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. ._ -_ _ ABSTRACT 

In order to separate the entire effect of two-particle on-shell scat- 
terings in three-particle systems from the effects of hidden mesonic degrees 
of freedom (off-shell effects and three-body forces) we take the zero range 
limit of the Karlsson-Zeiger equations. Although the Faddeev equations are 
ambiguous in this limit, the KZ equations remain well defined. Using only 
two-particle phase shifts, binding energies, and reduced widths, these zero- 
range equations uniquely predict the three-particle observables which would 
occur in the absence of hidden mesonic degrees of freedom. The three-particle 
amplitudes possess all requisite physical symmetry properties, and can be 
proved to be unitary if the spectator basis is orthonormal and complete. 
Possible extensions of the scheme for the analysis of three-particle final 
states, to zero range four-particle equations, and to relativistic systems 
are conjectured. 

(Submitted for publication in the Proceedings of the Workshop on 
Few-Body Problems in Nuclear Physics, Trieste, Italy, 13-16 March 1978) 
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Ever since Wick[l] 
Yukawa's meson theory C21 

showed that the finite range of nuclear forces in 
arises naturally from the coupling of the uncertainty 

principle with special relativity, and more particularly since the experimen- 
tal discovery of the pion, we have known that nuclei must, in some sense, con- 
tain pions as well as protons and neutrons. Yet most of nuclear physics has 
been developed using phenomenological nuclear potentials which do not take 
explicit account of these mesonic degrees of freedom. The main counter- 
example is the study of the two nucleon problem, where much effort has gone 
into the construction of the so-called "meson-theoretic potentials" using in s 
most cases either a combination of field theory and dispersion theory or one 
boson exchange models roughly correlated with the empirical boson mass spec- 
trum. Although such models can, after considerable effort and a generous use 
of empirical parameters, provide a reasonably quantitative description of two 

n&leon elastic scattering, this is no guarantee that these models provide a 
correct description even of the nucleonic degrees of freedom at short distances, 
due to the fact that there are always an infinite number of ways to describe 
this short range behavior which lead to identical elastic scattering amplitudes. 

Thus the first stringent test of the nuclear force models comes from 
confronting them with three nucleon data. Here, as we have known for some 
time, the test fails. The "realistic potentials" underbind the triton by 1 
to 1.5 MeV, and predict electrostatic form factors with a first minimum at 
higher energy and a second maximum of much smaller magnitude than given by 

-the-experimental results of e-He3 elastic scattering. Thus the mesonic degrees 
of freedom do matter in a quantitative sense, whether due to the fact that 
thedgive short range behavior quite different from (though phase equivalent 
@-the "realistic potentials"-in the jargon of the trade these are called 
"off-shell effects"-or due to the fact that they give rise to short range 
three-body forces, or most likely both. 

When I started work on the three body problem in 1965 these general 
considerations led me to anticipate that it would be important to separate 
the long range or on-shell effects which arise in the region where the par- 
ticles are outside the range of forces from the more complicated short range 
effects. By 1969 I had succeeded in making a formal separation between these 
exterior and interior regions L31 , b ut still did not have sufficient under- 
standing of some of the subtleties in the three-body problem to reduce this 
formalism to a practical analytic tool. 

The key to the successful solution of the problem came from quite other 
considerations connected with the interpretation of quantum mechanics, as I 

-discussed in my talk on "Three-Body Forces" at UCLA in 1972 PI . If we formu- 
late the scattering problem directly in terms of the on-shell scatterings 
between free particles, as can be done consistently in a descriptive sense 151 , 

_ then we can for example introduce mesonic effects into the three nucleon 
problem by assuming that this system consists of three nucleons and a pion 
and solving this four-body problem. The scheme I conjectured which would 
make this possible was general in that I envisaged that it would be possible 
to discuss. any n-particle system in terms of the n-l particle on-shell scat- 
terings and an intrinsic n-particle process to be determined empirically. 
The basic difficulty is that in this type of zero range theory, which has no 
interaction Hamiltonian, the task of guaranteeing unitarity is left to the 
form of the equations themselves, and must be reinvestigated separately for 
each n. 

