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1. INTRODUCTION 
-. 

Jhe nonparametric two-sample problem has been well studied (see 

Gibbons, 1971, Ch. 7). Classical univariate tests designed for general 

alternatives are the Smirnov (1939) maximum deviation,test and the Wald- 

Wolfowitz (1940) runs test. Straightforward extensions of the Smirnov 

test [and related tests, Darling (1957)] using the multivariate empirical 

cdf lead to procedures that are not distribution free. Bickel (1969) 

shows that it is possible to construct consistent distribution free 

multivariate Smirnov tests by conditioning on the empirical cdf of the 

pooled sample. Distribution free multivariate generalizations of the 

Wald-Wolfowitz test have not previously been proposed. - 

The basic operational procedure employed in both the Wald-Wolfowitz 

and Smirnov tests is the sorting of pooled univariate observations in 

ascending order without regard to sample identity. Statistics are then 

computed based on the ranks of sample members in this sorted list. The 

difficulty in extending this procedure to multivariate observations is 

that the notion of a sorted list cannot be immediately generalized. 

We propose using the minimal spanning tree (MST) of the sample 

points as a multivariate generalization of the univariate sorted list. 

We show how one can define two-sample test statistics based on the MST 

in analogy with those based on the sorted list. (In fact, in one di- 

mension the MST is defined precisely by the sorted list.) 

Section 2 presents a formal statement of the problem and reviews 

the Wald-Wolfowitz and Smirnov univariate tests. Section 3 introduces 

the MST and reviews some standard theorems that indicate its appropriate- 

ness for the two-sample problem. Section 4 presents the multivariate 
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generalization of the Wald-Wolfowitz runs test and Section 5 presents 

our multivariate generalization of the Smirnov maximum deviation test. 
-h 

-. 

-. 

Section 6 discusses multivariate two-sample tests based on 2 x 2 contin- 

ency tables. Section 7 presents further extensions of the runs test 

using orthogonal spanning trees. Section 8 shows the results of a simu- 

lation study comparing the power of these tests and other multivariate 

tests. 

2. THE PROBLEM 

Consider samples of size m and n respectively from distributions 

FX and FY, both defined on Rp. The hypothesis Ho to be tested speci- 

fies that FX = FY. We are interested in general alternatives hypotheses 

Fx # Fy. 

The Wald-Wolfowitz test (for p=l) begins by sorting the N = m t n 

univariate observations in ascending order. Each observation is then 

replaced by a label "X" or "Y" depending upon the sample to which it 

originally belonged. The test statistic is the total number of runs, 

R. A run is a consecutive sequence of identical labels. Rejection of 

Ho is for small values of R. The null distribution of the test statis- 

tic can be derived by a straightforward combinatorial argument. Asymp- 

totically, the quantity 

w = R-r- 
2mn , 

(1) 

has a standard normal distribution. The test is consistent if the ratio 

m/n is bounded away from 0 and co as m, n -) co. 
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The Smirnov test also begins by sorting the univariate observations - 

in ascending order irrespective of sample identity. For each i, -h 

1 I i zz N, the quantity 

&..&z (2) 

is calculated where ri (si) is the number of X (Y) observations for which 

the rank (in the sorted list) is less than or equal to i. The test 

statistic is 

D = max ldil 

l<isN 

Rejection of Ho is for large values of D. 

been extensively tabulated and asymptotic 

(3) 

The distribution of D has 

approximations are known. This 

test is consistent under the same conditions as the runs test. 

3. MINIMAL SPANNING TREES 

We begin by reviewing some terms from graph theory. A graph con- 

sists of a set of nodes and a set of node pairs called edges. We say 

that an edge links the two nodes defining it and that it is incident on 

both of them. The degree of a node is the number of edges incident on 

it. A path between two prescribed nodes is an alternating sequence of 

nodes and edges with the prescribed nodes as first and last elements, 

all other nodes distinct, and each edge linking the two nodes adjacent 

to it in the sequence. The length of a path is the number of edges it 

contains. A connected graph has a path between any two distinct nodes. 

