupling has two expansion parameters i.e. 

-$ and-e 
-r -g 

se . If we ignore the l/g2 term, then each link-variable 

U in strong coupling carries a mass e -g . 
nu 

However, for r2=0 i.e. Ng2 = g2 we have 
C’ 

ew 
L2 

,-iJ ( 5) + (&)" CL emLRnL + O(e -L2) 

Therefore at the critical point we have, 

W Q, -LRnL , Ng2 = gg (3.18) 

To obtain this result using weak-coupling perturbation theory would 

entail summing an infinite set of Feynman diagrams. To summarize our 

results, the order parameter W has the following behavior 

-L2 Ng2 ' is: 

W'L -LRnL Ng2 = g2 

-L ; Ng2 < gc (3.19) 

We have the expected change in the analytic behavior of W. as the system 
~ - 

goes from one phase to the other via the phase transition point gg. The 

phase of the system at gi is yet a third distinct phase of the system. 

The system at gs is scale-invariant. 

We see that the essential difference between the strong and weak 

coupling phases is the presence or absence of a mass-scale. For d near 

4, the theory spontaneously generates a mass parameter r for the 

strong coupling phase, and this makes the correlation length finite - 

which in turn gives the confinement (linear) potential. 

The analysis we have done is valid for d = 4 t E. For d = 3, the 

vertex function r (n), for r2>0 and large n, has no exponential 

damping but instead has oscillations of the type sin(r2n). Hence, for 

d=3 to approach the phase transition from strong coupling as done here 
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would not be useful. 

IV. Discussion 

The main purpose of this paper was to postulate the concept of 

gauge-invariance in an explicit manner, so as to study its properties. 

This way of defining the lattice gauge theory allowed us to reduce the 

problem to that of studying a non-linear scalar field with nearest 

neighbor coupling. We essentially evaluated the loop integral ew 

using a scalar quantum field. 

. - 

We found that this theory, as a function of its bare coupling 

constant, describesasystem(ford-4)withasecondorderphasetransition 

from the free-field (weak-coupling) non-confining phase to the disordered 

strong coupling confining phase. The scale-invariant phase (Ng2=gc) is 

a common boundary of the weak and strong coupling phase. What links the 

weak and strong coupling phases to each other continuously is that they 

both have the same phase transition at Ng2=gc, giving .thesecond-order 

phase transition. If they had different phase transitions at Ng2=gE, 

we would instead have had a first-order phase transition separating the 

weak and strong coupling phases. Each of the three phases, i.e. the 

weak, strong and scale-invariant phases, can each by themselves define 

a renormalized continuum field theory (see Ref. 2,4). 

We derived that for the scale-invariant phase, EsPnL, where E 

is the energy between a charge and anti-charge separated by-a distance 

L. The single-particle wave functions with a potential of RnL has an 

eigen-spectrum of only bound states. However, the RnL potential may 

allow for macroscopic size separation of the quarks while they are still 

in their bound state. Here "macroscopic" means sizes much larger than 
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the length of confinement given by the strong coupling phase. 

Tti gauge theory studied here is asymptotically free for d=2, and 

has a phase transition for d>2. Hence, the critical dimension for this 

theory is dc=2 as opposed to the-Yang-Mills theory which has dc=4. The 

reason for this difference is the non-locality of our gauge-invariant 

action in the weak coupling domain. 
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Figure Captions 

1. Ths square contour r defining the loop integral. 

2. The scalar decomposition of r into r'. 

3. The set of points constituting I". 

4. The phase diagram of the nonlinear scalar action together with the 

renormalization group flow diagram. 

5. The three domains of coupling constant, where it is assumed that an 

intermediate domain exists where both weak and strong approximations 

are both valid. 

6. The plot of the function exK,(x). 

7. The phase diagram using the effective mass r as the order parameter. 
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