GAUGE SYMMETRIES IN RANDOM MAGNETIC SYSTEMS*

Eduardo Fradkin
Stanford Linear Accelerator Center Stanford, CA 94305
B. A. Huberman
Xerox Palo Alto Research Center
Palo Alto, C. 94304
and
Stephen H. Shenker
Laboratery for Nuclear Studies Cornell University, lhaca, NY 14850

Submitted to Phys. Rev. B

[^0]
Abstract

We study random magnetic systems emphasizing the concept of gauge invariance and gauge invariant disorder (frustration) introduced by Toulouse and Anderson. We formulate our models in a gauge invariant manner and introduce gauge invariant correlation functions to isolate the effects of gauge invariant disorder. Specifically, we study the Ising and XY models in two and three dimensions in a frozen distribution of frustrations. Using duality transformations we obtain expressions for the energetics of frustrations and their eifect on correlations. We study simple configurations of frustrations quantitatively. In addition we reformulate the quenching procedure in terms of frustrations.

0. INTRODUCTION

Random magnets are, very complicated systems. Since the spin degrees of freedom interact with each neighbor through random bond interactions, naively it could be argued that all possible configurations of bonds are equally important. However, it is well known that there is a class of models, collectively known as Mattis models [1], for which the randomness is trivial since it can be eliminated by a suitable redefinition of the spin variables. This situation led Anderson and Tolouse to the idea of relevant and irrelevant disorder. Anderson [2] advanced the concept of frustration as a measure of relevant disorder and Toulouse [3] realized the existence of a local (gauge) symmetry of random magnetic systems at the microscopical level.

Once the existence of a local symmetry is recognized [4] it becomes apparent that there are certain configurations of bonds which cannot be transformed into that of a pure system by any redefinition of the spin and bond variables (gauge transformation). We say these configurations have frustration.

The idea of frustration is that competing interactions in a random system can lead to configurations where not all the bond interactions can be simutaneously satisfied. In this situation, the ground state energy is always larger than in the "pure" system and the state is highly degenerate.

The purpose of this paper is to present a systematic study of gauge symmerries in random magnetic systems and its consequences. In order to filter out relevant from irrelevant disorder, we make extensive use of the concept of gatige invariance. In fact, many of our ideas have been borrowed from battice gauge theofies studies [5].

In section 1 , we show that the partition function of a magne in a frozen
configuration of bonds is gauge invariant. Then we conclude that only frustrations can change the nature of the phase transitions allowed for the system. In addition, we construct gauge invariant spin-spin correlation functions. These correlation functions are defined along a path connecting the correlated spins and are path dependent. In fact, gauge invariant correlation functions along two different paths differ by the total amount of frustrations they encircle. Hence, they provide a measure of the effect of the relevant disorder. This result is the analog of the Bohm-Aharonov effect in electrodynanics [6]. This path dependence is also closely related with the "fermionic" character of order and disorder variables, as discussed by Kadanoff and Ceva [7]. At the end of section l, we discuss the problem of quenching the frustrations, i.e. the averaging of the thermodynamic quantities over different configurations of bonds according with some probability weighting factors. It turns out that, when averaging gauge invariant quantities, frustrations behave as if they were an interacting system in thermal equilibrium with each other at an effective temperature. The classical interaction Hamiltonian can be calculated and turns out to be temperature dependent. The rest of the paper is devoted to the analysis of both the frustration network and the nature of their interaction in two and three dimensions. It should be mentioned that we make no attempt to study the possibility of a spin glass phase in any of the systems discussed betow.

Section II deals with the random two dimensional Ising model. By performing duality transformations, we derive a relationship between the energy associated with a frozen distribution of N frustrations and the N point correlation function of the spins in the dual lattice. This result is analogous to results of [7]. We then use this relation to calculate explicitily the temperature dependence of the energy associated with having a single frustration and a pair of frustrated plaquenes in a sea of unfrustrated plaquettes. It turns out that single frustrations cannot exist at low temperatures bat it is easy to create them in the paramagentic regime. For the case of a frustration pair, we show that at low temperature their energy increases linearly whith their separation, with a temperature dependent coefficient that measures the line tension associated whith the string that joins them. This confmement picture is lost at the critical temperature, where "metting" of the
string leads to a finite energy for simple frustrations. Above T_{c}, we show that this interaction is effectively screened by the rapid fluctuations of the spins of the lattice. Using again duality transformations, we compute the decrease in the effective magnetization of a trivally disordered Ising system brought about by the presence of frustrations.

In section III, we study the 3d Ising model in a frozen configuration of bonds. Here frustrations are never along but instead they arrange themselves into networks [3]. Using duality transformations, we then calculate the energy associated with a closed tube of frustrations and show that, at low temperatures, it is proportional to the area spanned by the tube, whereas in the paramagnetic phase, it becomes proportional to the length of such a tube. For interacting tubes, at low temperatures the tubes interact with each other through a linear potential at short distances which saturates at large separations.

Sections IV and V deal with the XY model in two and three dinensions, respectively. In the two dimensional case, frustrations turn out to be equivalent to fractional impurities (vortices) in the 2 d Coulomb gas. The particular case of half charges has been studied in detail by Villain [8]. As in the ising case, we study the energetics of frustrations and the gauge invariant correlation function in both dimensionalities.

A collection of appendices provide most of the technical manipulations we have used to derive duality transformations of gauge invariant correlation functions.

I. LOCAL SYMmbrate Amb Dhsorder

(A) Disordered Magnets and Gauge Sympetries

tet us consider the problem of descriting the behavior of a magnet in an arbitrary configuration of bords. At first we will discuss frozen distributions of them, i.e. the bond distribuion is held fixed and not alloned to fluctuate. The proolem of quenching (i.e. the averaging of thermodynamic magnitudes over different distribution of bonds) will be discussed at the end of this section.

To be more explicit, consider the case of a disordered Ising magnet in d dimensions [9]. This system consists of interacting Ising spin variabies $\sigma_{\mathrm{j}}\left(\sigma_{\mathrm{i}}= \pm 1\right)$ residing at the sites \{i\} of the latice. The classical Hamiltonian is

$$
\begin{equation*}
-\beta H=K_{\mathrm{i}} \sum_{\langle\mathrm{ij}\rangle} \sigma_{\mathrm{i}} \mathrm{~A}_{\mathrm{ij}} \sigma_{\mathrm{j}} \tag{1.1}
\end{equation*}
$$

where K is the coupling ($K=\beta 1 \mathrm{fI}$) and the summation runs over nearest neighbor sites. The variables $A_{1 j}$ specify the distribution of bonds and reside at the links $\{i, j\}$ of the lattice (Fig. 1). In general, the bond variables $\left\{A_{i j}\right\}$ may be arbitrary. However, we will only consider the case in which $A_{i j} \pm 1$. Thes the kind of disorder winch may take place will grow from the competition between random ferronagnetic and antiferromagnetic interactions.

We may ask how the thermodynamic quantities differ from one configuration of bonds to another.

Consider the Hamittonian (1.1) and single ont a site i and all the links emerging from this site. Let us perform the locat transformation

$$
\begin{align*}
& \sigma_{i} \rightarrow-y_{i} \\
& A_{i j} \rightarrow-A_{i j} \tag{1.2}
\end{align*}
$$

where $\{(\mathrm{i}, \mathrm{j})\}$ is the above mentioned stt of links (Fig. 2).

The Hamitonian (1.1) is invariant under this local trambima san oneover, it is also invariant under the most general local transformation of this type $G\left(\left\{\tau_{1}\right\}\right)$ which can be constructed by an arbitrary combination of site transformations like (1.2). $G\left\{r_{i}\right\}$ acts om the spins and bond variables as

$$
\begin{equation*}
\mathrm{G}\left\{\tau_{\mathrm{i}}\right\}\left[\left\{\sigma_{\mathrm{i}}\right\} ;\left\{\mathrm{A}_{\mathrm{ij}}\right\}\right]=\left[\left\{\tau_{\mathrm{i}} \sigma_{\mathrm{i}}\right\} ;\left\{\tau_{\mathrm{i}} \mathrm{~A}_{\mathrm{ij}} \mathrm{~T}_{\mathrm{j}}\right\}\right] \tag{1.3}
\end{equation*}
$$

where $\tau_{i}= \pm 1$ [l0]. The local symmetry we have just discussed is called a gauge symmetry, the transformations $\mathrm{G}\left\{\tau_{i}\right\}$ are gange transformation and the A variables are gauge variables. We shall see how this symmetry can be used to get information about order parameters, correlations, etc.