A cycle is a path beginning and ending with the same node. A tree is a 

connected graph with no cycles. A subgraph of a given graph is a graph 

with all of its nodes and edges in the given graph. Connected subgraphs 
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of trees are trees and are called subtrees. Subgraphs having no nodes 
- 

j 
in co-mmon are called disjoint; subgraphs having no edges in common are 

called orthogonal. A spanning subgraph of a given graph is a subgraph 

with node set identical to the node set of-the given graph. A spanning 

tree of a graph is a spanning subgraph that is a tree. Note that there 

is a (unique) path between every two nodes in a tree, and thus a span- 

ning tree of a (connected) graph provides a path between every two nodes 

of the graph. 

An edge weighted graph is a graph with a real number assigned to 

each edge. A minimal spanning tree (MST) of an edge weighted graph is 

a spanning tree for which the sum of edge weights is a minimum. [The 

terminology of graph theory has not been standardized; for a general 

discussion, see Harary (1969)]. 

. - In the two-sample problem, consider the edge weighted graph con- 

sisting of the N pooled sample data points in Rp as nodes, and edges 

linking all pairs. This "complete" graph has N(N-1)/2 edges. Take the 

weight associated with each edge to be Euclidean distance or a general- 

ized dissimilarity between the nodes (points) defining it. The MST of 

this graph is thus the subgraph of minimum total distance (dissimilarity) 

that provides a path between every two nodes. Note that it is unique 

if there are no ties among the N(N-1)/2 interpoint distances (dissimilar- 

ities). 

Minimal spanning trees have two important properties that make them 

appropriate for application to the two-sample problem: (1) they connect 

all of the nodes with N-l edges and (2) the node pairs defining the edges 

represent points that tend to be close together (small distance or dis- 
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similarity). The first property follows from the fact that the NST is a 

spanning tree, and the second from the requirement that the sum of the 

edge we?ghts be a minimum. This is amplified by the following two 

theorems from Prim (1957) [see also Kruskal (1956)]. Theorem (1): An 

MST contains as a-subgraph the "nearest neighbor graph".' That is, there 

is an edge linking each node and the node closest to it (or one of them 

if there are ties). Theorem (2): If any edge of an MST is deleted, 

thereby dividing the graph into two disjoint connected subgraphs, and 

thus dividing the points into two disjoint subsets, the deleted edge 

weight is the smallest interpoint distance between the two subsets. 

MSTs are well known in pattern recognition (Zahn, 197T) and cluster 

analysis (Hartigan, 1975) for providing excellent descriptions of point 

sets. Figures lb, 2b and 3b display MSTs for some two-dimensional point 

sets. Computational considerations for constructing MSTs (and the test 

statistics defined below) are discussed in Appendix I. 

4. MULTIVARIATE NUMBER OF RUNS TEST 

For a univariate sample, the edges of the MST are defined by adja- 

cent points in the sorted list. The Wald-Wolfowitz runs test described 

above can be alternately described as follows: (1) construct the MST 

of the pooled sample (univariate) data points, (2) remove all edges for 

which the defining nodes originate from different samples, (3) define 

the test statistic R as the number of disjoint subtrees that result. 

This will be one more than the number of edges deleted. Rejection of 

Ho is for small number of subtrees (runs). 
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When described in this manner, the multivariate generalization be- 

comes straightforward. In step 1 above, the MST of the multivariate 

pooled^sample is constructed and used in step 2. This generalization 

preserves the spirit of the Wald-Wolfowitz test since the sorted list 
. 

is used primarily to link points that are close together in R'.- The 

multivariate MST links points that are close together in Rp. 

These concepts are illustrated in Figures 1, 2 and 3. The data 

shown in Figure 1 are two samples of 25 points each drawn from a stand- 

ard bivariate normal distribution. In Figure 2, the samples are drawn 

from bivariate normal distributions where the location of one is trans- 

lated by two standard deviations. In Figure 3, the underlying bivariate 

normal distributions have identical location, but the covariance matrix 

of one is three times that of the other. Figures la, 2a and 3a show 

the data points in the plane with their sample identities. Figures lb, 

2b and 3b superimpose the MST of the pooled sample, while Figures lc, 2~ 

and 3c delete those edges linking nodes from different samples. 

