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ABSTRACT 

We develop and apply a Hamiltonian variational approach to the study 

of quantum electrodynamics formulated on a spatial lattice in both 2+1 

and 3+1 dimensions. Two lattice versions of QED are considered: a non- 

compact version which reproduces the physics of continuum QED, and a 

compact version constructed in correspondence with lattice formulations 

of non-Abelian theories. Our focus is on photon dynamics with charged 

particles treated in the static limit. We are especially interested in 

the nonperturbative aspects of the solutions in the weak-coupling region 

in order to clarify and establish aspects of confinement. In particular 

we find, in accord with Polyakov, that the compact QED leads to linear 

confinement for any nonvanishing coupling, no matter how small, in 2+1 

dimensions, but that a phase transition to an unconfined phase for 

sufficiently weak couplings occurs in 3+1 dimensions. We identify and 

describe the causes of confinement. 

(Submitted to Phys. Rev. D) 
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I. INTRODUCTION 

This paper presents a study of two different lattice versions of . . 

quantm electrodynamics (QED) in both 2+1 and 3+1 dimensions. The focus 

of this work is on photon dynamics with the charged particles treated in 

the static limit; In this limit, the question of whether or not the 

theory exhibits linear confinement is reduced to computing the ground 

state energy of the electrodynamic field theory in the presence of a pair 

of opposite charges separated by a distance D. Variational methods devel- 

oped earlier 1 are used to estimate this ground state energy. 

Our study of-QED is a step towards the goal of using non-perturbative 

variational methods to analyze confinement and other fundamental properties 

of non-Abelian gauge theories. We start with an analysis of the simpler 

Abelian theories in order to learn how to handle the additional constraints 

on the states imposed by gauge invariance, and in order to ascertain the 

extent to which the requirement of gauge invariance restricts the dynam- 

ical structure of the theory. As we will see, Abelian QED admits many 

inequivalent Hamiltonian formulations. In order to illustrate how changes 

in the Hamiltonian that are apparently minor can lead to major changes 

in physics, we analyze two specific models. The first model is constructed 

to reproduce the physics of continuum QED, which has noninteracting 

photons; this is called the non-compact version. The second version of 

QED is defined in correspondence with lattice formulations that have 

been heretofore constructed for non-Abelian theoriesi such as the quantum 

chromodynamics (QCD) of quarks and gluons. This is the sort of theory 

which would arise naturally for QED if one started with a unified gauge 

theory of weak and electromagnetic interactions and identified the photon 



with the gauge field of an unbroken one-dimensional subgroup of the 

larger theory.3 The version of QED which emerges in this way inherits 

from &e larger theory the fact that photons are self-interacting through 

a potential which is a bounded periodic function of the photon field. 

It is this version of the theory which has been presented in the work of 

Wilson and of Kogut and Susskind2 and which is referred to as compact, 

for reasons which will soon become clear. It is now well known that, 

for sufficiently strong coupling, compact lattice theories, Abelian or 

non-Abelian, exhibit linear confinement in both 2+1 and 3+1 dimensions. 2,3 

Hence, whether or not they can provide a satisfactory formulation of QED 

depends on their behavior for small couplings. 

In 2+1 dimensions we find that the linear confinement persists for 

all nonvanishing couplings g2 > 0, no matter how weak. This is in agree- 

ment with results obtained by Polyakov3 who demonstrated it in 2+1 dimen- 
. - 

sions for continuum SO(3) theory by path integral methods and argued that 

it should also occur in a lattice self-interacting Abelian theory. 

In 3+1 dimensions we find a different situation in that for weak 

coupling, g2 << 1, there is no linear confinement and the interaction 

between charges is Coulomb. This result has also been obtained by Banks, 

Myerson and Kogut4 who used a Villain approximation to the Abelian lattice 

theory and argued by analogy to the work of Polyakov. 

Our analysis shows that confinement in the compact theory is directly . 

attributable to the fact that in this form of the theory photon self- 

interactions have been introduced. The reason these self-interactions 

can lead to confinement can be qualitatively understood if we consider 

creation of a particle-antiparticle pair. When a pair of charges is 
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created at two separated lattice points, causality demands that initially 

the electric field is confined to some small region in the neighborhood 

of thecharges. This field can be interpreted as the Coulomb field of 

the separated charges plus a coherent cloud of transverse photons which 

cancel the Coulomb field everywhere except near the charges. In the _ 

non-compact version of the theory, as in the continuum case, the photons 

do not interact with each other, and they simply radiate away to infinity 

leaving the ground state of the system-the Coulomb field. In the compact 

formulation, for strong coupling, the photons interact so strongly among 

themselves that the coherent photon state is an approximate eigenstate 

of the system and does not radiate away. Hence the two charges remain 

joined by a tube of flux. At weaker couplings quantum fluctuations occur, 

and these randomize the coherent state to some extent. As we will demon- 

strate, in two spatial dimensions this randomization can never be 

sufficient to completely destroy this tube and one obtains linear confine- 

ment. In three spatial dimensions we show that for weak couplings, the 

fluctuations become large enough to wipe out the tube of flux, and confine- 

ment does not survive. This greater randomization can be understood as 

a consequence of the fact that there is one more dimension in which the 

quantum fluctuations can occur. (It is interesting to note in connection 

with this picture of confinement, that non-Abelian gauge theories auto- 

matically describe self-interacting gauge fields.) 

The next section of this paper gives our notation for and formulation 

of lattice QED in Ao=O gauge. In Section III we discuss in some detail 

the physics of 2+1 dimensional QED in a very small universe--namely a 

single square of the lattice. We will be able to present most of our 
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techniques in the context of this very simple problem, and also to demon- 

strate much of the physics discussed above. Section IV will then be 
-. 

devote< to the generalization of this treatment to a larger lattice, thus 

completing our discussion of 2+1 dimensions. In Section V we present 

the analysis of 3+1 dimensions, and in Sectipn VI we summarize and speculate. 
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11. FORMULATION OF QED ON A LATTICE 

A. Latticization 

Wcpresent our analysis in Ao=O gauge because it is best suited to 

our Hamiltonian approach. For simplicity we describe our notation in 

terms of a two-dimensional planar lattice. Its extension to a cubic 

lattice in three space dimensions is straightforward. We define the 

canonically conjugate vector fields A and E by placing them on the links 

of the lattice, so that each site p=(px,py) has associated with it field 

components A" and A' residing on the links leaving the site in +x and -l-y 
rt 5 

directions, respectively (see Fig. 1). We then define B 
3 

as the lattice 

curl 

B 
rit 

= (VxA) rt = + [$ + A$+; - A;+3 - A;] - (2 * 1) 

where "a" is the lattice spacing. Like all pseudovectors B has one 

component, directed out of the plane in accord with a right-hand rule 

and located at plaquette centers; plaquettes are labeled by their lower 

left-hand corners (Fig. 2). We also define the divergence of a vector 

(a scalar defined at each site; see Fig. 3) 

(2.2) 

The Hamiltonian for the photon field in Ao=O gauge can be latticized 

as 

H@) = +/d2x[E2+B2] -3 $ c (E;)2 + c -(B8)2 (2.3) 
links plaquettes 

The canonical commutators become on the lattice (Roman superscripts are 

vector indices) 

"ab 
PyPy 

(2.4) 
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Equations (2.3) and (2.4) define a version of the lattice QED that is 

closely parallel to the continuum theory and is referred to as the non- 

compacf version since the variable B can assume arbitrarily large values. 

Alternative versions of latticized QED replace B2 in (2.3) by other 

"potentials" V(B). In.particular, the Hamiltonian in the compact formu- 

lation developed by Wilson and by Kogut and Susskind is equivalent to 

c (E?$2 + -&- c (1-cos ea2B ) _ 1 T+ (2.5) 
links plaquettes 

where the coupling constant e has the dimension of (length)-% in two 

dimensions. Equation (2.5) reduces to (2.3) in the ea2 -t 0 limit.5 

However (2.5), in contrast to (2.3), depends on the magnitude of the charge, 

and the higher order terms in B2 give rise to non-linear cor?ections to 

a free photon description. 