As an exampe, consider how gause symmetry worls in an annealed spin glass. By an annealed spin glass we mean a system where the σ 's and A 's are statistical variables to be averaged over at the same time. However, as is well known, this is an uninteresting system. In our "gauge language" this fact can be expressed as follows: the partition function of the anmealed spin glass is given by

$$
\begin{equation*}
\mathrm{Z}_{\text {annealed }}=\sum_{\left\{\sigma_{i}\right\}\{A\}} \exp \left\{K_{i} \sum_{\langle i J\rangle} \sigma_{i} A_{i \mathrm{i}} \sigma_{\mathrm{j}}\right\} \tag{1.4}
\end{equation*}
$$

Suppose for the moment that we fix all the ors to be \mathbf{l}. It is easy to sec that there is no loss of generality involved in such a choice. In fact, for an arbitrary configuration of σ 's and A's $\left[\left\{\sigma_{i}\right\}\left\{\mathrm{A}_{\mathrm{ij}}\right\}\right]$, we can always find a gauge transformation which maps this configuration to one another for" which all $\sigma_{j}=1$. In particular, if we choose for the gauge transformation defined in (1.3) $\tau_{i}=\sigma_{i}$, we get

$$
\begin{equation*}
\mathrm{G}\left\{\tau_{\mathrm{i}}=\sigma_{\mathrm{i}}\right\}:\left[\left\{\sigma_{\mathrm{i}}\right\} ;\left\{\mathrm{A}_{\mathrm{i} j}\right\}\right]=\left[\{1\} ;\left\{\sigma_{\mathrm{i}} \mathrm{~A}_{\mathrm{ij}} \sigma_{\mathrm{j}}\right\}\right]=\left[\{1\} ;\left\{\mathrm{A}_{\mathrm{ij}}{ }^{\prime}\right\}\right] \tag{1.5}
\end{equation*}
$$

Since the Hamiltonian (1.1) is gauge invariant, both configurations have the same energy and therefore give the same contribution to Z. Thus

$$
\begin{equation*}
\sum_{\left\{\sigma_{i}\right\}} \sum_{\left\{A_{i j}\right\}} \exp \left\{K \sum_{\langle i J\rangle} \sigma_{i} A_{i j} \sigma_{j}\right\}=2^{N} \exp \left\{K_{i} \sum_{\langle i>\rangle} A_{i j}\right\} \tag{1.6}
\end{equation*}
$$

where N is the number of site and $2 v$ is the namber of independent gause
transformations. However, (3.6) is just the partition function of a system of independent spins on the links interacting with an external uniform field K , which has a tivial solution.

A more interesting system is the frozen spin glass. In this case we will no longer consider the gauge variables on the same footing with the spin variables but we will first take the thermal average over σ, compute all interesting magnitudes (free energy, correlation functions, magnetization, etc.) in a given field of A's, i.e. in a given distribution of flipped bonds. Later on we will average over distributions of gauge degrees of freedom according to some prescription. At first sight, it appears that the partition function in a given configuration of A's, i.e.

$$
\begin{equation*}
Z\{A\}=\sum_{\left\{\sigma_{i}\right\}} \exp \left\{K_{i} \sum_{\langle i J\rangle} \sigma_{i} A_{i j} \sigma_{j}\right\} \tag{1.7}
\end{equation*}
$$

depends on all the details of the configuration of the gauge fields. However, consider two configurations $\{A\}$ and $\{A$'s\}, which are related through a gauge transformation,

$$
\begin{align*}
& \mathrm{Z}\left\{\mathrm{~A}_{\mathrm{ij}}\right\}=\sum_{\left\{\sigma_{i}\right\}} \exp \left\{K \sum_{\langle i j\rangle} \sigma_{i} A_{i j} \sigma_{j}\right\}= \\
& \sum_{\left\{\tau_{i}\right\}} \exp \sum_{\substack{i \\
K_{i} \Gamma_{i} \sigma_{i} \tau_{i} \\
\left\langle j_{i j}\right\rangle}} A_{i j} \tau_{i} \sigma_{j}^{\}}= \\
& \sum_{\langle i j\rangle} \exp K_{l} \sigma^{*}{ }_{i} A_{i j} \sigma_{j}{ }^{\prime} \equiv Z\left\{A_{i j}\right\} \tag{1.8}
\end{align*}
$$

where $\sigma_{i}{ }_{i}=\sigma_{i} \tau_{i}$.

Thus, $Z\{A\}$ is invariant under gatuge transformations and hence $Z\{A\}$ is not a functional of the configuration $\{A\}$ itself but rather on those features of that configuration which do not change with a gauge transformation.

(B) Frustratious

We now turn to the problem of describing the gauge mariant properties of a configuration of gauge degrees of freedom. For the tim: being, we shall restrict ourselves

group. Iater ont we shall discuss corresponding generalizations to more complex systems like the $X Y$ spin glass (a model with $U(1)$ degrees of freedon).

To begin with, notice that the product of A variables around a closed loop of links on the lattice is invariant under a gauge transformation. In fact, this is the most generat gauge invariant quantity that can be constructed from the A's alone. In particular, consider the smallest possible loop, i.e. the loop made of four links surrounding an elementary square ("plaquette") of the latice. Since the value of the product of the A's around each plaquette of the latice is a characereristic of the configuration of A's, which is invariant under gauge transformations, it is natural to define a plaquette variable $\Phi_{i j k}$ such that

$$
\begin{equation*}
\Phi_{\mathrm{ijk}!}=\mathrm{A}_{i \mathrm{ij}} \mathrm{~A}_{\mathrm{jk}} \mathrm{~A}_{\mathrm{k} \mid} \mathrm{A}_{\mathrm{li}} \tag{1.9}
\end{equation*}
$$

where $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and 1 label the corners of the plaquette ijk . We say that there is a frustration located at a plaquette if $\Phi=-1$ at this plaquette. Sirice $A^{2}=1$, the prodact of the A 's around an arbitrary loop of the lattice is equal to the product of the Φ 's for each plaquette enclosed by thr loop. Therefore, the value of all gauge invariant quantities are specified by the values of the plaquette variables Φ.

The placquette variable Φ is the analog in Z_{2} gauge systens of the field strength or gause curvature of conventiorial gatge theories. When $\$=-1$ at a plaquette, we say, interchangeably, that there is a frustration, curvature or dislocation there. For our purpose, this means that it is impossible to arrange the spins so as to satisfy all bond interactions around this plaquette (Fig. 3).

The partition function (1.7) is gause invariant. Thus, it is only a function of the value of the $\$$ varitales. This means that the partition function (and the free energy) do not depend on the tetailed distribulion of flipped boncs but only on the distribution of frustations. Therefore, the partition function has the property

$$
\begin{equation*}
Z\{A\}=Z\left\{\Lambda^{\prime}\right\} \equiv Z\{d\} \text { if }\{A\} \sim\left\{A^{\prime}\right\} \tag{1.10}
\end{equation*}
$$

Since $Z\{\phi\}$ is the partition function in a fixed distribution of fustrations $\left\{\Phi_{i}\right\}$, we define the free energy in such distribution to be

$$
\begin{equation*}
K_{1} F\left\{\Phi_{i}\right\}=-\log Z\left\{\varphi_{i}\right\} \tag{1.11}
\end{equation*}
$$

In this language, we can understand the Mattis [1] model ($A_{i j}=\varepsilon_{i} \varepsilon_{j}, \varepsilon_{i}= \pm 1$) as a gauge transformation of the pure lsing model ($\Lambda_{i j}=1$). Thas the Matis model is a random Ising model without frustrations (in fact the most general one) and it has the same (zero external field) free energy as the pure ising model.

As we have shown frustrations are the only type of disorder that can modify the nature of the phase transitions of the system. Let us give some simple examples of frustrated 2-dimensional lsing models. Consider first the case with only one flipped bond (Fig. 4a). According with definition (1.9), the two playuettes adjacent to the flipped bond are frustrated. Suppose now that we want to separate the frustrations. One possible way is to put a dual string of flipped bonds between them, as shown in Fig. (4b). However, there are several configurations with the same frustration content. One of them is shown in Fin. 4e. Both configurations differ by a gauge transformation. A closed dual string of flipped bonds (e.g. Fig. 4d) nu: no irmstrations. A gauge transformation performed at all sites enclosed by the string transforms this contsuration into all $A=1$. Notice that the lowest energy configuration for Fig. 4d is just an island of flipped spins whose boundary is the dual string. Analogously an infinite domain wall (Fig. de) has no frustrations. In this case the ground state has the spins on each side of the wall pointing in opposite directions.

Constructing a frestration at a single plaquette (Fig. 4f) cannot be accomplished by flipping a finite number of bonds near that plaquette. In fact, it is necessary to make a dual string, of flipped bonds runing from the frustration to the boundary of the lattice.

In contrast to irustration free configurations (Fig. 4d-4e), where a ground state with all bonds satisifed is possibe, configurations with frustrations always have unsatisfied bonds and hence have higher energy. For instance, in Fig. 41, the lowest energy
configuration has all its spims parallel. The difference in entrey betwen inat state and the unfrustrated situation is proportional to the length of the string. Thus, a single frustration will have an iffinite energy.

The case shown in Fig. 4g has some interesting features. Even with the boundary condition that all spins point up at infinity, there are two degenerate ground states: the central spin up or down. This illustrates the fact that frustrations tend to create additional degeneracies in the ground state since not all bonds can be satisfied simultaneously [11].