Under Ho, the mean and variance of R can be calculated using a minor 

extension of the indicator variable approach for the univariate case 

(see e.g., Gibbons, 1971, Ch. 3). Number the N-l edges of the MST arbi- 

trarily and define Zi, 1 < i 5 N-l, as follows: 

I 
1 if the ith edge links nodes from 

z. = different samples. 
1 

0 otherwise 

Then 

R =N%l Z. + 1 and E [R] 
i=l ' 

= '%' E [Z,] + 1. 
i=l 

(4) 
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Note 

E [Z,] = Pr (Zi = 1). (5) - j 

NOW ‘~ (‘i = 1) is the probability that the two nodes defining this edge 

are labeled X and Y or Y and X. These probabilities are 

Pr{XY) = PrCYX) = 6,) , 

so that 

Pr (Zi =,'I = a , 

and from (4) 

E [R] = 9 + 1. 

(6) 

(7) 

This is the same result as in the univariate case (Wald-Wolfowitz, 1940). 

The variance of the runs distribution (under Ho) can be calculated 

similarly: 

N-l 
Var [R] = Var [ 1 c Zi 

i=l 

= '2 Var [Z,] + 2 
i=l 

c cov [Zi,Zj]. 
i<j 

Clearly, 

N-l 
C Var [Zi] = p - 4 m2n2 

i=l N2(N-1) ' 

(8) 

(9) 

NOW consider 

cov(Zi'Zj) = ECZiZj] - (E[Zi])2 . ('0) 

Observe that 

E[ZiZj] = Pr CZiZj = 1) . 0') 

This probability depends on whether or not the ith and jth edges share 
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a common node. If they do, the two edges are defined by three nodes and 

-there-are two possible label sequences for which ZiZj = 1: 

XYX or YXY with probabilities respectively 

Pr(XYXJ = mn(m-1) 
N(N-l)(N-2) 

and 

mn(n-1) 
Pr(YxY) = N(N-l)(N-2) ) 

so that 

E[ZiZj 1 common node] = &. (‘2) 

If Zi and Zj do not share a common node, there are four nodes defining 

the two edges and four possible labelings that lead to ZiZjkl: (XV) (XV), 

(XV) (YX), (YX) (XV), (YX) (YX), each with the same probability, so that 

E[ZiZj 1 no common node] = 4 mn (m-l)(n-1) 
N(N-l)(N-2)(N-3) * ('3) 

Let C be the number of edge pairs that share a common node. The total 

number of edge pairs is ( Ns'). Combining this with (5 - 13), one has 

(after some algebraic simplification): 

Var[R/C] = a 2 miFN L 

+ -(* [N(N-1) - 4 mn + 211 . ('4) 

The value of C depends upon the configuration (topology) of the 

MST: it is determined by the node degrees. In the univariate case, 

these degrees are fixed independent of the sample: there are two 

nodes of degree one and N-2 nodes of degree two. In this case, C = N-2 

and (14) reduces to the Wald-Wolfowitz result. 

In the general case (p > 1), MSTs with a variety of node degree values 
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are possible and the variance of R under Ho depends upon the common F. 

To make a distribution free test, we condition on the observed MST of 

the pooled sample points. It is sufficient (but not necessary) to con- - 
-. 

dition on the pooled sample itself. Then C is fixed and (14) is the 
* 

variance of R under the distribution induced by the N! permutations of 

sample identities among the observations. From (7), one sees that the 

conditional and unconditional expectations are the same. 

The observed MST topology completely determines the permutation 

distribution of the test statistic. One can compute higher moments in 

the same manner as the variance calculation above. For small enough 

sample sizes, it may be feasible to calculate directly the distribution 

of R over all permutations of the sample identities. For large sample 

sizes (m,n-tco with m/n bounded away from 0 and co), the permutation dis- 

tribution of 

w = R-E [RI 

v=m 

approaches the standard normal distribution given any realized sequence 

of trees for which C is O(N). For MSTs based on Euclidean, as well as 

more general (e.g., qth power) distances, sphere packing properties of 

p-space (Leech and Sloane, 1971) imply that C cannot exceed KN, K a con- 

stant depending only on p. 