Henceforth all variables will be made dimensionless by dividing through 

. - by appropriate powers of a, which will be set equal to unity. Further, 

we represent the new dimensionless e as g and canonically rescale 

A-I/g 

E-B/g (2.6) 

E+gE 

so that our two Hamiltonians become 

(2.7) &) = 1 2 f is2 c E2 + j$ c B2 
links plaquettes 

c (1-cos B) (2.8) 
plaquettes 
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8. The Hilbert Space and Gauge Fixing 

We must next specify the Hilbert space on which our operators act. 

In order to exhibit more clearly the crucial role played by the specific 

.- 

form chosen for the Hamiltonian we depart from earlier formulations of 

the compact theory* and choose to realize the commutation relations (2.4) 

for both the compact and non-compact versions of QED by interpreting A; 

and E.+ as the operators of multiplication and differentiation on the space 
P 

of square integrable functions of the variables A-$- m 5 A++ m). 

The next step is to recognize that not all of the E+ are truly 

quantum variables. First we notice that there is only one variable B 
I+ 

but several variables Ea for each plaquette. Hence we would like to re- 
4 

write the kinetic part of the Hamiltonian in terms of the variables 

conjugate to the B 
3 

's plus those linear combinations of al 
% 

s which commute 

with all of the B;'s and hence can be diagonalized along with H. This is 

readily achieved if we note that certain linear combinations of the E's 

are the generators of the time independent gauge transformations,which 

commute with H. To be specific, in the AO=O gauge, the Hamiltonian is 

unchanged if we make the transformation 

where the lattice gradient is defined as 

(2.9) 

(2.10) 
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From (2.4) it follows that this transformation is effected by the operator 

c, 

(VA); $ -. 

UC{ 
% 

1) = e 

igfCa 

z -7 A$Gg e (2.11) 

Noting that, for A(m) = 0, 

(2.12) 

we can identify the gauge generators G by 

G3 (2.13) 

Since U({ 
% 

1) and the generators G 
8 

commute with H, as well as with 

all physical observables, we can diagonalize them and work within any 

individual eigen subspace. The eigenvalues of Gs may be interpreted as 

static external charges p-t, 
P 

and in this way we see that the eigenvalue 

equation is nothing but Gauss's law, i.e., 

s - (2.14) 

for all states [I$> in this sector of our Hilbert space. 

Restricting ourselves henceforth to any such eigen-subspace we now 

decompose the electric field into a classical (longitudinal) and a quantum 

(transverse) part, writing 

3= XL + ST , 

by the conditions -tL where E and ST are defined 

(%ZL, 

(2.15) 

Iup = 0 , XTj$> = 0 (2.16) 

The lattice curl and divergence in (2.16) are defined as in (2.1) and 

(2.2). Now, (2.16) implies that 

$L = -$) (2.17) 
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and, by (2.14), 4 satisfies 

q.g = i&j$J = - Tg.p p 

where-he lattice Laplacian is defined to be6 

(2.18) 

We observe that (2.18) and (2.19) are compatible only if 
# 

p; = 0; however 

this constraint is automatically satisfied. 7 Since ;$(V2$)if' -;(V$)$ 2 0 

the homogeneous equation (V2$)$=0 is solved only by a constant $. However 

it is clear from (2.17) that any constant in $ does not affect the physical 

variables . gL We can therefore restrict C$ to lie in the space of functions 

C$ 
rr 

=0, on which (2.18) can be inverted uniquely to give I$ and hence zL. 

As for ST, (2.16) implies 

ZT = F;xL (2.20) 

where L is a pseudovector (loop variable) defined on each plaquette of 

the lattice, and zero outside, 8 and 

(2.21) 

(VxL)$ : -L3 + 

Equation (2.21) can be inverted to give 

L-t: 
P-1 

PY 

Lb = c ETZx,j) 
j=-co 

Summing up, for each link of the lattice 

"3 = -($y+i - +-it) + (L$ - ~~-3) 

(2.22) 

(2.23) 
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From (2.22) and (2.4) we can easily deduce 

[ L; , Bp] = i Ap pt dp pv (2.24) 
xx -cI YY 

Thus L and B are conjugate quantum variables. We now rewrite the 

Hamiltonian as 

H =-Hlin + H 
Pot 

Hkin = 
$ c E2 = -$ c (EL2 + 2 %L.$T+ ET2) (2.25) 

links links 
In the continuum, 

. 
/dv TJL.EYT = /iv l$if.F = 0 

and the same integration by parts is easily demonstrated on the lattice. 

Hence we are left with the usual c-number Coulomb term plus rhe dynamical 

term written in terms of variables conjugate to the B's; i.e., 

sin = $ C [(E~)~+(E~)~] = G$ C [(v+)2+(0x~)2] 
links links 

The potential terms in the two versions are respectively 

(2.26) 

$) = 1 c J32 
pot 2g2 plaquettes 

(2.27) 

and 

H(*) = ’ c 
Pot z 

(1-cos B) 
plaquettes 

(2.28) 

C. Periodicity and the Compact Hamiltonian 

The periodicity of the potential term (2.28) in the compact version 

introduces crucial differences between it and the non-compact theory. When 

we add (2.26) to the potential term (2.27) for the non-compact version we 

have a two-dimensional array of coupled harmonic oscillators, which is a 

straightforward problem to solve. In momentum space one finds simply 
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the spectrum of discretized oscillators. However, the potential (2.28) 

defines a problem that is far from trivial. As a consequence of the 

periodicity, there exists an infinite set of operators 

T+ = e 
*vi Lif 

P 
(2.29) 

. 

which shift B 
kin 5 

by 2~ and thus commute with the Hamiltonian H=H 

as well as the gauge generators. Furthermore, the Tc 's are unitary 

operators and hence their eigenvalues are phases which can be written as 

e 
27ri "6 

, where 1 19 
-=Es=- 

The problem of simultaneously diagonalizing the Ts and H is reminiscent 

of the Bloch wave problem for conduction electrons in a periodic potential. 
10 

The states corresponding to definite eigenvalues ~3 satisfy 

$((Bs + *an-+}> = e #({BP}) 

and hence can be expressed as 

(2.30) 

(2.31) 

where $(I%}) has period 21r. From this it follows that in all computa- 

tions we can with no loss of generality restrict Bc to the range [-7.r, V] 

denoting it by the angular variable -86. This explains our use of the 

term compact for this version of the theory. We represent the canonically 

conjugate operators L 
iit 

as differentiation with respect to 8 
is 

; that is 

1 a L+=-- 
P i ae 

3 
(2.32) 
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Notice that (2.31) tells us that we could equivalently restrict our 

wave functions to be always periodic functions of the variables 05 and 

redefge 
% 

to be 

J.&= 12.6j 
P ( i se-t ) P p- 

(2.33) 

In this representation the Hamiltonian becomes 

H-$x 
links 

2 + ---y-++j’:-- 1 a 1 a i ah : 1 ae P+i 
I +17 

P+l 3 g2 5 
(1-cos 8 3 ) (2.34) 

and operates in a space of periodic functions 

WeifH = J$e;, + 27rn-$) (2.35) 

where again all integrations may be restricted to --TT < e. < V. 
- 3- 

In either 

case (2.32) or (2.33) the spectrum of L 
rt 

is 

% 
= m-t+ &-f 

P P 
rnc = 0, rf: 1, f 2 . . . 

When p 
3 

=0 we identify the physical sector as that in which the time- 

averaged g-field is everywhere zero. In other words, along with Wilson, 

we set E =0 when no charges are present. 
3 

D. Introducing Charges 

To complete our formulation of QED on a lattice we now-specify the 

way in which quantum charges are zintroduced. Referring to previous 

studies of fermions on a lattice 11 we write the Hamiltonian for electrons 

Hparticle = M (2.36) 
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where particle 
Hkin is written as a sum over gauge invariant operators of the 

form 

(2.37) 

with suitable weighting factors -so that in the g+O limit Hk. parti+e becomes 
in 

the correct free fermion lattice kinetic energy. 

