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1. INTRODUCTION 

The Ising Model (IM) in a transverse magnetic field (or Quantum Ising 

Model)"is represented by the Hamiltonian 

H = - : 1 o,(i)-A 1 a,(i>"x((j) 
i n.n. 

(1) 

K E E/A 

where o x and o are the usual Pauli matrices. 
Z 

The i index runs throughout 

the sites of the lattice, and n.n. picks only once every i and j indices 

located in a nearest neighbor position. 

This spin lattice system corresponds to the pseudospin formulation 

of phase transition problems and has been used to study order-disorder 

ferroelectrics with a tunnelling effect' or the magnetic ordering in 

materials with a singlet crystal field ground state. 2 The equivalence of 

the critical behavior of Quantum I.M. at zero temperature and d dimensions 

to that of a d+l Classical I.M. is also well known. For the quantum system, 

the transverse field rather than temperature is the disordering agent. 

The properties of the Hamiltonian (1) have been obtained exactly, 

in the one-dimensional case by Pfeuty, 3 and the correspondence between 

classical and quantum systems is justified using the transfer matrix 

technique. 4 

From the exact solution of the one-dimensional case is known that, 

at zero temperature, a second order transition occurs for K=2. The 

behavior of the order parameter or magnetization in this model is given 

by <ox> = [I - ($1'"' for Kc2 (ferromagnetic phase) and <ux> = 0 for K>2 

(paramagnetic phase). All the other critical exponents are identical to 

the ones obtained by Onsager for the I.M. in two dimensions. 



-3- 

For d>l no exact solution exists for these models although all the 

qualitative and quantitative estimations of the criticality of Classical 

I.M. ?Zre applicable here, because of the correspondence we have commented 

before. 

In this paper we.will study the Quantum I.M. in two dimensions which 

constitutes a prediction for the critical exponents of the three-dimensional 

I.M. The model can be located in any two-dimensional lattice; we will 

consider the three usual cases, i.e. square, hexagonal and triangular 

lattices. 

Some magnitudes like ground state energy density and critical constant 

are different in each case. However, if universality is accepted, the 

critical exponents should be the same because in principle they only depend 

on the dimension of the lattice. 

Our working method will be the lattice Variational Renormalization 

Group (V.R.G.) approach developed at SLAC by S. Drell, M. Weinstein and 

collaborators. 5 This is a method derived to extract information about 

any quantum field theory without implementing a renormalization program 

based in an expansion in Feynman graphs. As a finite spin approximation 

to the $4 theory in lx-lt dimensions, in the strong coupling limit, the 

SLAC authors have studied6 the one-dimension Quantum I.M. obtaining good 

results for all the properties of that theory. 

In a subsequent paper I have proposed,7 for that case, a modification 

in the choice of the block hamiltonian used to implement the R.G. iterations. 

The difference consists in omitting one of the site energy terms that in 

principle exists inside the block. For that model, with this omission, 

the block hamiltonian has the same number of site and link terms, which 
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is a general property of that theory. The remarkable benefit of that 

"self-dual?"blockspinning is the obtaining of the exact critical coupling 

const3nt and also the exact thermal eigenvalue of the model. 

Here we will study the Quantum I.M. in two dimensions, using both 

procedures. In-this case a similar omission does not leave the block 

hamiltonian with the same proportion of site to link terms of the model; 

but it takes a step in that direction. So the comparison we present 

here is very interesting as a testing ground for the procedure beyond the 

one-dimensional case. The good or bad performance will be judged by 

comparing our results with existing data for the I.M. in three dimensions 

obtained with the high temperature expansion. 

The paper is organized as follows. In Section II we present in 

detail the steps one has to do to apply the V.R.G. technique to any sort 

of lattice and the way of obtaining some physical information from the 

method. The differences, where they exist, between both procedures will 

be especially remarked. Our results and conclusions appear in Section III. 

And finally in the Appendix we present a Mean Field derivation of the 

critical coupling constant for this kind of model. 