The asymptotic normality of R is most easily seen by casting R in 

the form of a generalized correlation coefficient (Kendall, 1962) be- 

tween the interpoint distances and the sample identities. Let aij and 

b ij be scores for every pair of points: 

l/2 if point i and point j define 

a = an-edge of the MST 
ij 

0 otherwise 

('5) 

1 if point i and point j are from 

b = the same sample 
ij 

0 otherwise . 

(16) 



With this scoring define 

- N N 
y =c c a.. b.. . 

i=l j=l ‘J 1J (‘7) 

Clearly, y = N -- R. Under the stated conditions, the asymptotic normality 

of Y, and hence R, induced by the N! permutations of the sample identities 

follows directly from arguments in Daniels (1944). It is apparent from 

(15 - 17) that the Wald-Wolfowitz runs test can be viewed as rejecting the 

null hypothesis when "closeness" is too highly correlated with sample iden- 

tity. 

5. MULTIVARIATE MAXIMUM DEVIATION (SMIRNOV) TEST 

Under Ho, the distribution of the maximum absolute deviation (3) 

follows the Smirnov distribution for any assignment of integer ranks 

1 I i 5 N to the N observations, provided that the ranking does not in- 

volve the sample identities. Specific ranking schemes are dictated by 

considerations of power. For a test to have reasonable power against 

general alternatives, it is desirable that there be a strong relation- 

ship between the absolute difference in rank between pairs of points and 

their distance in the observation space. For one-dimensional observations, 

a perfect monotone relationship can be achieved by ranking the observa- 

tions in order of their values. For higher dimensions, it is not gener- 

ally possible to achieve perfect monoticity. Nonetheless, reasonable 

power can be achieved if this goal can be approximated reasonably well. 

This section presents a convenient procedure for ranking multi- 

variate observations based on their MST. As observed above, the MST 

tends to connect points that are close and is, therefore, a natural 

vehicle for such a procedure. 
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In order to describe this ranking procedure, it is necessary to in- - 

traduce additional concepts from graph theory. The eccentricity of a 
j 

- 

node in a tree is the number of edges in a path with greatest length be- 

ginning with that node. The node at the other end of such a longest 

path is called an antipode of the node. The path between a node with 

largest eccentricity and its antipode is called a diameter. Define a 

center node of a tree as a node for which the eccentricity is minimum. 

For an MST in one dimension (equivalent to the sorted list), the eccen- 

tricity of a node (point) with rank i is max [i, N-i]. The antipode of 

each node is one of the two end points of the list, the diameter is the 

path through the entire graph, and a center is the median (if the sample 

size is odd). 

A rooted tree has one of its nodes designated as the root. (It is 

possible to make an MST a rooted tree by assigning one of its nodes to 

be the root; the MST of Figure 2b is represented as a rooted tree in 

Figure 4). We associate with each node of a rooted tree its depth: the 

depth of the root is zero; the depth of any other node is the length of 

the (unique) path between it and the root. The height of a rooted tree 

is the maximum depth of any node in the tree. The parent of a given 

node is the penultimate node encountered on the path from the root to 

the given node; all nodes but the root have a parent. The daughters of 

a node are those nodes that are not its parent but are linked to it. 

The ancestors of a given node are those nodes on the path between the 

root and it, excluding the given node. The descendants of a node are 

all nodes for which it is an ancestor. The subgraph connecting a node 

and its descendants is a rooted subtree with that node as its root. 
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Our multivariate ranking procedure begins by rooting the MST at a 

node with largest eccentricity. The nodes (points) are then ranked in 

the order in which they are visited in a "height directed preorder" 

(HDP) traversal -of the tree, which we define recursively: 

') visit the root 

2) HDP traverse in ascending order of height 

the subtrees rooted at the daughters of 

the root. (Resolve ties by visiting first 

,- subtrees with roots closer in Euclidean 

distance to the node visited in Step 1). 

Figure 5 illustrates this ranking procedure for the MST of Figure 2b. , 

For univariate observations, the MST is equivalent to the sorted list 

and (as in our generalization of the Wald-Wolfowitz test) our test re- 

duces to the usual Smirnov test. 