It is clear that each operator of the form specified in (2.37) creates 

a pair of opposite charges at two separated points jojned by a string of 

unit electric flux created by U+ -+ p,p+Dii = exp 
+y-Qa pl,, Formally we 

$‘=$ 
show this by observing that if we start from a state defined by 

we find, using the commutator (2.4) 

p -$, ,$,+L; 1 CE;b = [$ us' ,$+&I 1 {E;~>+E~I{E;'> 
, 

D-l 
ab c 

r=O 

(2.38) 

(2.39) 

It is also clear from the structure of the fermion operators in (2.37) 

that only states of zero total charge, containing equal numbers of 

particles and anti-particles, are created from the vacuum by the Hamiltonian. 

Now the general problem of interest is to compute the ground state energy 

in the sector of the Hilbert space containing such a configuration. In 

the static, or large M, limit we can find the eigenstates of (2.34) plus 

(2.36) by studying pair states created by applying operators of the form 

(2.37) to the ground state of the theory (2.34). 
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Since the U-t + 
p,p+Ua 

,. do not commute with the operators T$ (2.29) the 

eigenvalues E-$ are changed when a state with pairs is created by the 

operation (2.37). The specific change in values of ~6 can be computed 

directly from Gauss's law as follows. U-t -t * creates a string of unit 
pd+a 

field strength along the link from $ to 3 +.i and thereby changes (if-$) 

by + 1 unit at $ and by -1 unit at 6 + a. By (2.18) this means a change 

in the static Coulomb field due to the additional field of a dipole pair 

with +l unit of charge at $ and -1 unit at 6 + a. According to (2.23) 

and (2.33) there must then be a compensating change in E; defined by 

L+L+6& = ULU -1 such that 

(qx6”)r: = qtring- gy (2.40) 

Woul Since the static Coulomb dipole field, Es , in general has fractional 

units of flux on each link, it follows that the 6~+ are non-zero. In 
P 

particular if we start with a state with no charges and E 
it 

-0, there will 

necessarily be non-vanishing (fractional) EC everywhere in the sector of 

states with charges present. 
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111. THE ONE PLAQUETTE UNIVERSE 

We turn now to the problem of a very tiny universe made of a single 

squara, or plaquette, as illustrated in Fig. 4. Our reason for doing so 

is that this very simple problem allows us to present most of our calcu- 

lational techniques as well as much of the physics of the more interesting 

problem of a lattice whose linear dimension, (2NO+l)a, is arbitrarily 

large. 

Let us examine 

for a single square 

H(u 

first the non-compact Hamiltonian [(2.26)+(2.27)] which 

becomes 

= $ c (vQ2 + * 
links 

82 (4L2) + +g B2 (3.1) 

i.e., each of the four links contributes g2 &L2 + $(V@)2 
( ) to the energy. 

It is clear that for this Hamiltonian the value of the parameter g appears 

in the classical Coulomb energy as determined from (2.18), but is entirely 

irrelevant for the transverse dynamical part from which it can be resealed 

away by undoing (2.6). Furthermore this is a trivial theory to solve. 

The energy of the ground state for any charge distribution is the energy 

of the Coulomb configuration corresponding to that distribution plus the 

ground state energy of a harmonic oscillator of frequency w = 2. Thus the 

difference in energy between a state with no charges and a state with 

charge +l at (0,O) and charge -1 at (1,0) as illustrated in Fig. 4 is 

clearly just the Coulomb energy of that state. 

It is also interesting to compute the expectation values of the 

electric field strengths created on the links of the plaquette by the 

presence of the dipole in Fig. 4. Let us denote by 

jPoo = PO1 = PlO = Pll = 0 ; $0’ 
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the state in the sector of no charges with the oscillator in (3.1) in the 

ground state. Obviously for this sector 

TiF oul = 0 ; <p-$ = 0 ; Go/ L IP$ = 0 ; lJo> = 0 

so that the expectation value of E% vanishes-. 

Let us now consider the expectation value of the electric field 

components E~o,~~o,~~l and Eio in the state 

-iAco 
e IP$= 0 ; *o> = /PO0 = l,PIO = -l,pol = PI1 = o;v (3.2) 

with the charge dipole present. It follows from (2.17) and (2.18) that the 

Coulomb field corresponding to this charge distribution is - 

Coul,x = 2 
EOO 4 ; EOO 

COUl,Y = Ecoul,x = -Ecoul,y = 1 
01 10 4 (3.3) 

. - 
. 

Since e 
-iAGo 

creates a unit string Ezo=l, (2.23) and (3.3) tell us that 

QIJILIW = + at t=O. Since by (3.1) this state describes a coherent oscil- 

lator with w=2 the time dependent expectation values of the electric field 

are 

<E;lO(t)' = z + $ cos wt 

<E;O (t)' = <E&(t)> = -<ETo(t)> = + - $ cos wt (3.4) 

This state describes a static Coulomb configuration plus an oscillating 

photon cloud. Even though the cloud oscillates it is clear that the 

time averaged value of the z-field in this state is exactly the Coulomb 

value. The oscillating nature of the cloud is an artifact of our very 
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small "universe''-the radiation cloud cannot radiate away because it hits the 

nearby boundaries of this small system and is reflected back. In an infinite 

system&he coherent cloud would simply radiate away, unshielding the 

Coulomb field of the two charges. 

We now examine the same problem in the compact version: 

H(*) = ,$’ 
Coul +$4L2 + $ (l-cos B) (3.5) 

where &coul is the Coulomb energy of the charge configuration. Since B 

and L are conjugate variables, e fiB are simply raising and lowering oper- 

ators; viz. 

I 1 L,e 
+iB fiB =Te 

and so we can write in an L basis 

H(*) = & 
Coul + $ 4(m + E)2 + 1 {2-J+ - J-} 

*g2 
(3.7) 

(3.6) 

where E=O for the configuration with no charges and E=% with the Coulomb 

configuration (3.3), using (2.40); J' f eTiB. Alternatively we can work 

in a B basis, treating L as the momentum. For this we introduce 

-8 = B 

1 a 1 a L=Y-+sVG+1 1 ae 4 (3.8) 

requiring that the eigenfunctions of 1 a -iae be periodic on the interval 

--we<n as is necessary for integer eigenvalues. -- Since the problem in 

this representation is to solve the Hamiltonian 

I.$*) = 8 
Coul + 2g (3.9) 

in the space of periodic functions on the interval C-T, n,]it is a 

precise analogue of the Bloch wave problem for a Schrodinger particle in 

a periodic potential. 10 
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For strong coupling, g2 >> 1, (3.7) is dominated by the momentum 
- 

term4$- 2 (m+d2. 
-1 1 Since 25 E 52, the ground state is clearly m=O and 

has errergy E=gcoul + 2g2e2. We notice that for g + 00 this is an energy 

eigenstate. In the no charge sector ps=O, E=O the E-field vanishes 

identically, whereas in the sector with the-pair of charges as in Fig. 4 

~=ti and EX =1 00 
; Ey =EX =Ey ~0. 

00 01 10 In this strong coupling limit the "photons" 

do not radiate away but remain to focus the electric field on the string 

between the charges. This result continues to apply for a larger lattice. 

For weak coupling, g2 -CC 1, we can use the arguments usually given 

to obtain an approximate solution to the corresponding Bloch wave problem. 

The ground state energy has contributions due to barrier penetration. 10 

Keeping only the leading correction due to tunnelling between neighboring 

minima of the periodic potential we have 

These tunnelling corrections,although very small, are non-analytic in 

g2 at g2=0 and depend upon the charges through the E-distribution. They 

are the crucial new feature in the compact theory. We now give a vari- 

ational estimate of these terms and discuss physical effects. 