II. VARIATIONAL RENORMALIZATION GROUP METHOD 

This approach we use 698 is variational, so that it is based in the 

Rayleigh-Ritz' procedure and simultaneously is a R.G. method, so that it 

consists in a progressive thinning of degrees of freedom. I" It is devised 

to construct a wave function for the ground state wave function of the 

model under consideration. To apply the V.R.G. method to any sort of 

lattice we can distinguish four steps: (a) block defnition, (b) choice 

of the variational block hamiltonian, (c) truncation of states, and (d) 

representation of original hamiltonian in the truncated basis. 
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After doing these four steps we will have some R.G. equations for the 

model, from which we will be able to extract useful information about the 

differznt magnitudes of the theory. 

A. Block Definition 

Given the lattice one wants to solve, the first step is to define 

the elementary blocks. All the blocks should be identical; each of them 

will contain a few spins and no spin will remain out of a block. Further- 

more, the interaction between blocks has to be identical in form to the 

original interaction between spins. This is necessary because after the 

thinning of degrees of freedom all the spins inside the block will be 

reduced to a new effective spin which must posses the same dynamical 

properties of the original system. If this requirement is not fulfilled 

after a R.G. transformation, new kinds of couplings in the Hamiltonian will 

appear and, even in the best case, the problem will acquire new difficulties. 

. - In Fig. la we present the smallest block we can define in the square 

lattice. Here the block contains four spins and it is quite apparent 

that each block is connected with its four closest neighbors as dictated 

by the Ising interaction in the square lattice. Another sort of block 

definition for this lattice is presented in Fig. lb. Now each block has 

five spins and as before each of them interacts only and symmetrically 

with its four nearest neighbors. 11 Obviously there is no problem in 

defining big blocks, in fact the larger the blocks are, the better results 

(in principle) one expects to obtain. However, as eventually the block 

hamiltonian has to be diagonalized, the calculations will be possible if 

the block size is reasonably small. 
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In Fig. 2 we present the smallest block definition of the hexagonal - 

lattice; there each 4 spin block interacts with its three nearest neigh- 

.bors 4s it should. In Figs. 3a and 3b, 3 spin and 7 spin blocks are 

defined for the triangular lattice. From these illustrations we see that 

with the Ising-like interaction-it is trivial to define blocks._ 

B. Choice of the Variational Block Hamiltonian 

Once the block is defined, we know the number of degrees of freedom 

that will appear in each step of the R.G. process. Now it is necessary 

to choose the hamiltonian of the block. As our ultimate goal is the 

construction of a reasonably good ground state of the Hamiltonian of the 

full theory, we will keep in each step if the process only a set of the 

lowest eigenstates of the block hamiltonian (in fact, for simplicity we 

will always maintain only the two lowest ones); the rest of them will 

be dropped by truncating the Hilbert space. How we choose the truncated 

basis, which is the real heart of the variational method, is directly 

connected with the choice of the block hamiltonian itself. 

In principle it may seem that the most logical choice is that the 

block hamiltonian consists of all the site terms and all the link terms 

included in the individual block. This would correspond in the case of 

Fig. la to choosing 

h= + oZ(2) + ~~(3) + oz(4) ox(l).ox(2) + ax(2)('x(3) + 

i + ox(3)ax(4) + ox(4)ox(l) 1 
(2) 

In fact this was the original version of the method6 and we will use it 

here too. There is not however any compelling reason to do so. Indeed 

all we need is a hermitian operator defined in the degrees of freedom 
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existing in the block, so that we can retain some of its eigenstates. 

Actually the scheme is not so loose because not all the choices one can 

guess>re proper. For success of this procedure it is essential that the 

truncation iteration procedure leads to a new Hamiltonian qualitatively 

identical to the original: i.e. -one of the same form but with different 

coefficients on the individual terms. In practical calculations this 

general condition usually unfolds in two subconditions, i) the expectation 

values of all the intrablock terms of the general Hamiltonian in the two 

retained states per block, must be different. This must be so because 

otherwise in a renormalization step we would lose the single site terms of 

the Hamiltonian and all the scheme would collapse. ii) the representation 

of the interblock terms in the trial basis must lead to an isotropic (in 

all the directions of the lattice) interaction.:between the blocks. 

Obviously it must be so because otherwise the renormalization method would 

drive us to quite a different dynamics without any usefulness for us. 

These two conditions ban some choices of the block hamiltonian as we will 

see later in some examples. 