By 1975 I thought I had abstracted a viable, though ad hoc, set of three- 
body equations from the Faddeev equations. I presented these on-shell equa- 
tions at Liblice, i61 only to have them shot down by Lambrecht Kok. One basic 



difficulty in starting from the Faddeev equations is that the two-particle 
on-shell amplitude r'(q2) = eti6q 
the energy argument z - ij2 

sinsq/Jq2?i0 occurs in the kernels with 
and must be known in the nonphysical region. Worse, 

since we wish to use on-shell amplitudes with a "left-hand cut" representing 
meson exchanges, the integrals run over the cut and the equations become 
ambiguous. I tried to avoid this by simply using the on-shell amplitude in 
the physical region, but this did not lead to consistent equations. Subse- 
quent efforts to avoid the cuts by using the n/d separation of dispersion 
theory also ran into difficulties. L 

Meanwhile one of us (EMZ) in collaboration with Bengt Karlsson of G6te- 
borg was developing a consistent set of equations using spectator wave func- 
tions as a basis (i.e. scattering and bound state wave functions for the pair 
.times a plane wave for the third particle)-the tool I had earlier used to 
construct the exterior-interior separation PI . 
in 1975 L81 

These equations were published 
and indeed depend only on half-on-shell wave functions and t- 

matrices with physical energy values, as anticipated Lgl . The KZ equations 
for two-particle systems that scatter only in a finite number of partial 
waves have the further advantage that the kernels are real and energy inde- 
pendent except for the usual three-particle Green's function. 

The KZ equations are fully equivalent to the Faddeev equations as can be 
seen by starting from the Low equation or completeness relation which allows 

- us to construct fully off-shell t-matrices from half-off-shell t-matrices, 
nameJy PO] 

F 
. .-. -_ - t(q,qo;z) = t(q;$ + iO> 

' k2-q$-i0 
I 

cn 

= t(q0;q2 + i0) + 3 k2dk t(q.k2)t* (q *G2) 1 1 
, 0' k2-21,lz - k2-q2-i0 1 

By using time reversal invariance, i.e. t(q,q ;z) = t(q ,q;z), we find 
this puts a constraint on the half-off-shell -matrix t k;q2?i0) which ? P 
written as 

where 
/ODq2dq $%(k)t(k';s2TiO)= J- q2dq t(k;~2+iO)Y~(k') 
0 0 

Jl;(k) _ 6(k-q) k 2t(k;q2+iO) 
kq n(kz-qqiO) 

(1) 

that 
may be 

(2) 

(3) 

This constraint in a somewhat different form has been investigated by Baranger, 
et al. PI]‘. When the fully-off-shell t-matrix can be constructed in this way, 
it is easy to show that the existence of the construction is both a necessary 
and a sufficient condition for the KZ equations and the Faddeev equations to 
define the same theory. 

Last spring I finally realized that the KZ equation remains well defined 
in the zero range limit, contains only phase shifts, binding energies and 
reduced widths, and hence defines precisely the theory I had been looking 
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for - provided it also predicts physically meaningful amplitudes. This is 
not so obvious. In the on-shell limit 

t+ (k;;12) -+ &q2) = e 
?L6 sin6 (4) 

@Xl 
the condition becomes 

t(4,qo;z) = &q2) + a / sin2bkdk 1 1 
lim k2-2uz - k2-q7iO 1 (5) ' 

t+T 0 

or using the usual dispersion-theoretic representation for r 

2 O3 =- 
/ IT 0 

sin2bk dk & +j?; p$g$ 
-m 

(6) 

This condition can only be satisfied if the integral over the left-hand cut 
vanishes for any needed value of q2, a condition which cannot in general be 
satisfied when the left-hand cut arises from meson exchanges. For the 
special case q ctn 6 = const. the condition is met. 

I wish to stress the point, which I should have realized from the start 
Ybut-have only now fully appreciated, that the limit I am about to define 

take us outside the framework of conventional theories. 
bar-ier for theorists who try to understand what I have done. They realize P 

This is often a 

that-: the RZ and Faddeev theories are fully equivalent before the limit is 
taken, but are not prepared for the possibility that the RZ equation remain 
valid in the zero range limit while the Faddeev equations do not. Of course, 
we-have known ever since Thomas pointed it out in 1935 Ll2l that the Schroedinger 
equation is also not well defined in this limit. 

Provided the wave function inside the range of forces R is non-singu- 
lar when transformed into momentum space and goes smoothly to zero as R goes 
to zero, we can take this limit directly in the KZ equations simply by re- 
placing t'(k;q2) by -r*(q2) and @(k) by 

$(k) = e +i6 cS(k-q) . 

kq 
cos 6 + f$@+ 

I 

-Assuming for simplicity only s-wave scatterings between the pairs and total 
three-particle angular momentum zero, we then find that the KZ amplitudes are 
separable, and determined by one-variable integral equations. For the 3-3 

_ amplitude g Scr this representation is 

(0) = $q;)J&,(Pg.P, ;W+iO)ri(qp)2) (8) 

If we have in addition two-particle bound states with wave functions in the 
zero range limit N exp(-Ky)/y, we find the further simplification that all 
four amplitudes (free-free, coalesence, breakup, elastic and rearrangement) 
are given in terms of the same one- variable function by 