The terms in (3.9) proportional to E are removed in terms of the 

Bloch momentum by introducing a trial wave function of the form (undoing 

(2.31) and (2.33)) 

4~ ewiEe x(e) = 

x(e+*n) = e+2'rriE x(e) 

(3.10) 
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Since the potential term in (3.9) is a very deep well, a reasonable trial 

12 
form for the variational calculation is a narrow Gaussian packet centered 

about"8=0. However in order to satisfy the boundary conditions (3.10) we 

must construct a superposition of the form 

‘x(e) = 2 e2*isn $ tr(e-2-im) - (3.11) 
n=-co 

where Qtr(e-2.rm) is the oscillator ground state trial wave function for 

the potential centered at e=2vn. The ground state energy is then just the 

energy of the ground state for a single such well plus correction terms 

which correspond to the overlap between two wells with different values 

of n. For g2 << 1 the dominant correction comes of course from tunneling 

between nearest wells. To illustrate our variational procedure we write 

the trial function 

-1 2 
q&e) = e * e (3.12) 

where y is the variational parameter which we expect to be large for small 

g2. The normalization integral is then 

J 

7-r 
<XIX> = de x*(e)x(e) 

-7r 

03 IT 

= 
= / 

de e 
28is(nl-n2)e- 2 Y(fh2ml)2 - $(e-2nn2)2 

e (3.13) 
nl ,n2=-m -T 

One of the n sums can be done, since it simply extends the range of inte- 

gration to (-m, +m). To wit, if we redefine variables 

N = nl-n2 ; n = nl , 

(3.13) becomes 

co 

/ 

-12 
<XIX> = c e 

2visN de e 2e - z( e+2TN) 2 
e 

N=-m --m 
(3.14) 
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Therefore we have for each N a simple Gaussian integral. The dominant 

contribution, for narrow packets, comes from N=O and the leading correc- .m 

tions';lre 'L eqyT 
2 

COS~ITE << 1 corresponding to tunneling between neighboring 

wells with N=tl. The variational energy is 

E(y) = <H> = <X/H/X>/<&> 

(3.15) 

*Nz e 

-yn2N2 cos(27~sN) -2g2y2n2N2i--$ e -+$l-(-l)N) 
I 

+ 

1 + 2 C. e-y'2N2 cos(2~N) 
N>O 

and y is fixed by minimizing E(y). 12 
For g2 << 1, the term in (3.15) which 

is independent of s and N dominates and gives y "N 1/2g2 >> 1. We find in 

this way, up to higher order tunneling corrections, 

E(Y) - cScoul = 1 + Qg2), s-independent terms 

3 -- 
2 --e g2 2g cos2lTs O(g2) 

I 
(3.16) 

The first term on the right-hand side is, to leading order in g, the 

zero point energy for an oscillator of frequency 2 and mass d , just as 

in the non-compact theory. The remaining terms are the tunneling correc- 

tions in the compact formulation. Since they depend on E they introduce, 

in addition to the Coulomb energy, a contribution to the energy which 

depends on the positions of the interacting charges. This contribution is 
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non-analytic in the charge at g =O and is the crucial new term in the 

compact theory which is responsible for confinement on a large lattice. 

The role this plays can be understood better if we compute the time average 
4 

value of the electric field strength. This average can be computed directly 

since, from (3.9), 

<Ea> = 
ft -(v+); + & & <H> 

By (3.16) we have 
TrL 

<E;o 
3 G-4 >=-++ me 
4 g ( ) 

-Yp- 
2 sin*rE 

7T2 
1 > = <E;J = -<Eye> = 2 - -$ sin2Te . 

(3.17) 

(3.18) 

We see that in addition to the Coulomb component there is a residual 

effect from the coherent cloud which is proportional to (l/g4)e -7T2/2g2 . 

The sign of this added tunneling contribution, with E=$ (corresponding 

to the charge configuration in Fig.4), is such as to increase the strength 

of the field along the link between the charges, while at the same time 

decreasing its other components relative to their Coulomb values (3.3). 

Thus its effect is to focus the field along the link joining the dipole. 

In the next section our study of the large lattice in 2+1 dimensions also 

reveals such a focusing. This leads, for large separations, to an energy 

which is proportional to the distance between the charges. This is the 

dynamical origin of the linear confinement in 2+1 dimensional QED first 

described for g2 << 1 by Polyakov. 

The trial function (3.12) is also a good variational guess for the 

strong coupling region where g2 >> 1 and y -+ 0. We then have to sum 

contributions from large values to N to the variational energy since all 
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N2 ; (r2y)-l will contribute significantly to (3.15). This can be done 

by transforming to a dual form of the periodic Gaussian using the Poisson 

sum formula -h 

2 g(n) = .g J,a,z'imm g($) (3.19) 
n=-m m=-cm -03 

In (3.11) this gives 

x(0) = 5 /l$ e2Tim’P 
.*'rri$c e 

- ~(O-2Tr~j2 - 

m=-co -cc 
(3.20) 

which approaches 

for g -+ a, which is the region y << 1. Recalling (3.10) we have for the 

ground state trial solution 

- * = constant 

which is the exact ground state solution for (3.7) in the strong coupling 

limit g -f 00 (m=O). Since it does well in both the strong and weak coupling 

limits, (3.12) is presumably a reasonable trial form for studying inter- 

mediate coupling as well. 
13 
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IV. TWO-DIMENSIONAL ABELIAN THEORY 

We now turn to the compact formulation of the two-dimensional Abelian 

theov on a lattice of (2N0+1) x (2N0+1) points. As discussed in Section 

II, our interest is in calculating the energy of a pair of oppositely 

charged particles as a function-of their separation, for the coupling 

region g2 << 1. Under the assumption that the configuration with no 

charges corresponds to the sector E+ = 
P 

0, the problem is to compute the 

ground state energy of the theory in the sector defined by the c determined P 

from (2.39), i.e. 

+ 
(Vxe), = E-t +string _ Foul 

P P c 
(4.1) 

Here ETtring 
P 

is unity for links lying on the line between the charges at 

(- ;,O) and ($,a), (see Fig. 5) 
+coul 

and is zero otherwise, and E-t is 
P 

defined by 

with 

- V2$; = ,-D/2 - 6 X 

(4.2) 

(4.3) 

Once we have determined the EC distribution for this dipole configuration, 

our problem is to solve for the ground state of the Hamiltonian (2.34) - 

(2.35). 

A. The Strong Coupling Limit 

When g2 >> 1 the kinetic term 

links 
(4.4) 

dominates the compact Hamiltonian since the potential is a bounded opera- 

tor; therefore in the g2 + m limit eigenstates of H are products of eigen- 

states of L-+, i.e., 
P 



(4.5) 

(see (2.33)). If we start with the state specified by the rns determined 

in (4;"l)(i.e. ally= 08 for this case of the dipole)14, we find for the 

energy in the g2 -+ m limit 

<H> 2 
is-- = %oul + P 

links 

links 
[G% 2 + (?XE) 2) 

links 
[a$ + &El2 

Referring back to (4.1)-(4.2) we have 

links 

(4.6) 

(4.7) 

where D is the length of the string. We can also shift the m's away from 

. - 
zero in order to construct other states in this s-sector. In such states 

the original string is lengthened by the creation of new string segments 

and/or loops according to (4.5). The energy of these states will thus be 

higher than that given in (4.7) for the state with all m=O which is hence 

the ground state. 15 In short, in the g2 -t ~01imit the coherent cloud of 

transverse photons corresponding to the eigenstate 1 
9= 

O> holds itself 

together for all time and focuses the Coulomb field to a string, giving 

rise 

B. 

to a linear confining potential in (4.6). 

The Weak Coupling Limit 

The weak coupling analysis is more complicated and, as we saw for 

one plaquette, essential contributions of the photon self-interactions 

will be missed in a perturbative expansion about g2=0. The procedure we 

will use can be justified by the recursive variational technique which 
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we have used in other applications. 1 Fortunately, however, very little 

of the physics we wish to discuss in the g2 << 1 limit depends upon a 

-detaSed knowledge of how this calculation is carried out, and we can 

finesse these complications by using information gleaned from our analysis 

of the one plaquette problem. -In that case we saw that in (3.15) the N=O 

terms dominate the expectation value of the energy, which is sensitive 

only to very small values of 0 z g << 1. Those terms corresponding to 

N#O, which arise from our prescription rendering the wave function periodic, 

were sensitive to values of 181 M 7r, and hence were reduced by factors of 

e-r2/g2 << 1 . Therefore for the purpose of determining the form of the 

trial wave function we could both forget that the variable is restricted 

to I@[ < r and replace 1-cos e 
- 82 by & e2- 

Returning now to the Hamiltonian on the two-dimensional lattice we 

first change representation as we did for oneplaquette so that the operator 

1 a i K+ has eigenvalues (m-$ + ES). In this case, (2.34) becomes 
P 

2 

H = Coul - + vqd) 

(4.8) 

and we must require that the eigenfunctions satisfy 

lJ( {es+ 2anb)) = e 2ni;E~~ $({Fj$)) (4.9) 

(In (4.8) we can define the contribution of links at the edge of the 

lattice by LFO if either p, or p 
Y 

is less than -N or greater than or equal 

to N. Alternatively we can impose periodic boundary conditions by defining 

E; 
X 

p = E-No-l,p ; EY Ey The difference between these two 
0' Y Y 

P,J~ = P,,-N~-~' 
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formulations is only of order l/V, and for convenience we shall use the 

.- 

periodic formulation in our subsequent discussion.) 