(C) Correlation Functions

We have just discussed the meaning of the free energy in a fixed distribution of frustrations. It is thus natural to ask the same kind of questions about the correlation functions. We should point an important difference between both quantities. Suppose we are to compute the correlation iunction between spins σ at sites \mathbf{i} and \mathfrak{j}. In a fixed distribution of A's, we write

$$
\begin{equation*}
\left\langle\sigma_{i} \sigma_{j}\right\rangle\{A\}=Z\{A\}^{-1} \sum_{\left\{\sigma_{i}\right\}} \sigma_{i} \sigma_{j} \exp \left\{K \sum_{\langle i k\rangle} \sigma_{l} \mathrm{~A}_{i k} \sigma_{\mathrm{k}}\right\} \tag{1.12}
\end{equation*}
$$

This correlation function is not gauge invariant since a local gauge transformation at site i (or j) changes the sign of this function.

We have argued that only gauge invatiant disorder (frustrations) can change the nature of the phase transition, and thus we need a gauge invariant correlation function to prote this transition. We may define a gauge invariant analog of $\left\langle\sigma_{i} \sigma_{j}\right\rangle$ by inserting a "string of A's" between σ_{i} and σ_{j}. Then the zauge invariant correlation function is given by

$$
\begin{equation*}
\left.\left\langle\sigma_{i}(\Pi \quad A) \sigma_{j}\right\rangle \equiv Z\{A\}^{-1} \sum_{[(i, j)}^{\left[\sigma_{i}\right]} \underset{\sigma_{i}\left(\Pi \quad A_{i k}\right) \sigma_{j} \exp \{K}{ } \sum_{\langle i k\rangle} \sigma_{j} A_{i k} \sigma_{k}\right\} \tag{1.13}
\end{equation*}
$$

where $\Gamma(\mathrm{i}, \mathrm{j})$ is a path connecting sites i and j and IIA means the product of all the A variables along the links of the path (Fig. s) [12]. Clently this correfation function is
gauge ir variant. It depends both on the position of the curelated spins and on the path Γ itself.

Cansider tivo different paths $\Gamma_{1}(\mathrm{i}, \mathrm{j})$ and $\Gamma_{2}(\mathrm{i}, \mathrm{j})$ (Fig. 6) and the corresponding correlation functions $\left\langle\sigma_{i}, \sigma_{j}\right\rangle \Gamma_{1}$ and $\left\langle\sigma_{i}, \sigma_{j}\right\rangle \Gamma_{2}$. Let us define the closed loop Γ as $\Gamma=\Gamma_{1}+\Gamma_{2}$. Then

$$
\begin{equation*}
\frac{\left\langle\sigma_{i} \sigma_{j}\right\rangle}{\Gamma_{1}}=\left\langle\sigma_{i} \sigma_{j}\right\rangle \Gamma_{2}{ }_{\Gamma}^{(\Pi \mathrm{A})}=\left\langle\sigma_{i} \sigma_{j}\right\rangle \Gamma_{2}(\Gamma \Phi) \tag{1.14}
\end{equation*}
$$

where S is the region enclosed by Γ.

Thus, the two correlation functions differ by a factor of (-1) raised to the number of fustrations enclosed by the loop. Therefore, the difference of the gauge invariant corre'ation function along different path with same end point provides a measure of the frustration content within the foop.

Consider now an arbitrary configuration of bonds free of frustrations (pure gauge disorder). Such a configuration is gauge related with the configuration $A_{i j}=1$ for all links. Then all these configurations of bonds will have the same gauge invariant correlation function. Certainly, gauge non-invariant correlation functions will be different for different configurations. However, those differences are not related with any change in the phase transitions of the system. We know that both the pure ferromagnetic ($\mathrm{A}_{\mathrm{ij}}=1$) and antifer-omagnetic ($\mathrm{A}_{\mathrm{ij}}=-1$) Ising models are frustration frek. In the ferromagnetic case, the gauge invariant correlation function recluces to the ordinary spin-spin correlation function. In the antiferromagnetic case, it reduces to the staggered correlation function.

(D) The Spin Glass as a System of Frastrations

Up to this point, we have only dealt with a frozen distribution of frustrations. Now we wish to make some comments about the spin glass problem, i.e. the averaging of quantitites over different distributions of bonds (quenching).

We will use the ental bond prondibity wednang factor $P(A)$

$$
P(A)= \begin{cases}p & \text { if } A=1 \tag{1.15}\\ 1-p & \text { if } A=-1\end{cases}
$$

and assume that the total probability distribution $P\{A\}$ for configurations of bonds factorizes, i.e.

$$
\begin{equation*}
P\{A\}=\Pi_{\text {links }} P(A) \tag{1.16}
\end{equation*}
$$

Consider now the average of a gauge invariant quantity, for instance, the free energy $\left.F_{i} \Phi_{\mathrm{j}}\right\}$. As we have already shown, it is gauge invariant and defonds only on the distribution of frustrations. The object we want to compute is $\langle F\rangle_{K_{1}, p}$, where K_{i} is the inverse spin temperature and p the probawility given in (1.14). Clearly,

$$
\begin{equation*}
\langle F\rangle_{K_{1}, p}=\sum_{\{A\}} P\{A\} F\left\{\Phi_{i, K_{1}}\right\} / \sum_{\{A\}} P\{A\} \tag{1.17}
\end{equation*}
$$

Since $F\left\{\Phi_{i}\right\}=F\{A\}$ for all the configurations of bonds (link variables), which have the same distribution of frustration $\left\{\Phi_{i}\right\}, E q .(1.17)$ splits into sums over distributions of frustrations, i.e.

$$
\begin{equation*}
\sum_{\{A\}} P\{A\} F\left\{\Phi_{i, k_{j}}\right\}=\sum_{\left\{\phi_{i}\right\}}\left\{\sum_{\{A\}} P\{A\}\right\} F\left\{\Phi_{i, K_{1}}\right\} \tag{1.18}
\end{equation*}
$$

where the sum $\sum \mathrm{P}\{\mathrm{A}\}$ runs over all the configurations of bonds with the same distribution of lrustrations and therefore it we ghts distributions of frustrations. Let us now define β_{f} and α to be two parameters such that

$$
\begin{equation*}
P(\mathrm{~A})=(\alpha / 2) \exp \left(\beta_{\varsigma} \mathrm{A}\right) \tag{1.19}
\end{equation*}
$$

Eqs. (1.15) and (1.19) then give the restilt

$$
\begin{align*}
& \alpha / 2=p(1-p) \\
& \beta_{\mathrm{f}}=\log \left(p^{\prime} 1-p\right)^{1 / 2} \tag{1.20}
\end{align*}
$$

This change of parameters allows us then to write far the frustration distribution probability weighting factor

$$
\begin{equation*}
\left.\sum_{\{A\}} \cdot P\{A\}=(\alpha / 2)^{N} \sum_{\{A\}} \cdot \exp \mid \beta_{\mathrm{f}} \sum_{\langle i j\rangle} A_{i j}\right\} \tag{1.21}
\end{equation*}
$$

We can now easily recognize the right hand side of (1.21) to be $(\alpha / 2)^{N}$ times the partition function (1.7) written in the gauge $c_{i}:=1$ for all sites.

From Eqs. (1.11), (1.18) and (1.21), we get

$$
\begin{equation*}
\langle F\rangle_{K_{1}, \beta_{f}}=\sum_{\left\{\phi_{i}\right\}} \exp -\left[\beta_{f} F\left\{\Phi_{i}, \beta_{f}\right\}\right] F\left\{\Phi_{i}, k_{i}\right\} / \sum_{\left\{\phi_{i}\right\}} \exp \left\{-\beta_{f} F\left\{\Phi_{i}, \beta_{f}\right\}\right. \tag{1.22}
\end{equation*}
$$

This equation is not only valid for the free energy but for all the gauge inyariant guantities.

Therefore, when averaging thermodynamic quantities frustrations behave as if they were in thermal equilibrium with each other and interacting through a classical Hamitonian (configurational energy) given by $F\left\{\Phi_{f} \beta_{f}\right\}$. The temperature of the system of frustrations is given by $1 / \beta_{\mathrm{f}}$. The Hamiltonami $\mathrm{F}\left\{\phi_{\mathrm{q}}, \beta_{\mathrm{f}}\right\}$ can be derived from the correlation functions of the dual system. We will illustrate this procedure in the following sections. We should note, however, that the hamiltonian will not be, in general, a simple sum of parwise terms. In fact, it is a complicated configurational energy and it will depend on the temperature of the frustrations. Notice that the quantity being averaged in (1.22) is the same Hamilonian $F\left\{\Phi_{1} \beta_{\mathrm{F}}\right\}$ evaluated at the spin glass temperature $1 / K_{i}$. Furthermors, the normalization factor can be easily shown to be equal to the partition function of the anriealed system.

In the spin slass litenture, it is usual to find the phase diagram represented by a plot of K (spin temperature) vs. p (probability) [15]. We can now understand these diagrams in terms of the frustration temperature. At $p=1 / 2$, the frustrations are at infinite temperature $\left(\beta_{i}=0\right)$. In this situation, the density of frustrations is extremely high. As p increases, the temberature of frustrations decreases and at $p=1$ the frustrations are at zero temperature. This sta e is the pure ferromagnet ($p=1$) and there are no frustrations here. All the models which are comected throush gauge transformations with the pure ferromanot are alst at zero frustration temperature. The stumbon is symmetric around the point $\mathrm{p}=1 / 2$.