We will also use an alternative way to (2) the following block 

hamiltonian 

h= + ~~(2) + oz(4) 
I [ 

-A ox(l)ox(2) + ox(2)ox(3) + 

(3) 

+ ax(3)ox(4) + ox(4)ox(l)]. 

i.e. we omit one of the site terms of (2). This is inspired in our work 

with the one-dimensional case. / There, as we have commented in the 

Introduction, it was a dynamical system with the same number of link and 

site terms, so that a site omission as in (3) makes the block hamiltonian 
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have that general property of the theory, and some of the results of the 

method are dramatically improved, even made exact. The omission trick 

'had tBe technical effect of making the two lowest eigenstates of the 

block hamiltonian degenerate, in opposition to the original analysis where 

they were nondegenerate. 

In the two-dimensional case, an omission, like in (3) again produces 

a degeneracy for the two lowest eigenstates of the block, not only for 

the square lattice but also in the others (independently of the block 

size one chooses). What we obviously do not get is a block hamiltonian 

with the same proportion of site-link terms of the general theory. Then 

there is a trivial question. Why not proceeding any further with the omission 

trick until getting the same proportion? The answer is very easy: that 

is not possible, because a second omission would already violate the 

i) condition commented before. We would lose the site terms of the 

Hamiltonian and the R.G. implemented so would be meaningless. 

So that the two basic options we will use in all cases will be the 

corresponding generalization of (2) and (3), i.e. either all the intra- 

block terms form the block hamiltonian or all except one site. These two 

possibilities are extensively illustrated for all the lattices in Figs. 

4, 5, and 6. The block hamiltonian of Fig. 6a cannot have any partner 

with omission because it would violate the ii) condition of isotropy. The 

same would happen to the block of Fig. 4d if the omission were not central 

but in one of the external positions. Although they have been drawn as 

a possible block hamiltonian of the triangular lattice, the ones of Figs. 

6b and 6c, they will not be used in actual calculations because they are 

too expensive (the effective matrix to diagonalize in both cases is a 

64 x 64 one). 
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C. Truncation of States 

After the choice of the block hamiltonian, we have to diagonalize 

'it in-order to know which are the two lowest eigenstates, which will be 

all we retain in the truncation process. To clarify that, we will use 

the square lattice with the smallest block size (Figures 1, 4a and 4b); 

In the other cases to do the analogous is also straightforward. 

The representation of (2) and (3) in the space spanned 

(4) 

93 <h> = ( 0 

0 

) “Y (5) 
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This decoupling of the 16 x 16 matrix is due to the fact that h is invariant 

under a rotation about the z axis of IT, hence h only connects among them- 

selves the first eight and the last eight states of (4). In the construc- 

tion of (6) and (7), precisely the order of states consigned in (5) has 

been used. Notice that the h given in (2) corresponds to x=1, and the h 

given in (3) is obtained with x=0. If x=1 both matrices are different 

and so their eigenvalues are also different. On the contrary, if 

x=0, B="fl and then the lowest eigenstate of %:Ib> and the lowest 
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eigenstate of "Y:I v> will be degenerate. This is the degeneracy we 

announced previously that happens when the omission trick is used. 

Iageneral for arbitrary E and A parameters it is not possible to 

obtain analytic expression for the eigenvalues and eigenvectors of 3 

and V and it is- necessary to do it numerically for each situation. 

So let us suppose that we have solved the problem and the symbolic 

solution for the two lowest eigenstates of the block hamiltonian matrix 

is 

(8) 

Remember that if x=0, bi=vi. As all the others eigenstates have been 

dropped, lb> and Iv> are now the two situations of an effective block 

spin. In the next section the original operators of (1) will be expressed 

as operators acting in the truncated basis formed with all the lb> and 
S 

IV’S 
of the lattice. That transition constitutes a R.G. transformation. 

D. Renormalization Transformation 

In the previous section we have reduced the Hilbert space of (1) 

because from 16 states per block we have passed to 2, the two lowest ones, 

which, very plausibly will be fundamental ingredients of the actual ground 

state of (1). 

The representation of H in the new truncated basis is very easily 

attained. In (1) there are two kinds of terms, those that operate only 

on the degrees of freedom that are inside a block, and those that operate 

simultaneously on variables existing in two blocks. 
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Let us separate both kinds of terms 

H=Ho+V 

Ilo is>bviously 

(9) -. 

Ho = 1 ho(I) 
I 

(10) 

ho being precisely the h used in (2). 