Having imposed the proper aperiodicity by (4.9) we can replace the 

potential in (4.8) by its quadratic approximation for the purpose of 

determining the form of the ground state trial wave function. This approxi- 

mation turns (4.8) into a massless free field theory and the ground state 

wave function of this system is easily written in momentum space as a 

product of Gaussians in the variables 

iZ*c 0-t 
P 

; V = (*NO + l)* 

Incorporating the boundary conditions (4.9) this choice gives a trial 

wave function of the form 

. - 
with 

where 

Qo(C8;l) = e PyP 

(4.10) 

{e-t-27m-t 
P P 

Att = + c .ig- G--P” > yk’ 

PP' k 

1) 

(4.11) 

(4.12) 

and 

z:=G 
NO 

; -N <n n o- x, yLNO 

The 6-function on the sum of the angles that appears in (4.11), viz. 

6(C e-t), arises from the fact that the kinetic term in the Hamiltonian 
s p 

(4.8) contains only differences of the canonical momenta 8 and hence 58+, 
PP 

or by (4.10), i$, , is a classical variable that we can fix at an arbitrary 

constant value. In general we can treat yg as a variational function to 
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be determined for arbitrary g2 using the recursive variational procedures 

developed earlier. In the weak coupling limit of replacing the potential 

by ita quadratic approximation, i.e., 

(4.13) 

the Hamiltonian reduces to non-self-interacting photons on a lattice and 

we can solve for the y$ directly: 

yg = (4-2coskx-2cosky) 
-15 

;k'#O (4.14) 

However due to the aperiodicity conditions there are nonperturbative contri- 

butions to the energy even in the weak coupling limit as in the one- 

plaquette analysis of the preceding section. 

We turn next to a calculation of these contributions, using (4.11) and 

(4.12) as our trial functions, to 

E(y) = '+trial IHlqtrial> <$trial I Il)ij-rial’ (4.15) 

Straightforward generalization of the manipulations used for the one-square 

problem yield 

E(Y) = Ecoul + + LJ 
k 

y$(4-2coskx -2cosky) + +r x cl-cos@+' 
P PO 

IT2 
-v*k C y?(4-2coskx-2cosky)<N@-~> 

N+ 
+ -& c <l-(-l) P>~cose.+> 

g 3 PO 

(4.16) 

where we have used the same trick in carrying out one of the n;: sums for 

each 5 as in (3.14), and we define 



-c, 
<f(e+)> = 

q 0 

and 

(4.17) 

The constraint on the N-sums 6(CN ) 
0 

arises from the constraint &(Z0 
it 

) in 

(4.11) and tells us that the overlap of initial and final states vanishes 

except for values of N 
F 

such that CN =O. 
0 

It is clear from (4.16) - (4.18) that the Nif=O terms dominate the 

energy for weak coupling, as they did in the one plaquette example, since 

the N-#O contributions are suppressed by tunneling factors % e -(const)/g2 . 

A very good approximation to y$ is obtained if we ignore the N-@O terms 

in (4.16) and variationally compute aE/ayg for all rtfi0. This gives (4.14) 

up to corrections of order g2 due to the difference between the potential 

term (2.28) and its quadratic approximation (4.13). Substituting into 

(4.16) and using (4.17) and (4.19) leads to 
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E({s}) = &coul + + g (4-2coskx-2cosky)+ + (@(g2) c-independent) 
k 

(4.20) . . 

-c, & 5 <IT~N~ - 
P T 2 (l-(-1,““, <co~e-t> > p o 

where 

<case+> = e 
PO 

= 1 + @(g2) (4.21) 

This ends the quantum mechanical part of our problem; all that remains is 

to do the sums over N; as defined by (4.18). The rest of this section will 

be devoted to doing these sums. 

C. Why Doing the N?Sums by Brute Force Doesn't Work 
hJ 

Calculation of the sums over NC in (4.20) can be reduced to the evalu- 

ation of a single normalization factor Z({E)) since from (4.18) 

<f ‘N;f>’ = 
where 

(4.22) 

Z({E)) can be thought of as the partition function 16 for a neutral gas of 

charged particles which interact via the potential A-++,. 
PP 

For such a 

system one expects that the free energy density, defined by 

F({EI) = + Rn Z({cl) (4.24) 

is well defined in the infinite volume limit. An expansion of Z in powers 

of F will give terms of order VmFm/m!. Since there are @(Vm) terms with 

m non-vanishing N; in the N-sum (4.23) one is tempted to try to resum by 
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identifying such terms with the terms of mth and lower order in F. This 

resummation can be performed if the interaction has sufficiently short 

range- this is the Mayer Cluster Expansion in statistical mechanics. 16 

Let us illustrate this, for EGO, for the extreme case Ag,=O for 

all $#$I. We then can,readily see that 

IT2 
- 82 “oZNi 

' 5 eBvFo ( (4.25) 

with 

A0 = A 
$3 

The sum on the right side of (4.25) is finite and we see that 

21 

t 
I 

(4.26) 

which shows that F i . . - 

We now examine the change in this result when we include the correct 

A 
PP' 

for $#s', considering the case E ~0. 
b- 

We rewrite (4.23) in the form 

where 

(4.27) 

L 
- G N+A-,N-+, 

g PPP P 
fs, = e -1 (4.28) 

We can attempt to evaluate the correction to F. from the non-vanishing 

f-p+, by keeping terms with successively higher numbers of f's, In this 

approximation the first correction to VF o is of the form of c 
b#$' 

fs, , 

which must grow no faster than V if this expansion procedure is to make 

any sense. However As,, and hence ftt,, 
PP 

falls off only as fast as 
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l/r&w f or large separations I;-;,/. Hence c fz, is proportional 

to v3f2, 
&G' 

and this method of evaluating the N-sums does not work. The 

problem evidently is a consequence of the long range nature of As,. 

We will now discuss a procedure for resumming (4.23) in a way which avoids 

these volume divergence difficulties. 

D. Doing the N-t Sums by Feynman Graphs 
F 

In order to develop a correct resummation procedure we rewrite 

Z({ss}) by making use of the identity 17 

(4.31) 

Substituting (4.31) in (4.23) and doing the n$ integrations-yields, up 

to irrelevant normalization factors, 

where 

(4.33) 

Note that the exclusion of the g=O mode is irrelevant in A$, since 

Yz1=(4-2coskx-2cosky) vanishes for kx=ky- -0, and so the constraint s(iN$) 
P 

plays no role in the evaluation of (4.32). 

One can now rewrite Z({E)) as Z=Zl({c)) with 
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The parameter X has been introduced in (4.34) in order to simplify sub- 

sequent bookkeeping. The term of order Am in (4.34) is clearly identical .e 

to theTerm in the original N sum, (4.23), corresponding to configurations 

with m non-vanishing Nd. Hence, an expansion in powers of A has the same 

volume divergence diseases as the N-sums. However the reformulation of 

the A sum in (4.34) has an important advantage in that it allows us to 

relate the expansion in powers of h to a summation of Feynman graphs. In 

this way we can convert the problem of volume divergences to that of 

infrared divergences of Feynman graphs and use well known techniques for 

resumming the series in A so as to avoid all problems. 

First we simplify the calculation by truncating the N-sums in (4.34) 

to N$l. This can be justified by evaluating also the sums keeping 

N =1,2,3...Nmax 
3 

and showing that the additional contributions to < '> 9 
N-+ 

and <l-(-l) p> are higher order corrections to our result. 18 We also 

temporarily set all E -0 in (4.34) since our resolution of the volume 
ir 

divergence problem can be demonstrated in this simple case. We will of 

course reinstate the proper values of EC in order to calculate the energy. 