(A) The Model

We shall first discuss the 2 d Ising model in an arbitrary configuration of bonds. The partition function is given by (Eq. 1.7)

$$
\begin{equation*}
\mathrm{Z}\{\mathrm{~A}\}=2^{-N} \sum_{\left\{\sigma_{i}\right\}} \exp \left\{K \sum_{\langle i \mathrm{j}\rangle}^{\sum} \sigma_{i} \mathrm{~A}_{i j} \sigma_{j}\right\} \tag{1.7}
\end{equation*}
$$

In Eq. (1.8) we showed that $Z\{A\}$ is gauge invariant, i.e., if $\{A\}$ and $\left\{A^{\prime}\right\}$ are two bond configurations related through a gauge tranformation, then the partition function is the same for both configurations and so is only dependent on the distribution of frustrations $\{\Phi\}$. Consider now the sum $\sum, Z\{A\}$ restricted to all configurations which have the same distribution of frustrations. From (1.8-1.10) we can write

$$
\begin{equation*}
\sum_{\{A\}} Z\{A\}=2^{N} Z\{D\} \tag{2.1}
\end{equation*}
$$

where 2^{N} is the total number of gauge transformations (volune of the gauge group).

Therefore, the partition function can be written as [11]

$$
\begin{equation*}
\mathrm{Z}\left\{\Phi_{i}\right\}=2^{-N} \sum_{\left\{\mathrm{A}_{i j}\right\}}\left[\eta_{\delta} \delta\left(\mathrm{A}_{i j} \mathrm{~A}_{j \times} A_{k 1} A_{i i} \sigma_{i}-1\right)\right] \sum_{\left[\sigma_{i}\right\}} \exp \left\{K \sum_{\langle i 5\rangle} \sigma_{i} A_{i j} \sigma_{j}\right\} \tag{2.2}
\end{equation*}
$$

where \mathbf{i} is the dual site at the center of the plaquette ijkl . The Kronecker's δ replace the constraint in Eq. (2.1). Up to an (infinite) constant E_{f}. (2.2) takes now the form

$$
\begin{equation*}
\mathrm{Z}\left\{\Phi_{i}\right\}=2^{-N} \lim _{K_{p} \rightarrow \infty} \sum_{\left\{A_{i j}\right\}} \sum_{\left\{\sigma_{i}\right\}} \exp \left\{K_{i} \sum_{\langle i j\rangle} \sigma_{i} A_{i j} \sigma_{j\}} \exp \left\{K_{p} \sum_{i} \operatorname{tij}_{i} A_{i j} A_{j k} A_{k \mid} A_{i i}\right\}\right. \tag{2.3}
\end{equation*}
$$

This partition function describes an lsing model with a frezen distribution of frustrations. In order to simplify matters we choose the gatuc $\boldsymbol{o}=1$ (all sites) and, in that gauge, the partition function then rads

$$
\begin{equation*}
Z\left\{\Phi_{i}\right\}=\lim _{K_{p} \rightarrow \infty} \sum_{\left\{A_{i j}\right\}} \exp \left\{K_{i} \sum_{\langle i j\rangle} A_{i j} K_{D} \sum_{i j}^{\sum} \Phi_{i j} A_{i j} A_{i j k} A_{i k 1} A_{i j}\right\} \tag{2.4}
\end{equation*}
$$

In what follows we shall abwas wrile the patation thating in has form.

(B) Duality

The duality properties of models like Eq. (2.4) with $\Phi=1$ (unfrustrated case) have been extensively discussed by Wegner [14] and Balian, et al [15]. In this section, we will show how to extend those methods to the frustrated case, i.e. $\Phi_{i}=-1$. We will follow Balian quite clocely. Let us apply the duality transformation to the nodel described by the partition function (2.4) in the case $\Phi_{i}=1$ (all i). The dual partition function (for K_{p} finite) is given by

$$
\begin{equation*}
Z=\left[(1 / 4) \cosh K_{p} \cosh ^{2} K_{i}\right]^{N} \sum_{\left\{s_{i}\right\}} \exp \left[\sum_{\langle i J\rangle} \beta_{i}^{*}\left(s_{i} s_{j}-1\right)+\Sigma_{i} H^{*}\left(s_{i}-1\right)\right] \tag{2.5}
\end{equation*}
$$

where N is the total number of lattice sites. The dual coupling β_{l}^{*} and dual external magnetic field H^{*} are related to the original link and plaquette couplings through the relations

$$
\begin{align*}
& \mathrm{e}^{-2 \beta_{1}^{*}}=\tanh K_{\mathrm{L}} \\
& \mathrm{e}^{-2 \mathrm{H}^{*}}=\tanh K_{\mathrm{p}} \tag{2.6}
\end{align*}
$$

The dual model is defined on the oun: of the squar: lattice and at each dual site i there is a dual Ising spin s_{i}. Eq. (2.5) is just the partition function of a 2 d Ising model in an external uniform magnetic fieid.

If we now let $K_{p} \rightarrow \infty$, the external field H^{*} vanishes. Tinus, the system becomes the well known $2 d$ Ising model in zero field. Notice that Eq. (2.6) implies that low temperatures and high temperatures are exchanged through a duality transformation.

In the previous discussion the system was uniform (i.e., all the bonds were the same). However, the duality transformation holds even in the case that the couplings K_{1}, K_{p}, vary throughout the lattice. In this case Eq. (2.6) becomes a local relationship between duat couplings. Since in two dimensions links are dual to links and plaquettes are dual to sites, the coupling at cach link transforms into the coupling on its dual link and the plaquette coupling transforms into a loal external field.

We now turn our attention to the case $\phi=-1$ at some plaque te which means to flip the sign of the coupling K_{p} at that plaquette. This a system with some $\Phi_{i}=-1$ is just a system with some K_{p} negative.

From Eq. (2.6) we get the equivalency

$$
\begin{equation*}
\mathrm{K}_{\mathrm{p}} \rightarrow-\mathrm{K}_{\mathrm{p}} \rightleftarrows \mathrm{H}^{*} \rightarrow \mathrm{H}^{*}+\mathrm{i} \pi / 2 \tag{2.7}
\end{equation*}
$$

So that, in general, the following identity is true

$$
\begin{equation*}
\mathrm{e}^{-\left(2 \mathrm{H}^{*}+\mathrm{i}[\pi / 2]\left[\mathrm{i}-\Phi_{\mathrm{i}}\right]\right)}=\tanh \left(\mathrm{K}_{\mathrm{p}} \Phi_{\mathrm{i}}\right) \tag{2.8}
\end{equation*}
$$

To flip the sign of a coupling is equivalent to shift the dual coupling by $i \pi / 2$. This trick has been exploited by Kadan off and Ceva in their discussion of disorder variables in the 2 d lIning Model. The identity

$$
\begin{equation*}
\exp (i \pi(l-s) / 2)=s \quad s= \pm 1 \tag{2.9}
\end{equation*}
$$

combined with Eq. (2.8) leads us to the conclusion that when we flip a plaquette coupling in the original model we are bringing down a dual spin variable (at .the site dual to that plaquette) in the dual system. Thus, for arbitrary Φ_{i}, the normalized function (2.4) (for finite K_{p}) after a duality transformation (2.6) - (2.8) becomes
where the average is taken in the dual system. In order to fix a distribution of frustrations we now let $K_{p} \rightarrow \infty$. Then from Eq. (2.10) the normalized partition function (2.4) in a specified distribution of frustrations turns out to be equal to the N point correlation function of the dual zero field ling model at the temperature given by β_{1}^{*}. Notice that the limit $K_{p} \rightarrow \infty$ is essential not only to specify the distribution of frustrations but also to avoid the destruction of the phase transition of the $2 d$ lining model. In sumptuary

$$
\begin{equation*}
\left(Z_{K_{1}}\left\{\Phi_{i}\right\}\right) /\left(Z_{K_{1}}\left\{\Phi_{i}=1\right\}\right)=\left\langle\Pi_{i}\left(1-\Phi_{i}\right\} / 2\right\rangle \beta_{1}^{*} \tag{2.11}
\end{equation*}
$$

Since $Z_{\mathrm{X}_{1}}\left\{\Phi_{\sim}\right\} \equiv \mathrm{e}^{-\mathrm{K}_{\mathrm{L}} F\left\{\Phi_{\sim}\right\}}$ ($\mathrm{F} \equiv$ free energy). then (2.11) gives the change in the free energy due to the effect of the frustrations as

$$
\begin{equation*}
\exp \left[-\mathrm{K}_{1} \Delta \mathrm{~F}\left\{\Phi_{i}\right\}\right]=\left\langle\mathrm{H}_{i} \mathrm{~s}_{i}^{\left(1-\Phi_{i}\right.}{ }_{i}^{\prime / 2}\right\rangle \beta_{i}^{*} \tag{2.12}
\end{equation*}
$$

(C) The Energetict of Frustrations

Let us now discuss some specific examples. Unfortunately little is known about the behavior of this general N point correlation function. Nevertheless, some of the known general features are important for us. In the unmagnetized phase of the dual ling model (i.e., high temperatures in the dual lsing \equiv low tumperatures in the spin glass), the N point correlation function vanishes identically if N is odd. Thus, frustrations conte in even numbers (neutral configurations) in the low spin-glass temperature phase.