To calculate the new single site block terms we will have to calculate 

<blholb> <b[hojv> 

<v/ho/b' <vjholv> 

so that we see that 

?YA2 E-FE'=- 
2 (12) 

is the R.G. equation for that coefficient. 

term per block that we store in each step to calculate the ground state 

energy density. 

Looking now at the terms that compose V, each of them is like this 

-A a,(i,J) ox(i',J') (13) 

where i is here an index describing the position of a spin in the block, 

while J is the block index. 

To obtain A', we have to calculate the representation of ox(i,J) in 

the truncated block space and analogously for ox(i',J'). Let us suppose 

for example that i=l,. 

<b lox(l) Ib><bjox(l) I V> 

I) 

01 
=Z 

V> ( ) ll 0 lax(l) Ib’<vlox(l) 
(14) 
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That is each o,(i) provides a Z factor and the (sx operator in the Ib>,]v> 
- 

basis. The Z factors are trivial expressions of bi and vi. 

?or the case we are describing in detail (Figs. 1, 4a, 4b) 

A -+ A’ = (zlZ4 + Z3Z2) (15) 

Our previous warning about the isotropy of the block interaction, 

specifically means that the A' obtained in any direction has to be identical. 

Noting that the hamiltonian depends only on K E f up to a scale 

factor and a global energy term, one can easily obtain a R.G. equation 

for that relevant coefficient. Using (12) and (15) we have 

K-+K'= 
01-h2> /2 

A(zlZ4+Z2z3) 
(16) 

This R.G. equation has two trivial fixed points for K=O and K=m, and also 

a nontrivial K=K*, K* finite, that represents the critical coupling constant 

of the model because in that situation the Hamiltonian reproduces itself 

up to a scale factor, and so the physics going on at different length 

scales is essentially the same. 

If the process we have outlined is repeated for the new effective 

Hamiltonian, the coupling parameters will change again and the successive 

iteration drives to any of the trivial fixed points (0 or -) depending on 

the position of the initial K with respect to the K*. 

The properties of the R.G. transformation (16) near the critical 

point are determined by the derivative XT 

dK' 
'T ' dK I K=KJ( (17) 
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known as "temperature-like" eigenvalue. From which we obtain the thermal 

exponent 

4 

-. 
Rn(XT) 

YT = -~ 
Rn b-d 

(18) 

n being the number of spins per block used in the method. 

Another critical index is the magnetic eigenvalue AH9 12 defined as 

the response to a perturbation of the form 

R 1 D,(i) (19) 

due to the existence of a longitudinal magnetic field, of the fixed point 

hamiltonian. We determine this number in our scheme by representing this 

perturbation in the space of the truncated basis and divide by (Al/A> in 

order to have the coefficient of [ 1 Ox(i) always normalized to 
n.n. 

t-11. 

R+g'= R (Z1+z2+z3+zq) 

and so 

x z1+z2+z3+z4 
H= z1z4+z2z3 

(20) 

(21) 

Analogously with the thermal case, the magnetic exponent is 

Rn ( xH) 
YH = Rn Cd 

(22) 

In the next section, along with the critical coupling constants in 

the different variational options, and these two critical exponents yT 

and yH' we present also the results for the B exponent, and.also for the 

ground energy density. In order to calculate these two physical observables 

directly from the iterative procedure, we follow the method described in 

detail in the Reference 6. 
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The magnetization function is found iterating until convergence the 

product 
--h 

&f = ; 1 .jy (Z1+z2+z3+zq) 
I 

(23) 

Let us recall that we are always using as working example the square 

lattice with the block hamiltonian depicted in (2) or (3). 6 is found 

by fitting the numerical points obtained in the iteration of (23) with 

the function [l - (kT1" at points K very near to K*. 

To get the ground state energy density it is necessary to calculate 

the sum 

A1+X2 fso=c-L -yj- 
4 4q [( )I 4 

(24) 

for a q large enough to obtain satisfactory results. We see that this 

formula collects the accessive coefficients of the 1 matrix by the 

volume of the block in each step. 