The one-variable functions themselves are determined by the coupled 
equations * 

%3%P;W) = + 1; qh p2 + .$‘): -1 _ 
B B -W+iO 

/ 

OD 
+ CT 

Iv 0 
pi2dp; K~~(ps,p;;W)~~~(P~~P~(";W) 

i 

(9) 

a= 82 5 = QP, '(")/p13p:o' 

B-,$,8+ cyclic 

where 6 Ba 'l-ds,, and the kernels 

K;,(Pg'P;;W) = +- 

J 
03 1 + dq' 

sin8'cosb' 

0 Y $t2+ q42-WTi0 q;' 
*(q;-q;;)) + fs$ 

9$y -q2 

do indeed depend only on the phase shifts at physical energies, binding ener- 
gies, and reduced widths as promised. It is easy to prove that these equa- 
tions converge provided only sin26/q2 is bounded by const./q2 as q2 goes to 
infinity, again a standard dispersion-theoretic assumption. 

If we write the corresponding equation for the function 3 (p 
in which the role of parameter and variable is reversed we find 'fha;y' ;;$; 
to the kinematic identities 
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$1) (2) -2 
8 ;fyqBY pB 

+ $)2 = p2 + q;;)2 
a (12) - 

that the driving terms and the kernels in the equations forzBa and 2a~ are 
identical. Therefore they can differ at most by a solution of the homogeneous 
equation. But, since up to the usual Lippmann-Schwinger propagator the 
kernels are real, the usual arguments[l3] suffice to-show that these (bound 
state) solutions are unique and hence that$'Ba and yaB are identical. 
Further, y(W?iO) = $(GEO). Thus we have proved the essential symmetry 
property 

~;a(pB,pa;wkio) = Jaa(Pa9Pg;WTiO) (13) 

By examining the corresponding three-particle wave function in configuration 
space, it is easy to see that this property, in conjunction with our specific 
separable representation, suffices to establish time reversal invariance and . 
all other requisite physical symmetry properties, except unitarity. 

In order to prove unitarity we cannot, as in the original !KZ paper, have 
recourse to an operator proof. As discussed above, we have gone outside the 
framework of the conventional Hamiltonian theories by taking the zero range 
limit in the sense that it is no longer possible for us to construct a fully 
off-shell t-matrix. However, once the right route is found, it is straight- 
forward, though tedious, to prove three-body on-shell unitarity in the KZ 

‘thee-ry using only orthogonality and completeness in addition to the integral 
equations themselves. One of us (EXZ)&a s succeeded in constructing such a 
prodf, and will present it elsewhere. Since the requisite kinematic struc- 
ture:of the equations is unaltered in the zero range limit, the same proof 
would suffice to establish three-body on-shell unitarity in our zero range 
limit. Unfortunately, the "proof" of zero-range orthogonality presented at 
the conference was later shown to be incorrect by one of us (EMZ), and the 
corresponding completeness proof was likewise invalidated by Bengt Rarlsson J51 . 

Therefore, the unitarity of the zero-range amplitudes remains unproven 
until a satisfactory limiting procedure is found,oralternatively, until we 
succeed in proving unitarity through a different approach. 

It is important to realize that once we can prove unitarity, these 
equations will be unique, and hence to the extent that we believe we know the 
two particle on-shell phase shifts (including their extrapolation to infinite 
energy) and the two-particle binding energies and reduced widths, the three- 
particle observables predicted by these equations will also be unique. Hence 

-any discrepancies between these predictions and experiment which cannot be 
realistically attributed to uncertainties in these parameters or to the finite 
partial wave truncation will provide concrete and unambiguous evidence for 

_ hidden degrees of freedom not described by the two-particle on-shell'scat- 
terings of the subsystems. Thus one major application of these equations 
will be to pinpoint where in three-particle systems we have clear evidence 
for'these mesonic effects. 

In the three nucleon system we already know that most of the three- 
particle amplitudes are quite insensitive to off-shell variations. We now 
have a precise way to prove this. By making a threshold subtraction in our 
equation for the 2Sk n-d scattering to fit the sensitive scattering length a2 
(and if necessary a second subtraction to fit the triton binding energy) we 
can tie down the n-d predictions at threshold in the spirit of an effective 
range theory. We then anticipate n-d predictions at low energy comparable 
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to the successes already achieved by separable models, once we include enough 
two-nucleon states. A careful error analysis will then reveal where in the 
increasingly detailed three-nucleon data there is evidence for genuine 
mesonic effects, or where we can measure two nucleon phases which are poorly 
known from two-nucleon elastic scattering experiments (eg.lPl and cl) in 
amplitudes where other uncertainties are small. An alternative approach 
would be to investigate our limit at finite range and include the modifica- 
tions of the kernel and driving terms arising from the vanishing of the two- 
particle wave functions inside R. 
boundary condition approach P61 , 

Judging from the success of Brayshaw's 
' we can hope that this will still provide us 

with one-variable equations, and can adjust R to fit a2 and the triton binding 
energy. If this still does not give good electromagnetic form factors, at the 
cost of going to two-variable interior equations, we could also postulate 
.nucleonic structure inside R and investigate phenomenologically what is re- 
quired to fit the electromagnetic properties. 