We now take full advantage of all the available information about the magnetization and the two point correlation function of the $2 d$ Ising Model in zero external field in order to study the energetics of frustration systems [16].

The change in the free energy of the system due to the presence a single frustration is given by

$$
\begin{equation*}
\Delta \mathrm{F}_{\text {single }}=-\left(1 / \mathrm{K}_{1}\right) \log \langle s\rangle \beta_{1}^{*}=-\left(1 / \mathrm{K}_{\mathrm{L}}\right) \log \mathrm{M}\left(\beta_{1}^{*}\right) \tag{2.13}
\end{equation*}
$$

where $M\left(\beta_{1}^{*}\right)$ is the magnetization. Since the latter is exactly known we obtain $\Delta F_{\text {single }}=\left\{\begin{array}{cc}-\left(1 / 8 K_{\mathrm{L}} \log \left(1-\sinh h^{4} 2 K_{i}\right)\right. & K_{i}<K_{c} \text { (high spin glass temp.) } \\ \infty & K_{i}>K_{c} \text { (low spin glass temp.) }\end{array}\right.$
where $\sinh 2 K_{c}=1$ is the critical point of the $2 d$ Ising model.

In fact, at low temperatures (spin ghass), a single frustration is strictly forbidden since the excess free energy is infinite. At high temperatures of the spin glass system a single frustration costs a finite amount of free energy (it has a finite "mass"). The fluctuans: ling spins soreen the frotration at heh temperatures.

Lat us now study the interaction energy for a pair of frustrations in an unfrustrated sea of spins. The change in the free energy due to two frustrations can be obtained from the two point correlation function of the dual ising model. There are two regimes. 1) At low spin glass temperatures $\left(K_{\mid}>K_{c}\right)$ the dalal system is in its disordered phase (high temperature implies $\beta_{1}^{*}<K^{-1}$). The corretation function decays exponentially at large distances with a correlation length, ξ, given by

$$
\begin{equation*}
\xi\left(\beta^{*}\right)=\left(2 \sqrt{2} \log \sinh 2 \beta_{\mathrm{i}}\right)^{-1}=\left(2 \sqrt{2} \log \sinh 2 \mathrm{~K}_{\mathrm{L}}\right)^{-1} \tag{2.15}
\end{equation*}
$$

Thus the excess free energy associated with a frustration pair separated by a distance R is given by

$$
\begin{equation*}
\Delta F(R)=-\left(1 / K_{1}\right) \log \left\langle s_{0} s_{R}\right\rangle \sim\left(R / K_{1} \xi\right)+0(\log R) \tag{2.16}
\end{equation*}
$$

As Eq. (2.16) shows, the excess free energy grows linearly with R and therefore the energy necessary to separate two frustrations by an nfinite distance is divergent. Thus, in the low (spin glass) temperature phase frustrations are "confined". One catn picture the two frustrations as held together by a "string" whose tension $\boldsymbol{\tau}$ is given by the coefficient of the linear term in (2.16), i.e.

$$
\begin{equation*}
r=1 / \mathrm{k}_{\mathrm{L}} \xi=\left(\sqrt{2} / \mathrm{K}_{\mathrm{L}}\right)\left\|\log \sinh 2 \mathrm{~K}_{\mathrm{l}}\right\| \tag{2.17}
\end{equation*}
$$

At the critical point the correlation lenuth diverges and the string tension goes to zero like $\left\{\mathrm{K}_{\mathrm{t}}-\mathrm{K}_{\mathrm{c}} \mathrm{l}\right.$. In other words, "melting" of the string holding the frustrations together leads to a change in the force law.

In the high (spin glass) temperature phase "confinement" is lost. Here the dual system is in its ordered phase and hence the dual spin correlation function opproaches a constart value at infinite distance

$$
\begin{equation*}
\left\langle s_{0} s_{R}\right\rangle \sim M^{2}\left\{\beta_{1}^{*}\left\{1+\left(\mathrm{V}_{0} / R^{2}\right) \text { exp }\{-R / \xi\}+\ldots\right\}\right. \tag{2.18}
\end{equation*}
$$

where $M\left(\beta_{1}^{*}\right)$ is the magnetization which is given by

$$
\begin{equation*}
N\left(\beta_{0}^{*}\right)=\left(1-\sinh ^{-2} 2 \beta^{*}\right)^{1 / 8}=\left(1-\cos +30^{3}\right)^{1 / 8} \tag{2.19}
\end{equation*}
$$

ξ is the correlation length (2.15) and V_{o} is the constant

$$
\begin{equation*}
V_{o}=\left(\sinh 42 K_{q}\right) / 4 m\left(1-\sinh 42 k_{1}\right)^{2} \tag{2.20}
\end{equation*}
$$

Therefore, the excess free energy at high (spin glass) temperatures is given by

$$
\begin{equation*}
\Delta F(R)=2 \Delta F_{\text {single }}-\left(V_{0} / R^{2}\right) \exp (-R / \xi) \tag{2.21}
\end{equation*}
$$

This means that at high temperatures frustrations are "free" and they interact through an attractive short ranged screened potential. The range of the potential is just the correlation length ξ. Notice that this range is strongly temperature dependent.

(D) Correlation Functions of the using model with Frustrations

We now wish to study the effect of frustrations on the two point correlation function of spins on the original spin glass. Since we are not interested in the effect of non-serious disorder (ie., the disorder which is not associated with frustrations), we have to study the behavior of the gauge invariant correlation function in the presence of frustrations.

The gauge invariant correlation function is given by

$$
\begin{equation*}
\mathrm{C}_{\Gamma(i, j)}\left\{\Phi_{\mathrm{i}}\right\}=\left\langle\sigma_{i}\left(\prod_{(i J)} \mathrm{A}_{\mid \mathrm{k}}\right) \sigma_{j}\right\rangle_{\left\{\Phi_{j}\right\}} \tag{2.20}
\end{equation*}
$$

The average is taken as explained in Eq. (1.12). $C_{\Gamma(i, j)}\left\{\Phi_{i}\right\}$ is a gauge invariant quantity. Thus all the arguments made for the partition function (1.7) which lead to the form given in (2.5) are valid in this case.
$C_{\Gamma}(\mathrm{i}, \mathrm{j})\left\{\Phi_{i}\right\}$ as given by (2.20) can be rewritten as
where Ai NA means the product of all the link variable; a rome the plathelte i^{\prime}.

These gauge invariant two point correlation function cbey a duality transformation. Through this transformation the two point (gauge invariant) correiation function in the presence of a distribution of N frustrations maps into the N point gauge invariant correlation function of the dual system in the presence of two frustrations, where the positions of frustrations and correlated spins are interchanged. Notice that the gauge incariant dual N point correlation function has strings of dual link variables a joining the dual spins pair wise.

The relation is given by

with a pictorial description given by Fig. 7 and
(a) Φ_{i} is the frustration field of the dual system, and $\Phi_{i}= \begin{cases}-1 & \text { if } i=i, j \\ 1 & \text { otherwise }\end{cases}$
(b) $\Gamma_{\alpha}\left({ }_{\sim}{ }_{\alpha} \mathrm{j}_{\alpha}\right)$ is a path of dual links which goes from site ${\underset{\sim}{\alpha}}_{\alpha}$ to ${\underset{j}{\alpha}}$. The parameter α labels the different paths. In the case when N is odd, one of these paths runs to the boundary;
(c) Again remember that $\mathrm{e}^{-2 \beta^{*}}=\tanh \mathrm{K}_{1}$:
(d) In the factor $(-1)^{n}, n$ is the total number of intersections !etween the path $\Gamma_{(i, j)}$ and all the dual paths $\Gamma\left(\mathrm{i}_{\alpha} \mathrm{j}_{\alpha}\right)$. The derivation of Eq. (2.22) is given in Appendix A.

Let us now discuss the influence of frustrations on the asymptotic behavior of the gange invariant correlation function. We shall restrict ourselves to the case of two frostations.

i) High Temperature Behavior

The behavior at high (spin glass) temperatures can be most easily studied directiy by means of the high temperature expansion.