The univariate Smirnov test is known to have relatively low power 

against alternatives for which the two populations differ mainly in 

scale (Capon, 1965). Its power against scale alternatives can be sub- 

stantially increased (at the expense of rendering the test ineffective 

against location alternatives) by ranking on absolute distance from the 

median of the pooled sample [as suggested by Siegel and Tukey (1960) for 

the Wilcoxon test]. A multivariate generalization of this procedure is to 

root the MST at a center node and assign ranks such that nodes with larger 

depth receive higher rank than those with smaller depth. Nodes with 

the same depth can be ordered on their interpoint distance from the 

center node. As with its univariate counterpart, the resulting "radial 

Smirnov" test will be most sensitive to alternatives having similar lo- 

cation and differing primarily in scale. 
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Note that the particular ranking obtained is affected by the choice 

"of aJargest eccentricity node (there are at least two) or center nodes 

(there may be one or two). Nonetheless, our experience with these pro- 

cedures has indicated that the value of the test statistic is generally 

little changed. 

These two generalizations of the Smirnov test involve establishing 

a ranking of the points in Rp and applying the standard univariate 

Smirnov test to the resulting sequence. This ranking can clearly 

be used to generalize other nonparametric tests based on ranks. The 

effectiveness of this approach will depend on the extent to which the 

ranking reflects the interpoint distance relationships in Rp. In par- 

ticu 

test 

Howe 

ly the standard univariate Wald-Wolfowitz runs lar, one could app 

to this sequence, 

ver, this would re 

yielding a different multivariate generalization. 

sult in a test that is generally inferior to the 

one described in the previous section since that test directly deals 

with the interpoint distances through the MST and does not involve the 

approximation associated with a ranking. 

6. 2 x 2 TESTS BASED ON THE MST 

Multivariate two-sample tests can be based on 2 x 2 contingency 

tables. If the pooled observations are divided into two mutually ex- 

clusive categories, based on any criterion not involving the "X" or "Y" 

labels, one can test for the number of "X" observations in the first 

category. Under Ho, this quantity follows the usual hypergeometric dis- 

tribution. 

Since the MST of the pooled data points does not involve the 
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sample identities, it can be used to partition the observations into two 

categories. A particularly useful partitioning is based on the degree 

of eacff node. Nodes of degree one form one category, while those with 

degree greater than one form the other. The test statistic is the num- 

be of degree one -nodes .from the 'IX" sample. -Nodes of degree one tend 

to be found at the edges of the point scatter so that one might expect 

this test to be sensitive to scale alternatives. 

7. ORTHOGONAL SPANNING TREES 

Results were derived in Section 4 for the mean and variance of a 

runs statistic based on the MST. However, the derivations do not require 

that the set of edges considered form an MST or even a tree: The results 

are valid for any graph with exactly N-l edges, and moreover, for any 

graph containing the N points: simply substitute the number of edges in 

the graph as the upper summation limit in (4) and (8). Consider the test 

statistic S, the number of edges deleted. Let E be the number of edges 

in the graph and (as before) let C be the number of edge pairs that share 

a common node. Then, with P = 2 mn/N(N-1), one has 

-E'[SI+ P i (78) 

and 

Var.['S/E;C] = P E + C + ( _ )( _ ) 2$1)$1) [E(E-1)-2~1 ('9) 

The permutation distribution of S, conditioned on the realized graph, is 

asymptotically normal when C is O(N). This follows directly from (15 - 17) 

by changing the scores aij: use aij = l/2 if points i and j define an 

edge in the graph, and a.. = 0 otherwise. 1J 
Choices among different pos- 

sible graphs are dictated by considerations of power. To have reasonable 

power against general alternatives, it is necessary that the edges gen- 
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erally link points that are close in the observation space. As pointed 

out in Section 3, this motivated our choice of the MST. The graph that 

links-every point to its nearest neighbor(s) is another possibility. 

[For other multivariate tests based on near neighbors, see Weiss (1960) 

and Rogers (1976.).] 

For increasing sample size N, the MST edges link a decreasing frac- 

tion of the N(N-1)/2 point pairs, and there are many close pairs that 

are not MST edges. Including these pairs could increase the power of 

the test. The concept behind the MST can be extended to produce larger 

graphs that maintain its desirable properties for two-sample testing. 

These extensions are based on the notion of orthogonal spanning trees. 