We can hardly expect all three-hadron systems to be as insensitive to 
hidden degrees of freedom as the three-nucleon system. Therefore we will 
need a systematic way to introduce phenomenological parameters into the scheme 
which can be used to analyze the three particle final states relative to an 
assumed set of phase shifts for the two-particle subsystems. One way to do 
this would be to go from a 3x3 to a 4x4 component description by including a 
direct three-particle zero range scattering process. If the new components 

-are--then eliminated to get back to a 3x3 description the three-particle phase 
shif$s will appear explicitly in the modified kernels and driving terms. 
Whefier the resulting equations will still retain their one-variable structure 
is not completely clear, but for some parametrizations this should be possible . .-. -_ - 
to achieve. Then we could use the scheme to determine genuine three-particle 
parameters directly from experiment. This should prove to be particularly 
useful in the kinematic regions where there are broad overlapping two-particle 
resonances in the subsystems, since these could be included without approxi- 
mation. 

Another important problem is the extension of the scheme to four-particle 
systems. Once we have understood in detail the relationship between a direct 
on-shell three-particle scattering description and the more detailed articula- 
tion of the amplitudes in terms of the Faddeev channel decomposition, it might 
be possible to construct an on-shell four-particle theory using only 3+1 and 
2+2 clusters (i.e., a 7x7 channel description). Whether or not this proves 
to be possible, we can with some effort surely construct a two-variable but 
on-shell 18x18 component four-particle theory. 

Another generalization that is almost immediate is the corresponding 
covariant three-particle theory. We know this because of Brayshaw's success 

_ with the covariant boundary condition approach. El71 In the current scheme we 
can hope to replace the boundary condition by invoking directly the inelasticity 
parameter which occurs in the two-particle elastic amplitudes due to the 
opening up of particle production channels. We also can now use models.with 
left-hand cuts representing particle exchanges in crossed channels, and thus 
come closer than Brayshaw to conventional elementary particle theories. 

Once a four-particle covariant theory exists we can look at the NNa 
system below production threshold for the pion, and compare it with NNT 
clusters in the NNNr system similarly restricted. In both cases we can define 
what we might call a two-nucleon off-shell t-matrix. To the extent that they 
are the same we could then justify using this similarity to define a 
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"two-nucleon potential"; to the extent that they differ we could begin to 
obtain realistic estimates of the limitations of the potential concept in 
nuclear physics. 

We are indebted to many few-body physicists for encouragement and 
criticism during the long period of time this work is taking,and in particular L 
for the care with which they have shown us the errors in our attempts to solve 
this problem. We are especially indebted to C. Alabiso, E. 0. Alt, D. D. 
Brayshaw, B. Karlsson, Lambrecht Kok, E. Schmid, W. Sandhas, and V. Vanzani. , 

REFERENCES 

1.. G. C. Wick, Nature 142, 993 (1938). 
‘2. H. Yukawa, Proc. Phys.-Math. Sot. Japan 17, 48 (1935). 
3. H. P. Noyes, Phys. Rev. Lett. 23, 1201 (1969). 
4. H. P. Noyes, in Few Particle Problems in the Nuclear Interaction, (ed. 

I. Slaus et. al .,), North Holland, Amsterdam, 1972, p. 122. 
5. H. P. Noyes, Found. Phys. 5, 435 (1976). 
6. H. P. Noyes, Czech. J. Phys. B24, 1205 (1974). 
7. H. P. Noyes, Phys. Rev. E, 1547 (1972) and Ref. 3. 
8. B. R. Karlsson and E. M. Zeiger, Phys. Rev. e, 939 (1975), hereinafter 

referred to as KZ. 
_ 9. ---Ref. 4, p. 129. 
10. H. P. Noyes, Prog. Nucl. Phys. 10, 355 (1968). 

B. Giraud, S. K. Mukopadhyay, and P. U. Sauer, Nucl. Phys. 11. / ~i8Bryw;gg) 
. 

12;--cH. Thomas, Phys. Rev. 47, 903 (1935). 
13. We are indebted to V. Vanzani for checking this point for us. 
14. E. M. Zeiger, in preparation. 
15: B. R. Karlsson, private communication. 
16. D. D. Brayshaw, Phys. Rev. E, 952 (1973) and Topics in Current Physics 

(ed. A. W. Thomas) Spriger-Verlag Berlin Heidelberg, New York, p. 105. 
-17. D. D. Brayshaw, Phys. Rev. Dll, 2583 (1975). 