The relation of the X series in (4.34) to a sum of Green's functions 

which can be evaluated by Feynman graph techniques can be made explicit 

(4.35) 

is the ground state wave function of a free massless field theory whose 

propagator is 

; w-b = y-t k ~1 = (4-2coskx-2cosky) ' (4.36) 
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The Feynman graphs for the first few terms in the expansion of <cos(2n&+)> 

and <cos(27r~~)cos (2~$;,)> are shown in Figs. 6 and 7 respectively. 

Graph such as these are valuable guides in resumming appropriate subsets 

of terms so as to avoid all volume divergence problems. The decomposition 

into connected and disconnected terms shown in Fig. 7 yields th-e expo- 

nentiation desired in (4.24) if the connected graphs grow no faster than 

V for V-tea. Figure 8a shows a typical term in the calculation of the 

order X2 term icos(*n~$;) co.s(*~r~;,)> connected and it is obvious that all 

-- 

remaining loop integrations are infrared divergent. However, Fig. 8b 

shows that in every higher order of X there are graphs corresponding to 

insertions of tadpoles anywhere on the propagators joining points $ and 

+I P - The sum over all such tadpoles on each line corresponds to modifying 

the propagator; viz. 

where (4.37) 

and ~2~<,0,2,~ > 
rt 

The new propagator $(u2> is no longer singular at kx=ky=O and corres- 

pondingly the disease preventing Mayer clustering in the previous section 

is cured by this procedure. It is clear however that no finite approximation 

to the series (4.37) can cure the disease. 

In practice manipulating pieces of the graphical summation in this 

way is cumbersome. We can however obtain the same result efficiently, 

now that we recognize what we are looking for. We rewrite, still keeping 

&=O, 
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a3 
+lJ2$2 

l+*cos Za$b)e 'p 
g2$&9p +v2 ;4$) 

., 
(4.38) 

In (4.38) p2 is defined so that when one normal orders the bracket 

{(1+2 cos 27r$ 
v24J$ 

)e. 1 with respect to the new propagator -$- 
if 

(A &,+ $ $+J1rl 

then the coefficient of :$2: vanishes. Specifically we define am by 

(l+*cos *r+f)e 
v2$ 

= f am :$F: 
m=O 

(4.39) 

and choose y2 so that al % 0. 

Equation (4.39) simplifies considerably for g2 << 1, in which case, 

self-consistently, P2 is very small so that we can expand to first order 

in p2. This gives 

lJ2 = 4~r~ e (4.40) 

with higher order contributions exponentially damped by powers of e 
-l/g2 . 

The essential accomplishment of the resummation indicated in (4.38) 

- (4.40) is to construct a propagator in Z({E}) that has sufficiently 

strong screening to guarantee that a loopwise expansion of the graphs 

contributing to ZX({e)) will be infrared finite. In fact the new propagator 

(4.41) 

for a separation ($-$'I g reater than the shielding length 5 . We can 

now finally turn to the evaluation of E({E}) in (4.20). 

E. Evaluation of E({E)) 

With the restriction of N 
rt 

to O,tl, (4.20) and (4.22) simplify to 
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%$) = ~coul + 2 ?- $ UE + (@'(g2), e-independent) 

- 
1 

+7&T-m 3 
a2z(W) c (~~-4~~3s eft>o> a~if 

with 

z({ETf)) = n 
it 

(1+2cos 2a$s)e 

(4.42) 

and we can, to leading order in g2 C-C 1, replace <cos(e -+ )> o by unity in 

accord with (4.21). By the definition of u2, the bracket contains no 

terms in :@. To leading order in e -l/g2 the bracket can now be replaced 

by unity since the :$: and higher power terms are all reduced by powers 

ofU2%e . -l/g2 19 

In this approximation we find that 

1 (4.43) 

which implies that the energy changes from its E=O value by 

G-4 6E({s)) = 2 v4 c E-P (g2A-l+u2)-*+ (g2A-l)$ -t E+ 
p1 %p2 p2p3 ‘3 

(4.44) 

‘1’2’3 

Rewriting this in k-space, 

G-4 ~E({E}) = 2Tzgz u4 c 

Z’ 
irt* ($-3' ) 

(4.45) 

Inserting L,J~ = 4-2coskx-2cosky and rearranging the sums gives 
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sE(CE)) = _ (f-4) 
*+ gL 

(4.46) - 
-. 

where F2 denotes the Laplacian on the lattice as given by (2.19). The 

E++ are defined such that 

V2E$ = -vx (&E) 
3 

= -Vx(E +string-%coul 
>$ = -vxjg;tring . (4.47) 

We find, by inserting (4.47) in (4.46) and again "integrating by parts" 

(rearranging the C ), that the energy shift is 

hh' 

= (GE>ss - (Wsc 

where 

$$$I = + ; eig- (‘-“) I 2 -2 (4-h&x-2cosky)~ + $ I 

(4.48) 

(4.49) 

and "ssr' means "string-string" energy and "SC" is"string-Coulomb." The 

contribution in (4.48) proportional to the square of the string field 

increases linearly with the distance between the charges for large 

separations D > 92 
% n2 - This is shown directly 

the limit V*, 
Tr 

using (4.49) and going to 

(4.50) 
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The contribution from '(6E)sc is a negligible correction proportional to 

the Coulomb energy. 

fithough our methods are very different we have arrived at the same 

conclusion for QED in 2+1 dimensions as Polyakov-namely, that there is 

linear confinement in the weak coupling region and hence no "phase transi- 

tion" encountered as the coupling constant is turned down from strong 

. - 

coupling. The effects of monopoles in Polyakov's description are replaced 

in the present calculation by the tunnelling effects as expressed by the 

distribution of 
9 

in (4.23). The non-zero 
% 

have a small but finite 

density on the lattice according to our calculation of (4.23). 

v. THREE SPATIAL DIMENSIONS 

Much of the formalism and discussion of the previous sections can 

readily be extended to a three-dimensional spatial lattice, but there are, 

as we shall see, crucial differences. Once again we begin with a and 
% 

% 
a defined on the link leaving the point $ in the direction a. We associate 

three faces with each point $ as shown in Fig. 9. As before for each face 

we can define one gauge invariant combination of A's 

e.g., $ = z 
% 

.--A:-(Ay A- y, 
+J P 6+k % 

etc. (5.1) 

A new feature of the three-dimensional lattice is that for every cube there 

is one redundant variable defined in this way since it follows from (5.1) 

that 

(5.2) 



-39- 

Equation (5.2) states that the sum of the outward pointing B's on the six 

faces of each elementary cube vanishes, being the lattice version of the 

diver@nce of a curl. 

We again rewrite the i? fields, following (2.23), in terms of a 

Coulomb part plus a transverse field: 

Since $p and hence H does not depend on (?*i!);, (v*B)s is a classical 

time-independent variable and the constraints (5.2) must also be imposed 

on our trial wave functions at each lattice cube. There was no parallel 

condition for the two-dimensional theory, in which only the background 

B, or I;e;t on the entire lattice, was constrained. Aside from this 

restriction we can closely follow the calculational techniques 

previously. 

discussed 

Once again for the compact case we have a potential which is periodic 

v= $ c (l-cos B;) 
faces 

(5.4) 

so that the Hamiltonian is invariant under translations B+B+2rn. Hence, 

for every face, we can again define a conjugate pair of variables 

im$, &I, with -a 2 0; 5 ny and 

(5.5) 

The Hamiltonian of the quantum field, (4.8) generalized to three dimensions, 

does not change values of the z;. Our problem is, as before, to find 
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the ground state energy of the system with an e-distribution obtained by 

adding a line of unit flux joining two charges separated by a distance 

P, reAative to a configuration with no charges and with all zc=O. 

The analysis of the strong coupling limit is not essentially different 

from the two-dimensional theory and leads to linear confinement as found 

in (4.7).20 Turning to the weak coupling regime of g2 << 1, we begin 

as before by choosing a properly aperiodic trial wave function, 

where the important new constraint on the local divergence of 0 has been 

incorporated in the 6 functions. As a result of these 6-function con- 

straints%+ 
3-P 

has the tensor form 

(5.7) 

since the contribution from terms proportional to kakb automatically 

vanishes. Again the coefficients yz are to be determined variationally. 