An MST connects all of the points with minimum total distance. A 

second MST connects all of the points with minimum total distance sub- 

ject to the constraint that it be orthogonal to the first MST. A third 

MST connects the points with minimum total distance subject to the con- 

straint that it be orthogonal to both the first and second MSTs. Gen- 

erally, the kth MST is a minimal spanning tree orthogonal to the (k-1)th -- 

through the first MST. If kc< N/2, the graph defined by all the edges 

of the first k MSTs should mainly connect close points and be appropriate 

for a two-sample runs test. The number of edges in this graph is 

E = k (N-l). The number of edge pairs, C, that share a common node is 

computed in the same manner (see Appendix) as for an ordinary MST. If 

k is held constant, then C is O(N). But even if k is O(ti), implying C 

is O(N'), Daniels (1944) can still be used to demonstrate asymptotic 

normality of the test statistic. 

8. POWER COMPARISONS 

The utility of the tests presented in the previous sections lies 

in their power to discriminate against a wide variety of alternative 
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hypotheses. In this section, we present the results of computer simu- 
- 

lations that compare the power of these tests for several alternate 
* 

hypotheses in various dimensions. 

Table 1 shows results for normal populations where the alternatives 

are either differences in location (Table la) or scale (Table lb). The 

tests compared are the multivariate runs test ["runs"] using the first, 

second, and third Euclidean distance MSTs, the multivariate maximum ab- 

solute deviation test ["Smirnov"], the number of degree one nodes from 

the first sample ["X (deg 1)"], and the multivariate radial Smirnov test 

["radial Smirnov"]. Two additional tests are included in this compari- 

son: the likelihood ratio criterion for normal populations with all 

parameters unknown ["normal theory"] which is asymptotically most power- 

ful (Anderson, 1958), and the corresponding inverse normal scores test 

["normal scores"] which has asymptotic relative efficiency one for nor- 

mal populations (Puri and Sen, 1971). Comparisons are made in one, two, 

five, ten and twenty dimensions. In each case, the specific alternate 

hypothesis was chosen so that the tests have moderate power. 

For Table la, each of the two populations is a standard normal dis- 

tribution (unit covariance matrix) with mean vectors separated by a dis- 

tance a. For Table lb, the locations of the two populations are iden- 

tical but the covariance matrix of one is scaled by CJ. 

Table 2 shows results for products of independent log-normal dis- 

tributions with alternatives differing in log location A. Changing A 

changes both the location and scale of a log normal population. 

The univariate Wald-Wol f owitz runs test is well known to be gener- 

ally one of the less powerful nonparametric tests. This is verified in 
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the results presented in Table 1 and Table 2. For the univariate case 
- 

-. 
.(~=l)~ the Smirnov test is seen to dominate the other nonparametric 

tests (having comparable power to the likelihood ratio criterion) for 

location alternatives. This relationship tends to hold for the respec- 

tive multivariate generalizations in low dimensions (p < 5). However, 

the relative power of the multivariate maximum deviation test is seen to 

decrease with increasing dimension. This reflects the increasing dis- 

crepancy between the relative ranks in the sequence and the interpoint 

distances in RP,for increasing p. For high dimensions, the runs tests, 

which do not invoke a ranking, are seen to dominate approaching the 

power of the normal theory test at p=ZO. 

The performance of the runs test is seen to be generally improved 

by including the second and third MSTs. As might be expected, the in- 

cremental improvement is less for adding the third MST. 

For low dimensions, none of the nonparametric tests are seen to 

have high power against scale alternatives, the radial maximum deviation 

test doing the best. For higher dimensions (p > 5), the X (deg 1) test 

achieves high power against scale alternatives. 

For the product log normal data simulations, the radial maximum 

deviation test is seen to dominate for all p > 2 with the runs tests 

catching up at high dimensions (p > 10). 

These simulations (and others not shown) indicate that the maximum 

deviation tests tend to have high power for low dimensions (p > 5) while 

the runs tests dominate for higher dimensions. In any particular situ- 

ation, of course, the best choice will depend upon the specific under- 

lying distributions. 