III. RESULTS AND CONCLUSIONS 

Our results for critical constants and exponents are collected in 

Table 1, and the latter compared with the high temperature expansions. 13 

For the critical constants there is no way of knowing if they are good 

or bad because there is no alternative precise calculation for them. If 

we grant a higher credit to the results obtained doing the omission, 

then, it is curious the proximity of them to the coordination number 

(number of lines that emerge from each site) of the lattice. Notice 

that in the one-dimensional case the exact result was K*, that is 

supposed to be correct for a dimension higher than four, is twice the 

coordination number (see Appendix). 
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As can be seen in Table 1, the values of the critical exponents 

calculated on doing the omission trick are systematically better than the 

others, and our best results correspond to the hexagonal lattice. 

In Fig. 7 we present a complete display of the results obtained for 

magnetization of-the square lattice, using the four spins block with and 

without the omission trick. In Fig. 8, for the same lattice, in the same 

approximation, our results for the ground state energy density appear. 

Here we observe a similar behavior to the one of the chain,7 i.e. on 

doing the omission trick the results are higher, specially in the critical 

area. But in spite of this drawback, it has the remarkable advantage of 

showing the expected peak in its second derivative (see Fig. 9). We have 

observed these two qualitative features not only here but aIso for the 

hexagonal lattice. 

As a general conclusion of the paper, we would say that for the 

Quantum I.M., except for the ground energy density where it works worse, 

the omission trick shows itself as an easy way of improving quantitatively 

the Variational R.G. method and even making it able to expose qualitative 

features which otherwise would remain buried. Therefore we plan to apply 

it to other Field Theories previously studied6 (like the U(1) scalar 

theory in lx-lt dimensions, the Thirring model, etc.) to know if there 

we find any discrepancy between both methods. 
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APPENDIX 

In this appendix we present a Mean Field Theory (M.F.T.) computation - 
-. 

of the critical constant of any Quantum I.M. -h 

Let us suppose that any single spin of the lattice under consideration 

is surrounded by. c nearest neighbors (c is the coordination number). In 

a M.F.T. approach the hamiltonian of any spin of the lattice is 

h = - 4 az-cAs CJ 
X 

(Al) 

where s : <ax> is the effective magnetic field acting on each spin due to 

the presence of each one of its nearest neighbors. 

The ground state of the lattice is simply the tensorial product of 

all the individual ground spin states. So we have to find the ground 

state of h in (Al). It is 

corresponding to the eigenvalue 

(A21 

x=-42Ti7 

.Ek 
2 

b q chs 

(A3) 

Knowing IO> we can calculate <o/ox10 > and impose the consistency condition 

s = <OlaxlO>. So that we have 

s = (A4) 



-19- 

And from (A4), bearing in mind that the criticality corresponds to the 

vanishing of the order parameter s we easily obtain K*=2c, i.e. in this 
4 

approach the critical constant is just twice the coordination number. 

As it is well known M.F.T. provides exact results for a dimension 

higher than four. 



1. 

"2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

-2o- 

REFERENCES 

P. G. DeGennes, Solid Commun. 1, 132 (1963). 

iT. L. Wang and B. Cooper, Phys. Rev. 172, 539 (1968). 

P. Pfeuty, Ann. Phys. 27, 79 (1970). 

E. Lieb, T; Schultz and D, Mattis, Rev. Mod. Phys. 36, 856 (1964). 

S. Drell, M. Weinstein and S. Yankielowicz, Phys. Rev. D14, 487 (1976); 

E, 1627 (1976); z, 1769 (1977). S. Drell, B. Svetitsky and 

M. Weinstein, Phys. Rev. D17, 523 (1978). S. Drell and M. Weinstein, 

Phys. Rev. lJ, (1978) and H. Quinn and M. Weinstein, Phys. Rev. 17, 

1063 (1978). 

The application of the SLAC lattice method to the one-dimensional 

Quantum Ising Model is contained in the third paper of-Ref. 5. 

A. Fernandez-Pacheco, SLAC-PUB-2099, submitted to Phys. Rev. 

Z. Friedman, Phys. Rev. Lett. 36, 1326 (1976) and K. Subbarao, 

Phys. Rev. Lett. 37, 1712 (1976) have developed a Renormalization 

Group method a la Niemeijer and Van-Leeuwen to compute the critical 

parameters in Quantum I.M. They do the calculations in a triangular 

lattice with the minimal block size (three sites per block), up to 

second order in perturbation theory. Their results are roughly 

better than ours for the magnetic index and worse for the electric one. 