In. Eq. (2.14) we showed that one free frustration can exist at temperatures higher than the transition lemperature. Let us study the effect of one single frustration on the behavior of the gauge invariant two point correlation function. Consider the simple case of a frustration in between the correlated spins. The string of link variables is a straight line of links joining the spins with the frustration adjacent to the string. To make an explicit high temperature calculation we choose the special flipped bonds representation of the frustration shown in Fig. 8. To the first non-trival power in $x \equiv t a n h K_{1}$, we get

$$
\begin{equation*}
\left\langle\sigma_{\mathrm{i}}({\underset{\Gamma}{I I}} \mathrm{~A}) \sigma_{j}\right\rangle_{K_{\mathrm{L}}}\left\{\Phi_{i}\right\} /\left\langle\sigma_{i} \sigma_{\mathrm{j}}\right\rangle_{K_{\mathrm{L}}}=1-2 d(\mathrm{R}-\mathrm{d}+1) \mathrm{x}^{2} \tag{2.23}
\end{equation*}
$$

where $\mid i-j=R$ and $|1-i|=d$ measures the distance of the frustration to one of the spins. Of course, this formula is only valid when $R x \ll 1$. As expected, the correlation function decreases in the presence of the frustration.

An analogous computation for two nearest neighbor frustrations lying between the two spins (Fig. 9) gives the result

$$
\begin{equation*}
\left\langle\sigma_{\mathrm{i}}\left(\prod_{\Gamma} \mathrm{A}\right) \sigma_{\mathrm{j}}\right\rangle_{\mathrm{K} 1}\left\{\phi_{\mathrm{i}}\right\} /\left\langle\sigma_{i} \sigma_{\mathrm{j}}\right\rangle_{\mathrm{K}}=\mathrm{l}-4 \mathrm{~d}(\mathrm{R}-\mathrm{d}+\mathrm{l}) \mathrm{x}^{2} \tag{2.24}
\end{equation*}
$$

$x \equiv \tanh K_{i}$
Notice that the effect of a frustration pair on the correlation function is bigger than in that of a simple isolated frustration.
(ii) Low Temperatures

At iemperatures lower than T_{c}, there is long range order and the random system is "magnetized". It is interesting to see how the magntization is affected by the frustrations.

Consider two frustrations a distance R apart and let us compute the (gatge invariant) monetiontion at a point between them at distane d from one of the famatons (fig.
10). This situation is the dat of that shown in Fig. A for which we obtaned the high temperature resuit above.

The duality refation (2.22), together with (2.23), allows us to write

$$
\begin{equation*}
\left\langle\sigma_{i}\left(\Pi_{\Gamma(i, \infty)} A\right\rangle_{K i}\{\Phi\} /\left\langle\sigma_{i}\right\rangle_{K 1}=(-1)\left[1-2 d(R-d+1)\left(x^{*}\right)^{2}\right]\right. \tag{2.25}
\end{equation*}
$$

$x^{*}=\tanh \beta_{1}^{*}=e^{-2 K_{1}}$
Once again Eq. (2.25) gives the answer to first non-trivial order. The nagnetization is locaily decreased and the effect is non-uniform. In fact, this decrease is largest midway between the two frustration. The minus sign of Eq. (2.25) arises from the fact that the string of A's (Fig. 10) we have chosen crosses the string of (is in the dual case (Fig. 8).

(C) Mipped Bonds, Frustrations and Disorder Parameters

The results we have obtained in Section $2 . c$ can also be understood in terms of an Ising model with flipped bonds.

One possiole alternative realization of an Ising model with 2 frustrations is an Ising model with a dual string of flipped bonds connecting the two frustrated plaquettes along some path Γ (Fig. 4d). Any path is equally good; models with different paths differ only by a gauge transformation. Such a configuration of flipped bonds is actually aa interface or domain wall, as discussed by Fisher and Ferdinaid [17]. Our string tension is nothing more than the interfacial tension of the domain wall that appears in their work.

Kadanoff and Ceva have slown that ther is a duality transfomation connecting the nomalized partition function in the presence of a deal string of flipped bonds and the correlation function in the dual system. This quantity, which for us is the partition function in the presence of frustrations, in their tanguage is the correlation function of the disorder variables. Thus, frustrations have a close comaction with disorder varimbes [7,18]. In fact, he "fermionic" character of the order and disorder variables (i.e., the fact that one picks up a factor of (-1) by moving disorder variables strings through spin
 discussed in Section 1.

II. THE 3 DIMFNSIONAL ISING SPIN GLASS

(A) Frustrations in 3 Dimensions

We want to discuss now frustrations in the 3 dimensional ising model. Frustrations will also be introduced here in the same way as in the $2 d$ case. There is an A variable at each link and a frustration variable at each plaquette defined by

$$
\begin{equation*}
\Phi_{i j k l}=A_{i j} A_{j k} A_{k l} A_{l i} \tag{3.1}
\end{equation*}
$$

where $\mathrm{j}, \mathrm{j}, \mathrm{k}, \mathrm{l}$ are sites in the 3 dimensional cubic lattice which define the plaquette. Unlike the situation in 2 dimensions where the plaquettes are associated to dual sites, in 3 dimensions plaquettes are associated with dual liuks (see Fig. 10). So the frustration in 3d has a vector character. From its definition, it is clear that the Φ yariables obey the constraint:

$$
\begin{equation*}
\Pi I_{\text {faces }} \Phi=1 \tag{3.2}
\end{equation*}
$$

where the product is taken over all faces composing a closed surface on the latice. [Consider, for instance, an elementary cube of the lattice (Fig 10). If we consider the product (3.2) on that surface, it is clear the A variable at each link of that cube occurs twice in the product. Since $A^{2}=1$, Eq. (3.2) is an identity. $]$

From the view point of the dual latice (not the dual model), this constraint says that there should be an even number of dual frustrated links associated entering each dual site. Thus, the only allowed configurations of frustrations correspond to closed loops of dual links on the dual latice; a resuld atready pointed out by Toulouse [3].

(B) Duality

We start with a 3 ding model with a fixed distribution of frustrations. In analogy with Eq. (2.4), we write for the partition function [15]

We define the excess free energy of the frustrated system in analogy with the 2 d case. It is known that the partition functon (3.3), for K_{p} finite. and $\Phi_{i j k i}=1$ at all plaquettes, is self dual. Link interactions transform into plaquette interactions, and vice versa, through the duality relationship

$$
\begin{align*}
& e^{-2 K_{p}^{*}}=\tanh K_{1} \\
& e^{-2 K_{i}^{*}}=\tanh K_{p} \tag{3.4}
\end{align*}
$$

Let $\Lambda_{i j}$ to be the gauge variable associated with the duat link $i j$ (i and j are two neighboring sites in the dual lattice). The normalized partition function (3.3) (finite K_{p})

which is equal to the correlation function

The proof of (3.5) is entirety analogous to the proof of the 20 case. Again we are interested in the constrained situation $K_{p} \rightarrow \infty$ and (3.4) implies that $K_{i} \rightarrow 0$. Thus the averages (3.6) are taken in the pure gauge system described by the partition function

The Hamilonian of (3.7) is gauge invariant [i.e. it is invarian under the transformations (1.2)-(1.3)]. Eliteur [19] has, shown that such local symmetrics are never broken, i.e. the expectation value of any gauge non-invariant quantity 0 is identically zero for all values of the coupling constant i.e.

$$
\begin{equation*}
\langle\theta\rangle \equiv 0 \quad \text { alf } K_{p} \tag{3.3}
\end{equation*}
$$

Therefore, one may ask in which case is the quantity in (3.6) gatge invariant. As we have already discussed in Section 1.3 only the product of a variables around any closed loop of links is gauge invariant. This is the way in which the constraint discussed in ($\hat{3}$.2) is realized in the dual system. Notice that in contrast to the 2 d situation the partition function for one frustrated plaquatte is zero for all temperatures.

(C) Energetics of Frustrations

As discussed above, the simplest configuration of frustrations is a closed tube of frustrated playuettes (Fig. 11).

The normalized partition function of this tube is equal to the expectation value of the product of the a variables along the loop Γ of dual links threading the frustration tube. This expectation value is a familar object in gauge theories the Wilson loop integral
[5]. .

The excess free nergy for this tube is given by

$$
\begin{equation*}
\Delta F\left(K_{i}\right)=-\left(1 / K_{i}\right) \log \left\langle\prod_{\Gamma} a\right\rangle_{K \mathfrak{p}}^{*} \tag{3.9}
\end{equation*}
$$

From high and low temperature expansions (in the dual model), it is known that the loop integral has the asymptotic behavior $[5,14,18]$

$$
\begin{align*}
& \underset{\Gamma}{\langle\Pi a\rangle_{\mathrm{Kp}}^{*} \sim}\left\{\exp \{-\alpha \mathrm{A}\} \quad \mathrm{K}_{\mathrm{p}}^{*}<\mathrm{K}_{\mathrm{c}}^{*}\right. \\
& \exp \{-\beta L\} \quad K \dot{p}>K_{c}^{*} \tag{3.10}
\end{align*}
$$

where A is the minimal area spanned by the loop Γ and L is the perimeter of that loop. $\mathrm{K}_{\mathrm{c}}^{*}$ is the critical coupling of the dual model and is the dual of the critical coupling K_{c} of the 3 d tsing model. The coefficients α and β are temperature dependent. In the originat Ising model, this implies that the excess free energy of a closed tube of frostrations behaves like
$\Delta F\left(k_{1}\right)= \begin{cases}\left(\alpha / K_{f}\right) A & K_{L}>K_{c} \text { (fow spin glass temperatures) } \\ \left(\beta / K_{i}\right) \mathrm{L} & \mathrm{K}_{1}<\mathrm{K}_{c} \text { (high spin glass temperatures) }\end{cases}$
Let us now look at the interaction between two tubes of frustrations in various relative orientations.