- 17 - 



9. DISCUSSION -= 

Jhe MST is determined by the order of the sorted N(N-1)/2 distances 

or dissimilarities between the observations. Changing the dissimilari- 

ties between data points can change the MST. If the qbservations can 

be represented as points in a coordinate space, there are a variety of 

ways of defining interpoint distance. A common choice is Euclidean dis- 

tance since it is invariant to rotations of the coordinate system. With- 

in the choice of a distance measure is the choice of the relative scaling 

of individual coordinates (or their linear combinations). The MST is 

known to be reasonably robust under moderate changes of this type (Zahn, 

1971) but it is not invariant to such changes. Results for the null 

hypothesis are valid for any choice of dissimilarity measure or relative 

scaling, but the power against specific alternatives is affected by such 

choices. The considerations that lead to specific choices are the same 

as for any. other procedure involving interpoint distances (Fukunaga and 

Hostetler, 1973). 

There exist multisample extensions to both the univariate runs test 

(Mood, 1940) and maximum deviation test (Kiefer, 1959). Although we 

have only discussed multivariate generalizations for the two-sample case, 

our procedures can be used in a straightforward manner to generalize the 

usual multisample extensions. Moreover, our procedures clearly apply to 

related tests such as the Cramer-Von Mises (Darling, 1957) which employ 

alternative statistics based upon absolute deviations. 
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10. SUMMARY 

Iour multivariate two-sample tests have been presented. The Smirnov 

and radial Smirnov generalizations involve a sequencing of the sample 

points in Rp , while the runs test (with one. or several MSTs) and the 

2 x 2 test are direct multivariate procedures. The runs test and the 

Smirnov test can be expected to have power against general alternatives, 

while the radial Smirnov and 2 x 2 tests sacrifice generality in order 

to have increased power against scale alternatives. The simulation re- 

sults presented in Table 1 and Table 2 indicate that the Smirnov general- 

izations have higher power in low dimensions (p r; 5), while the runs and 

2 x 2 tests are more sensitive in higher dimensions. - 
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APPENDIX 

COMPUATIONAL CONSIDERATIONS 

The computational problems involved in constructing MSTs have been 

extensively studied. The classical algor ithms intended for complete 

graphs are due to Kruskal (1956) and Prim (1957). Their efficient im- 

plementation on a computer is described in Dijkstra (1959). 

Prim gave several definitions and adduced two principles for con- 

structing minimal spanning trees. Define an isolated node as a node to 

which, at a given stage of construction, no links have yet been made. 

A fragment is a spanning tree of a subgraph. An isolated fragment is a 

fragment that, at a given stage of construction, is not connected to the 

rest of the graph. The distance of a node to a fragment of which it is 

not a member is the minimum of its interpoint distances from the indiv- 

idual nodes comprising the fragment. A nearest neighbor of a node is --- 

one whose distance from the specified node is at least as small as that 

of any other. A nearest neighbor of a fragment is a node whose distance -- 

from the specified fragment is at least as small as that of any other. 

With these definitions, Prim's construction principles for minimal 

spanning trees are: 

Principle 1 - Any isolated node can be linked to a nearest 

neighbor. 

Principle 2 - Any isolated fragment can be linked to a 

nearest neighbor by a shortest available 

edge. 

Prim shows that an MST can be constructed by making N-l connections in 

accordance with these principles. 
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With Prim's principles, constructing MSTs becomes a straightforward 

procedure. For bivariate data represented as points in the plane, an 

MST can easily be built "based on visual judgments of relative distance, 

perhaps augmented by a pair of dividers in-a few close instances" (Prim, 

1957). If the matrix of dissimilarities is given,an MST can be con- 

-- 
.- 

structed without too much effort for small data sets. 

For large data sets in coordinate spaces or for 

matrices, a computer is necessary. Prim's principles 

large dissimilarity 

can be embodied 

into a fast computer algorithm (Whitney, 1972) that requires computation 

time ,0 (N2) where N is the number of data points. For less than a few 

hundred points, these algorithms are the fastest known. For larger data 

sets in the plane, Shamos and Hoey (1975) have developed an algorithm 

with computation time never greater than 0 (N log N). For higher dim- 

ensions, Bentley and Friedman (1975), and Rohlf (1977);have presented 

algorithms for which the computation time has been measured to be on 

the average 0 (N log N). 