In the usual Rayleigh-Ritz variational method in Quantum Mechanics, 

the ground state wave function is guessed depending on variable 

parameter, which is fixed so that it minimizes the energy of the trial 

wave function. In the method we use here for a dynamical system 

with infinite degrees of freedom, we do not use any similar parameter. 

In the original approach to the one-dimensional Quantum-Ising model,6 



10 

11 

13 

Drell, Weinstein and Yankielowicz did use that, which increased 

remarkably the power of the method, but also increased considerably 

2s expensiveness. For the two-dimension case, the use of similar 

variable parameters would be a really cumbersome task. We therefore 

prefer to rely in.the naive and simple-method of retaining-the two 

lowest eigenstates of each block, improved with the omission trick 

that so good results provided in one dimension. In spite of not 

using variable parameters, the method is variational, because it is 

based on guessing an adequate ground state wave function, in opposition 

to other approaches that construct it perturbatively. 8 

The Renormalization Group ideas were introduced in Statistical 

Mechanics by L. P. Kadanoff in Physics 2, 263 (1966) and developed 

later on by K. G. Wilson and others. A complete list of references 

can be found in K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974). 

In an unrelated work P. Turner has used five spin blocks similar to 

ours to study the Classical $4 Theory in two dimensions. (Forth- 

coming SLAC preprint.) 

--. See for example Th. Niemeijer and J. M. J. Van-Leeuwen in C. Domb 

and M. S. Green, Vol. 6, Academic Press 1976. 

13. A. Hankey and H. E. Stanley, Phys. Rev. E, 3515 (1972). 

-21- 



-22- 

High 
Temperature 
Txpansion 

o--o 

z!i A ’ .-. _- + 
2 J 0 I 

0 
I 

@-.-@ 
I 
0 

T/ 

K* - 

6.560 I .4175 .8798 .94 

4.2009 .8408 .8731 .42 

5.2595 .447 I .8772 .91 

3.8942 .7636 .9366 .48 

3.9369 .5524 1.0138 .66 

3.0873 .8602 I .0770 

IO.4946 .3232 .7793 

LE 1 

YT 

.7999 I .2499 .312 

YH P 

.36 

1.3 

4--7 
3376Al 



-23- 

FIGURE CAPTIONS 

1. 

2. 

3. 

4. (a), (b), (c) and (d), variational options for the block hamiltonian 

5. (a) and (b), variational options for the block hamiltonian of the 

hexagonal lattice. 

6. (a>, (b), and (d), variational options for the block hamiltonian of 

the triangular lattice. 

7. Comparison of the order parameter Jtt (K) versus K. 

8. Ground energy density as a function of K. with the same conventions 

as Fig. 7. 

9. Second derivative of the ground energy density, with the same con- 

Blocks on a square lattice, (a) four spins per block and (b) five 

s+ns per block. 

Blocks with four spins in a hexagonal lattice. 

Blocks on a-triangular lattice, (a) three spins per block and 

(b) seven spins per block. 

of the square lattice. 

0 stands for the spin degree of freedom. 

0 stands for the site term of the Hamiltonian. 

- stands for the link term of the Uamiltonian. 
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ventions as Fig. 7. 



L3EIiqa 
.- .-.. -.-.-.-.-. 
l -.-.-.-.-.-•-. 
d4 J 

i-i-i-i-i-i-i-i 

+ ~-i-~-i-i-i 

-.-..-.-.-A-0-E 

,,1..1 

(a) (b) 

Fig. 1 



Fig. 2 



h 

3 
‘\/‘V\/T7p’\ .-.- .-. - .-. /\/ A/\/\/ .-.- 0 .-.-.-. \/w\/\/\/\ .-.-.-. / \ / \ / \ / \/‘\7’ 
0 c .-.-.-.-.-. \/\/\(h-Ap .-. -.-.-.-. Y”., 

(a) 

Fig. 3 

(b) 



I 2 0 0 0 0 

I I 
0 0 -0 0 
4 3 

(a) 

I 2 

0 0 0 0 

I I 
0 0 0 
4 3 

(b) Id) 
4-78 3376 A4 

0 0 

I 
0 0 0 0 -0 0 

0 0 
w 

0 0 

0 0 0-O 

I 

0 

0 0 

Fig. 4 
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Fig. 6 
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Fig. 7 
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Fig. 9 