Consider first two face-to-face tubes (Fig. 12). In order to compute the excess free energy of that configuration of frustrations at low temperatures, it is useful to go to the dual system and consider there the expectation value of the two dual loops of a variables at high temperature. The leadiag diagram in the high temperature expansion of the dual system is that one which covers the minimal area surface spanned by the loops. This is the just duai analog of the statement made by Toulouse [3] and Kirpatrick [1l] that the ground state configurations correspond to covering surfaces of minimum area. For one loop, we then obtain

$$
\begin{equation*}
\left(\tanh K_{p}^{*}\right)^{A}=e^{-2 K_{\lambda} A} \tag{3.12}
\end{equation*}
$$

which is the area hav quoted above.

For two loops, the character of the mirimai surface changes with the distance R between them. The two situations are shown in Fig. 13(b.c). If d is the linear dimension of the loop, we get, to leading order,

$$
\begin{align*}
& \Delta F_{K_{i}}(R, d)=8 d R \quad R \ll d \tag{3.13a}\\
& \Delta K_{i}(R, d)=4 d^{2} \quad R \gg d \tag{3.13b}
\end{align*}
$$

at low spin-glass temperatures $\left(K_{1} \gg K_{c}\right)$. At high spin temporatures, the excess free energy can be evaluated directly through the high lemperature expansion in the Ising spin glass model. The result is to (bading order)

$$
\begin{equation*}
\Delta F_{K 1}\left(R_{1}(i)=9 d, K_{1} \ll K_{c}\right. \tag{3.14}
\end{equation*}
$$

Eq. (3.13a) shows hat at low temperatures, Re<d, there is a linear potential hetween the
loops whose strength is proportional th the permeter d of the bops, a ment stased by the 2 d results. In contrast with the 2 d case, though, this potential saturates at a distance $R \sim d$ and, for $R \gg d$, has only a weak R dependence. Thus, loops of frustrations tend to bind bit they are not confined. There is also an orientation effect in the interaction between tubes. For two loops oriented as in Fig. 13'(1), the minimal surface does not change character so there is no strong distance dependence. In analogy with 2 d case, at high (spin-glass) temperatures, the R dependence is weak for all distances.

In the $3 d$ case, it is also possible to compute gauge invariant correlation functions using duality transformations, as we did in the 2-D case. The proof and results are given in Appendix A.

IV. THE 2D XY SPIN GIASS

(A) Cauge Symmetries in Randon XY Models

Up to now, we have discussed random Ising spin systems. We can extend our treatment to $X Y$ systems for which the degrees of freadom are fixed-length 2 dimensional planar rotors $S=(\cos 6, \sin \theta)$ sitting at the sites of the lattice.

The standard nearest neighbor ferromagnetic coupling is usually written as

$$
\begin{equation*}
\left.\mathrm{K}_{i} \overrightarrow{\mathrm{~S}}_{\mathrm{i}}, \overrightarrow{\mathrm{~S}}_{j}\right) \equiv \mathrm{K}_{i} \overrightarrow{\mathrm{~S}}_{1} \cdot \overrightarrow{\mathrm{~S}}_{\mathrm{j}}=\mathrm{K}_{i} \cos \left(\theta_{i}-\theta_{j}\right) \tag{4.1}
\end{equation*}
$$

where i, j are nearest neighbor lattice sites and K_{l} is the coupling constant for this link. This interaction favors configurations with neighboring spin parallel to each other.

We can introduce disorder in the system by adjusting the interaction to favor configurations with neighboring spins tilted by an angle ψ_{i} at each liak (i, j). The form of the interaction is now

$$
\begin{equation*}
\mathrm{K}_{1} \cos \left(\theta_{\mathrm{i}}-\theta_{\mathrm{j}}-\psi_{\mathrm{ij}}\right) \tag{4.2}
\end{equation*}
$$

In particular $\psi_{\mathrm{ij}}=\pi$ corresponds to flipping the sign of the interaction.
Define a link gauge degree of freedom $U_{i j}$ such that [5]

$$
\begin{equation*}
\mathrm{U}_{\mathrm{ij}}=\exp \left\{i \psi_{\mathrm{ij}}\right\} \tag{4.3}
\end{equation*}
$$

Then Eq. (4.2) can be rewritica as [20]

$$
\begin{equation*}
\left(K_{1} / 2\right)\left[S_{i} U_{\mathrm{ij}}^{*} S_{j}^{*}+h . c .\right] \tag{4.4}
\end{equation*}
$$

with $\mathrm{S}_{\mathrm{i}} \equiv \mathrm{e}^{\mathrm{i} \boldsymbol{\theta}_{\mathrm{i}}}$.
The partition function in a fixed configumation of gange degrees of freedom $\left\{\mathrm{U}_{\mathrm{ij}}\right\}$ is given by

$$
\begin{equation*}
\mathrm{Z}\left\{\mathrm{U}_{i j}\right\}=\int_{\{\mathrm{Si}\}} \exp \left\{\left(K_{i} / 2\right) \sum_{\langle i j\rangle}\left[\mathrm{S}_{1} \mathrm{U}_{i j}^{*} \mathrm{~S}_{\mathrm{j}}^{*}+\text { h.c. }\right]\right\} \tag{4.5}
\end{equation*}
$$

where $\int_{\left\{S_{i}\right\}}$ means a normalized integration over all the angles between $-\pi$ to π.
Define a local gauge transformation $G\left\{V_{i}\right\}$, with $V_{i}=\exp \left\{i x_{i}\right\}$, such that the spin and link degrees of freedom transform under $G\left\{V_{i}\right\}$ like

$$
\begin{align*}
& S_{i} \rightarrow V_{i} S_{i} \tag{4.6}\\
& U_{i j} \rightarrow V_{i} U_{i j} V_{j}^{*}
\end{align*}
$$

In compact notation

$$
\begin{equation*}
G(V)\left\{S_{i}, U_{i j}\right\}=\left\{V_{i} S_{i}, V_{i} U_{i j} V_{i j}^{*}\right\} \tag{4.7}
\end{equation*}
$$

Hence, each spin is rotated by χ_{i} and each link-angle by the difference $\chi_{i}{ }^{-} \chi_{j}$. Again the key point is that the interaction (4.3) is in variant under the gauge transformation (4.6).

With the above definitions all the remarks already made in Section I apply to XY systems with almost trivial modifications. In particuln, the partition function (4.3) is gauge invariant and we only need the gauge invariant features of the gaug: configuration.

Let us define a frustration angle $2 \pi \Phi_{i j k l}$ at plaquette ijkl such that

$$
\begin{equation*}
e^{i 2 \pi J^{i} j k l}=U_{i j} U_{j k} U_{k l} U_{l i} \tag{4.8}
\end{equation*}
$$

around that plaquette.
Thus, from Eq. (4.3), the frustration angle may oe written as

$$
\begin{equation*}
2 \pi \Phi_{i \mathrm{jk}}=\psi_{\mathrm{ij}}+\dot{\psi}_{j \mathrm{j}}+\psi_{\mathrm{k} 1}+\psi_{i \mathrm{i}}(\bmod 2 \pi) \tag{4.9}
\end{equation*}
$$

From the periodicity of the interaction (4.2) we arrive to the conclusion that only fractional values of Φ are meaningful. For instance, if we want to reverse the sign at the link ij, (i.e. $\psi_{i j}=\pi, \psi_{1 k}=0$ otherwise) is cquivalent to set $\psi_{i j k 1}=\psi_{1 / 2}+$ integer for all the plaquettes which contain the reversed link as stown by Viltain [s].

Thus, the random $X Y$ model is a frozen configuration of frustrations $\Phi_{i j k}$, derived from the angles $\psi_{i j}$, bas a Hamitonian given by

$$
\begin{equation*}
H=K_{i} \sum_{\langle i j\rangle} \cos \left(\theta_{i}-\theta_{j} \cdots \psi_{i j}\right) \tag{4.10}
\end{equation*}
$$

Instead of writing Eq. (4.10) as a constrained Hamitonian, as we did in the lsing case, it will prove to be more convenient to deal with a Hamiltonian depending explicitly on the angles $\psi_{i j}$.