Evaluating the expectation value of the Hamiltonian using this trial 

wave function we find, analogously to (4.16), 

= Gaul + + 2 (6-2coskx-2cosky-2coskZ>vg (5.8) 
k 

cl-cos 8p. + AE(E) 
faces 
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where 

and 

AE(E) - - $ c 
72 ,a 

(6-2coskx-2cosky-2cosk Z 

with 

+ y$ c ((1-w 
N$ 

3 
p)>+c= ";>. 

4 

(5.9) 
As before, for small g2, it is clear that the energy is dominated by the 

e-independent terms in (5.8) and hence a good approximation is obtained 

by choosing yz to minimize these terms. This gives to leading order 

1 

6-2coskx-2cosky-2cosk Z 
(5.10) 

Once again, as in (4.20), we have reduced the problem to the evalu- 

ation of the sums over the N's. However in three dimensions this turns 

out to be a somewhat more straightforward procedure than it was in two. 
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One important difference in this case is the constraints 

(m; = 0 (5.11) -' 
- 

requiring zero divergence of Na 
;h 

through the faces of each individual cube 

of the lattice. .Evidently, this condition implies that the only allowed 

configurations are those for which the 8 vectors form loops. The simplest 

such configuration is shown in Fig. (10). It involves four non-vanishing 

$2. All such configurations can be equally well described in terms of 

integer variables z+ associated with the links of the lattice, 
P 

with the 

definition 

(5.12) 

Equation (5.12) gives $6 uniquely for each $, though clearly the z; 

associated with any given 8; are determined only up to an arbitrary 

gradient. Using (5.12) we can rewrite the phase factor in (5.9) 

(5.13) 

Since Btring 
P 

is integer valued, as is 2 
P' 

the phase factor simplifies to 

27ri C 8c.Zs 2ni C ~+~~~""l 

e 3 =e 
3 P p 

Equation (5.9) can now be rewritten in terms of restricted sums 

over if-t. 
P 
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h c 
, 

e 

<f(Na)> = 
-4 

where the restricted sum C'means that each configuration of {(?"?);I 

21 
{?$I 

is included only once. Provided the summation over z; variables con- 

verges we can evaluate this expression as 

(5.15) 

where Z,{%rul}i ( is the denominator of (5.14). In the strong coupling 

. limit, g-)00, the contribution of large values of x; is not suppressed and 

one should not expect the summation to converge. However for small g 

the question of convergence is quite different. We can rewrite the weight 

factors in (5.14) as 

Tr2 . . . . 
exp - z t$ Vi , t 

id 3 

where 

V$, =$ze 
k 

ic* (&c,) (k2&ij-kikj)yz (5.16) 

As discussed in Section IV the t-sums converge for any finite volume 

provided that the quantity 

t 
- $ t$ vg, t$, 

c fs,=C C e -1 1 
m + -+l PIP, ij 

(5.17) 
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does not grow more rapidly than V for large V. This requirement of 

clustering is satisfied here (unlike in the two-dimensional case discussed 

in Sestion IV), since from (5.16) we see that, for large separations 

r=I&$' 1 and yz given by (5.10), 

(5.18) 

Having argued that the restricted t-sum, and hence the N-sum, is 

convergent we can now examine individual terms to see whether there is 

any way to generate a contribution to (5.8) which grows linearly with 

the separation of the charges. The convergence of the N-sum means it is 

dominated by configurations with widely separated loops of non-vanishing 

$3. 
Their contribution to the change in energy between the configuration 

with no charges and that with charges separated by a distance D is domi- 

nated by the term proportional to 

6E = e (5.19) 

i \ surface 
.th where K is some (large) constant and Pi is the perimeter of the i loop. 

Now consider what happens to this quantity as the distance D between the 

charges is increased. For any fixed loop the contribution decreases as 

I$ as the charges recede. Therefore the contribution to the energy from 

such configurations also decrease with increasing D at least as fast as 

1 
T7' In addition one obtains contributions to the energy which are inde- 

pendent of D from loops of fixed size which are close to either individual 

charge and remain so as D changes; these are of course nothing but self- 

energy contributions and their magnitude is suppressed by a factor 
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-- 
e ‘-ccl. The only way to obtain an increase in the argument of any 

of the cosines in (5.19) which is proportional to D is to let the area 

of that loop increase at least linearly in D as D is increased. However 

this can only be achieved by increasing the perimeter 22 at least as fast 

as D s . Hence the contribution to the energy from such a term is expo- 

nentially damped with increasing D. It follows that one cannot identify 

any class of N-loops whose contribution grows linearly with D. Thus we 

conclude that ME) at most gives a negligible correction @Ce ) 
-K/g' 

to the Coulomb energy. 

We stress once again that this argument, which is made by examining 

the N-sum term by term, is invalid in the strong coupling ljmit, where 

the summation is not expected to converge. We have not computed the 

value of g2 beyond which this series diverges, nor have we studied the 

nature of the phase transition from unconfined QED for gZ<< 1 to the 

confined phase when g2 >> 1. 

A more physical picture of the difference between two and three 

spatial dimensions can be obtained using the strong coupling limit as a 

starting point. We found there that the ground state of the system 

consisted of a static coherent cloud of transverse photons, described 

by the variables %. This cloud serves to cancel the Coulomb field in 

all of space except along the line between the charges; we may describe 

this phenomenon as a focusing of the flux. As the coupling-decreases 

quantum fluctuations in the variables ?$ become more important. The 

periodicity of the potential means that these fluctuations change the 

eigenvalues of the c+ by integers. 
P 

Our calculation is a study of whether 

or not the fluctuations can randomize the configuration sufficiently to 
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completely destroy the coherence. In a two-dimensional lattice the 

vectors 
5 

are constrained to lie perpendicular to the plane of the 

latt?ce. They each can fluctuate in magnitude by integer amounts, but 

fluctuations cannot destroy the fact that they are aligned, nor give a 

vanishing <p -for any 0 <]e-$~ Q.. However in three dimensions- fluctua- 

tions can cause the vector z 5 to rotate as the individual components 

change in magnitude by integers. This new degree of freedom allows the 

coherence of the state to be completely eliminated, even though the 

> are still non-vanishing. 
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VI. SUMMARY AND CONCLUSIONS 

We have developed and applied a Hamiltonian variational approach to -_ 

the study of QED, formulated both compactly and non-compactly, on a 

(spatial) lattice in both 2+1 and 3+1 dimensions. In the course of obtaining 

results previously repqrted by others, 354 we-have introduced a different 

language and physical picture of confinement for these models. 

The important features of our method are: 

i> Explicit separation of classical and quantum variables 

ii) Imposition of the appropriate periodic boundary conditions 

on the variational wave function in the compact formulation for 

which the potential is periodic. 

iii) Factorization of the compact problem, in the weak-coupling 

limit, into a variational calculation which is the same as that 

of the non-compact case, p lus a statistical-mechanics-like calcu- 

lation of the corrections from non-perturbative effects-these 

are the N sums. 

In the compact formulation of the theory Step (i) introduces not 

only the static external charges and resultant classical Coulomb field, 

but an additional set of classical variables: the e%. The existence of 

these is a consequence of the periodicity of the Hamiltonian, which means 

it is invariant under translations of B by multiples of 2~r. 

In the absence of charges the sa 
3 

are taken to be zero corresponding 

to zero mean electric field strength. Charges are introduced using the 

- -iA gauge invariant operator Jle JI, which creates charges joined by a line 

of unit flux. Reinterpreting this state as a static Coulomb field plus 

the quantum excitation of a coherent photon state gives non-vanishing 
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E; over all of space. In the sector of the Hilbert space defined by these 

$9 the total flux on any link is given by the sum of the quantum excita- 

tions-plus the Coulomb field and is hence an integer for every eigenstate. 