After construction of the MST, the various test statistics can be 

evaluated in time 0 (N). For the runs test, one simply counts the num- 

ber of edges connecting nodes with different labels. The number of edge 

pairs sharing a common node, C, must also be counted to evaluate the 

variance (14,19). If di is the degree of the ith node, then 

cz; ; d.(d. 
i=l ' ' 

- 1). (20) 

The degree of each node can be found by counting the number of times the 

node appears as a member of a pair defining an MST edge. 
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For the maximum deviation test, rooting and traversing the MST can 

be done in time 0 (N). (For general information on tree traversal, see -- 

Aho, Hopcroft, and Ullman, 1974.) For the radial maximum deviation test, -' 

it iFnecessary to find a center node of the MST. This is facilitated 

by the observation that a center node of the entire MST is also a center 

node of the subgraph defined by one of its diameters. Moreover, the 

antipode of any MST node must lie on one of the diameters. A center node 

can then be found by the following sequence of operations, each involving 

time 0 (N). Choose an arbitrary node as root and find an MST node of 

greatest depth (this is an antipode). Choose this antipode as the root 

and find its antipode. These two nodes form the end points of a diameter 

of the MST. With one of these nodes as a root, find a node on this di- 

ameter for which the depth is as close as possible to one-half of the 

depth of its antipode. This is a center node of the MST. (See also 

Hakimi, 1964). 

If sufficient storage is available for the distance matrix of the 

point set, then one can construct multiple MSTs, each in turn, using 

Prim's construction principles. As each MST is completed, the entries 

in the matrix corresponding to its edges are set to infinity before con- 

structing the next MST. If the distance matrix is too large for com- 

plete storage, the distances must be recomputed for each MST and the 

edges of the previous MSTs must be stored in a table that permits rapid 

searching for the existence of a particular edge. This is accomplished 

by storing each MST in a space efficient representation. Consider a 

list L of length N-l. As each node i is linked to its nearest fragment 

at node j (using Prim's principles), one sets L(i)=j. Upon completion, 

the integer pairs [i,L(i)] label the node pairs defining the MST. If 
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an arbitrary node pair [r, s] is an edge in this MST, it must be true 
-= 

that L(r)=s or L(s)=r. K MSTs can be stored in an array A, dimensioned 

K by N-l, such that the integer pair [i, A(m,i)] labels two nodes de- 

fining an edge of the mth MST. If during the construction of the (m+l)th 

MST the distance between i and j is required, the array is first checked 

to see if (i,j) is an edge in a previous MST. For this to be true, one 

of the A(n,i) must be equal to j, or one of the A(n,j) must be equal to 

i, for 1 5 n 5z m. If the pair (i,j) is found to be an edge of a previous 

MST, then their distance is set to infinity, otherwise their actual dis- 

tance is computed. 

A FORTRAN program implementing the tests described is -available from 

either author. 
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Normal Theory 
Normal Scores 
Smirnov 
Radial Smirnov 
Runs - 1st 2nd 3rd MST 
X (Deg 1) I 

2: 
t 

Normal Theory 62 54 61 19 
Normal Scores 

1; 
5 5 5 

Smirnov 8 5 5 
Radial Smirnov 46 

152;l 14 
33 

Runs - 1st 2nd 3rd MST 16 18 24 ,9 13 21 6 i69 
X (Deg 1) 5 5 36 39 

Table 1 

Normal Data 

m = n = 100 

Location Alternatives 

p =1 p = 2 p= 5 p = 10 P = 20 
A = 0.3 A = 0.5 A = 0.75 A = 1.0 A = 1.2 

45 77 91 84 
21 41 40 49: 30 
46 55 57 44 24 

5 17 28 31 14 
14 17 18 17 26 35 44 56 64 53 70 78 71 79 86 

5 6 5 5 5 

Scale Alternatives 

p=l p = 2 p = 5 p = 10 
5 = 1.3 5 = 1.2 5 = 1.2 5 = 1.1 

p = 20 
5 = 1.075 

10 
5 
7 

102:2 13 
52 

Number of trials (out of 100 trials) 

with significance less than 5%. 

- 
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