In the strong coupling limit the coherent state is an eigenstate of the 

system, and in the ground state-the flux is-localized along the.shortest 

path between the two charges. As the coupling decreases fluctuations 

become more and more important; they depend on the e; and hence are 

different in the presence of charges, which polarize the vacuum, than 

they are in the charge-free sector. The dependence of the fluctuations 

upon the e% arises entirely in the non-perturbative effects which 

correspond to tunnelings between different minima of the potential-these 

effects are included in our approach by the introduction of the properly 

periodic wave functions in Step (ii). In Euclidean path integral calcu- 

lations these effects are included in the non-trivial classical (or 

semiclassical) solutions-the N's of our N-sums give rise to the same 

effects as the monopoles of Polyakov in 2+1 dimensions that lead to linear 

confinement in the weak as well as strong coupling limit. In 3+1 dimen- 

sions they give rise to the same effects as the loops of monopoles and 

do not lead to confinement in the weak coupling limit. 

Much of the physics we have observed in this calculation was antici- 

3 pated and qualitatively described by Polyakov, with further support from 

the work of Banks et al. 4 Our method of calculation, although quite 

different, is found to be capable of reproducing the qualitative effects 

which arise in path integral calculations from non-trivial classical or 

semiclassical solutions. It also highlights the crucial importance of 

the photon self-interactions that are introduced by the compact formulation. 
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Further,we make quite different approximations from those made by previous 

authors and yet arrive at the same conclusions, thus strengthening our -. 

-belie that these conclusions are correct, and not just the consequences 

of some simplifying assumption made during the calculation. We make no 

attempt here to-obtain precise-energies, or to investigate the inter- 

mediate coupling range-for example to find the value of the critical 

coupling in the 3+1 dimensional theory. We are interested at this stage 

only in certain gross qualitative statements about the theory. However the 

demonstrated power of the recursive variational method invites further 

study of such questions by these methods. 

Much still remains to be learned about lattice QED even on a quali- 

tative level. The introduction of quantum fermions is an obvious and 

interesting next step. We are now optimistic that these methods can 

also be extended to examine the confining properties of non-Abelian gauge 

theories on a lattice, in all regions of coupling strength. 
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The potential -& C (1-cos ea2 
8 73) 

arises from the product around 

each plaquette of four link operators of the type Ui Z e 
-iea2Ab 

? 

This product has the property that it is gauge invariant. In a 

theory with charges, combinations of the form I$$$+ h 
P P p+b 

are also 

gauge invariant. U is the lattice equivalent of the Schwinger line 

integral. 

The lattice operator V2 is defined by (2.19) for points $ in the 

interior of the lattice; if 3 lies on the edge the definition is 

modified. A general definition is given by (V2@)~ .c 
nearest 

$bl- 

neighbors 

(Number of nearest neighbors)x $I 
3' 

This is equivalent to requiring 

Neumann boundary conditions for 2 in the continuum theory. 

This follows from (2.9)-(2.11) with bp set equal to the constant 

function. 
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8. In two dimensions for any finite lattice the values Ls corresponding 

if we choose to define Lit E 0 -- to any given $5 are uniquely defined, 
- 
for 6 outside the lattice. An alternate formulation with periodic 

boundary conditions leaves the L; undefined by an arbitrary ($- 

independent) constant. In three dimensions we wiil see that x; is 

defined by (2.20) only up to Vo 
6 

where "6 is an arbitrary integer 

for each point 6. 

9. The appearance of fractional E variables here is a generalization 

of the property found in the l+l dimensional Higgs model [H. R. Quinn 

and M. Weinstein, Phys. Rev. E, 1063 (1978)]. There we found a 

single global e-parameter which could be identified with the e-parameter 

of the instanton picture. 

10. F. Bloch, Z. Physik 52, 555 (1928). See also R. P. Feynman, 

R. B. Leighton, and M. Sands, The Feynman Lectures on Physics 

(Addison-Wesley, Reading, Mass., 1965), Vol. III, Ch. 13. 

11. S. D. Drell, M. Weinstein, and S. Yankielowicz, Phys. Rev. G, 

1627 (1976). 

12. It is obvious that this ansatz will grossly underestimate the 

coefficient of cos (271e). Our result depends on the overlap of 

the wave function tails under the barrier, which is just where the 

Gaussian approximation is poorest. One could improve the estimate 

by choosing a trial form which is exponentially damped in this region, 

rather than Gaussian, for example $t,'O) = exp - aOBtanh806. We use 
i > 

the Gaussian form in order to be able to make simple analytic esti- 

mates, since we are here interested only in the qualitative features 

of the result rather than in making detailed quantitative statements. 
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Since our emphasis is to show that the s-dependent effects do not 

vanish,even a gross underestimate is sufficient. We remark also that .- 

our Gaussian wave function would be the best trial form if we were 

to study the Villain approximation to the Hamiltonian, which replaces 

the periodic potential $(I-cos B) by V(B) = &(B-2m)2 for each 

segment 2n(n - +) 2 B 2 2n(n + +). Hence it is not surprising that 

our treatment yields similar results to those obtained using this 

Villain potential in a path integral calculation (see Ref. 4). 

The factor (21~y) 
-k 

in the normalization of x(13) tells us that in the 

g + ~0 limit the N sums do not converge, though ratios such as 

<XIH 
With 

the 

is a 

x>/<xIx> do. 

periodic boundary conditions (Ey 
Px,NO = 

Ey 
P,,-NO-1 

; -EX 
No 'Py 

= EX 
-NO-l,p > 

Y 

ariable 2 L does not enter the Hamiltonian and the ground state 
P p 

superposition of all states lrn; = constant>: . 

im C 0 

The absence of any singular behavior in the theory as g2 + ~0 is 

indicated by the existence of an apparently convergent perturbation 

expansion about this limit bee for instance Banks, et al., Ref. 2). 

See, for example, K. Huang, Statistical Mechanics (Wiley, New York, 

1963); R. P. Feynman, Statistical Mechanics (Benjamin, Reading, Mass., 

1972). 

We thank Stephen Shenker for reminding us of this identity and 

suggesting its utility in this problem. 

It is clear from (4.23) that, given any distribution of non-vanishing 

Ns, the maximum contribution to Z for that distribution comes from all 
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these NC = +l. Terms with larger values of IN;/ are suppressed rela- 

Live to these by powers of e -l/g2 . We leave further demonstration 

of the validity of the truncation as an exercise for the reader. 

19. The form of (4.42) is effectively a "time slice" of the problem 

solved by Polyakov in evaluating the Wilson loop integral. The 

approximations we make from this point on destroy the explicit 

periodicity in EC ; they are reasonable only if we remember that 

each E-+ is defined to lie in range - $ < e-t < % . 
P - P- 

20. Once again the ground state is ($X$ = 0, but 9.; is arbitrary. See 

footnote 14. 

21. The restriction on the t-sum could readily be removed, since so 

doing is equivalent to multiplication of numerator and denominator 

in (5.14) by a (divergent) constant. However we have not found this 

to be a useful way to proceed. 

22. The restriction on the t sum in (5.14) excludes changes in the surface 

which do not alter the perimeter. By Gauss's law all surfaces which 

have the same perimeter have the same c x.3 modulo integers 
surface 

which would not alter (5.19). 
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FIGURE CAPTIONS 

Labeling of sites and links in a two-dimensional lattice. 

Gentification of the plaquette variable % in terms of link 

variables A:. 
P 

(?*&; shown in terms of contributing links. 

A single plaquette universe showing the charge configuration and 

notation discussed in the text. 

The larger two-dimensional lattice showing the charge configuration 

of interest, and the z-field string of the strong coupling ground 

state. Periodic boundary conditions are indicated by extra links 

at the edges. 

Contributions to <cos 2s9;>. Each loop corresponds to a sum over 

1 -1 
spatial momenta $ C + 2 sd2k and each line is a factor g'w . p- 4r k 
Contributions to <cos 2~r$ 

if 
cos 2r++,>. 

(a) Diagram of order X2 contributing to a connected two point 

function. 

(b) Diagram of order A9 which corresponds to mass-insertions in 

Fig. 8a. 

Labeling of site, link, and plaquette variables for a three-dimen- 

sional lattice. 

The simplest non-vanishing 36 distribution which satisfies ($-s);;=O. 
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