(B) The 2d XY Spin Glass

It is convenient to change our notation. A link whose ends are the sites i and j can be equivalently described by one of the sites (i) and a direction (μ). Thus we write [22]

$$
\begin{equation*}
\psi_{i \mathrm{j}} \equiv \psi_{\mu}(\mathrm{i}) \tag{4.11}
\end{equation*}
$$

A plaquette is defined by a corner (i) and two directions μ aid ν, i.e. (i, $\mu \nu$). In particular, the frustration field can be written as

$$
\begin{equation*}
2 \pi \Phi_{\mu \nu}(\mathrm{i})=\Delta_{\mu} \psi_{j}(\mathrm{i})-\Delta_{\nu} \psi_{\mu}(\mathrm{i}) \tag{4.12}
\end{equation*}
$$

where Δ_{μ} is the fiaite difference operator

$$
\begin{equation*}
\Delta_{\mu} \chi(i)=\chi(i)-\chi\left(i-\hat{e}_{\mu}\right) \tag{4.13}
\end{equation*}
$$

where \hat{e}_{μ} is the unit vector pointing in the μ direction. In 2 dimensions a plaquette ($\mathrm{i}, \mu \nu$) is uniquely associated to the dual site i at its center and we often consider the scalar frustration $\Phi(i)$ residing there

$$
\begin{equation*}
\Phi(\mathrm{i})=1 / 2 \varepsilon_{\mu,} \Phi_{\mu \nu}(\mathrm{i}) \tag{4.14}
\end{equation*}
$$

where $\varepsilon_{\mu \nu}$ is the 2 d Levi-Civita tensor.

In this notation, the resemblance between the frustration field $p_{\mu \nu}(i)$ and the efectromagnetic field tensor is evident (Eq. 4.12).

arbitrary field of frustrations (Eq. 4.10)

$$
\begin{equation*}
\mathrm{Z}\{\Phi(\mathrm{i})\}=\int \mathrm{D} \theta \exp \left\{\sum_{(i, \mu)} K_{l} \cos \left(\triangle_{\mu} \theta(\mathrm{i})-\psi_{\mu^{\prime}}()\right\}\right. \tag{4.15}
\end{equation*}
$$

Following references $2 \& 3$, we consider the Villain approximation of (4.15), i.e.

$$
\begin{equation*}
\beta \cos \theta \cong e^{\beta} \sum_{i} \exp \left\{-\beta / 2(\theta-2 \pi I)^{2}\right\} \tag{4.16}
\end{equation*}
$$

Performing a Fourier expansion at each link, we obtain a system of integer valued variables $l_{\mu}(i)$ residing on links. The partition function now reads

By solving the constraint

$$
\begin{equation*}
l_{\mu}(\mathrm{i})=\varepsilon_{\mu \nu} \Delta_{\nu} \mathrm{n}(\mathrm{i}) \tag{4.18}
\end{equation*}
$$

we can map the (normatized) partition function (4.17) into a correlation function of the surface roughening model [24] whose partition function is given by

Thus, we obtain the result

$$
\begin{equation*}
\frac{Z\{\Phi(i)\}}{Z\{\Phi(i)=1\}}=\left\langle\prod \underset{\sim}{~} \exp \{-2 \pi i n(G) \bar{S}(i)\}\right\rangle_{s . R_{2}} \tag{4.20}
\end{equation*}
$$

If we perform a globat shift by m of all the n(i) variables the partition fanction (4.19) is left unchanged, but the expectation value (4.20) picts up a phase $\mathrm{e}^{2 \pi} \mathrm{~m}$ ins. $\mathrm{S}(\mathrm{a})$ Hence, for arbitrary boundary conditions, the expectaion value (4.20) vanibhes identictlly unless the frustration system is "neutral" i.e.

$$
\begin{equation*}
\left.\sum_{i} \Phi(i)=0 \text { (mod. integer }\right) \tag{4.21}
\end{equation*}
$$

symmetry $\sigma \rightarrow-\sigma$. In both models fixing houndary bondituns it infinity atlows symmetry breaking quantities such as Eq. (4.20) to develop non-vanishing expectation values.

By using the Poisson summation formula [23], we can write in terms of the coulomb gas picture

The evaluation of he Gaussian path integral then gives the result
where $Z_{S W}$ is a spin wave partition function and the summation is restricted to stricily neutral configurations, i.e.

$$
\begin{equation*}
\sum_{i}(m(i)+\Phi(i))=0 \tag{0}
\end{equation*}
$$

The propagator $D(i-j)$ is the latice coulomb Green's function and in $2 d$ has the asymptotic behavior

$$
\begin{equation*}
D(i-j) \sim \log \mid j-j t+\pi / 2 \tag{4.24}
\end{equation*}
$$

where $\pi^{2} / 2$ provides an effective chemical potential for the vortices m(i).

Therefore frustrations in the XY modet map into fractionally charged impurities in the coulonib gas.

(C) Energetics of Frustratious

Consider two frustrations (charges) located at dual sites i and j with strength $\phi_{i}=q$ and $\Phi_{\underset{\sim}{j}}=-q$.

At low temperatures, $\operatorname{ta} 2 \mathrm{~d}$ Coubomb gas is a dielectric [25] (a dilute gas of

interaction renormalized by dielectric constant given by [26]

$$
\begin{equation*}
\varepsilon=1+8 \pi / \mathrm{K}_{l} \exp \left\{-2 \mathrm{~K}_{/ j}\right\}, K_{l} \gg 1 \tag{4.25}
\end{equation*}
$$

For the single fristration, the excess of free energy is iogarithmically divergent and excludes its existence at low temperatures.

On the other hand, at high temperatures, the $2 d$ Coulomb gas is a plasma and we expect Debye sereening to take place. Therefore, the impurities interact via a short range screened Yukawa potential and the excess free energy of an isolated frustration is now finite. The excess free energy of a single frustration at high temperatures is easily computable in the low temperature expansion of the dual (surface roughening) modet.
(D) Gauge Invariant Corretation Functions

As in the Ising model, the spin-spin correlation function is distorted by the presence of frustrations. We define the gauge invariant correiation function for this model $\left\langle\mathrm{S}_{\mathrm{i}} \mathrm{S}_{\mathrm{j}}\right\rangle{ }_{\mathrm{T}}^{\mathrm{ij}}$ as

$$
\begin{equation*}
\left.\left\langle\mathrm{S}_{\mathrm{i}} \mathrm{~S}_{\mathrm{j}}\right\rangle \mathrm{\Gamma}_{i j}=\left\langle\mathrm{S}_{\mathrm{i}} \mathrm{AH} \mathrm{U}_{\mathrm{ik}}^{*}\right) \mathrm{S}_{\mathrm{j}}^{*}+h . c .\right\rangle=\left\langle\cos \left(\theta_{\mathrm{i}}-\theta_{\mathrm{j}}-\sum_{\Gamma(i, j)} \psi_{\mathrm{ik}}\right)\right\rangle \tag{4.26}
\end{equation*}
$$

where $\sum_{\Gamma^{\prime}\left(c_{i j}\right)}$ means the summation of the ψ variables along all links on the path $\Gamma(i j)$ between sites \mathbf{i} and \mathbf{j}.

Just as in the Ising medel, this correiation function is path dependent. Consider two different paths $\Gamma_{1}(i j)$ and $\Gamma_{2}(i j)$ such that inside the rea enclosed between them there are frustrations of total strength $2 \pi \mathrm{Q}$. Then

$$
\begin{equation*}
\sum_{l_{i}^{\prime}(i, j)} \psi_{1 \mathrm{k}}=\sum_{\Gamma_{2}^{\prime}(i, j)} \psi_{(\mathrm{k}}+2 \pi \mathrm{Q} \tag{4.27}
\end{equation*}
$$

Thus, the phase of the cosine in (4.26) is shifted by $2 \pi \mathrm{Q}$. When $\mathrm{Q}=1 / 2$, this result gives the usual (-1) factor that we obtained in the $2 d$ Ising model.

For the pure $X Y$ system, at low temperatures, there is strong evidence that the two

of frusirations on the corelation function, we go to the Coulomb gas picture which gives (see Appendix B).

where the left hand side averages are taken in the $X Y$ model and the right hand side in the Coulomb gas.

The angle $\theta(\mathrm{j}-\mathrm{j})$ is the polar angle of the vector $\mathrm{j}-\mathrm{j}$, where j and j are the positions of the correlated spin and the frustration and $[\theta(\mathrm{j}-\mathrm{i})-\theta(\underset{\sim}{\mathrm{j}}-\mathrm{j})]_{\Gamma}$ is the angular paralax of the frustration (or vortex) as seen from the ends of the path Γ [23,27]. The rules for computing these paralaxes are given in Appendix B. The fact that the gauge invariant correlation function is path dependent resides entire:y in the way the paralaxes are computed. For instance, if a frustration Q bies to the right of a path and to the left of one another, the argument of Eq. (4.28) differs by $2 \pi Q$ between both paths. The reason is that the paralax is spaned counterclockwise in the first case and clockwise in the second (see Fig. 14).

For instance, let us compute the spin correlation function in the presence of two frustrations q and -q (Fig. 14). At very low temperatures, the leading term (all m=0) gives the resuit

$$
\begin{equation*}
\frac{\left\langle\cos \left(\theta_{R}-\theta_{0}-\sum_{\Gamma\left(g_{0}\right)} \mathcal{F}_{k}\right)\right\rangle_{k}\left\{\tilde{\tau}_{2}\left(\frac{1}{k}\right)=1, \overrightarrow{2}\left(-\frac{1}{2}\right)=-1\right\}}{\left\langle\cos \left(\theta_{k}-\theta_{0}\right)\right\rangle_{k_{e}}}=\cos (+7 \omega) \tag{4.29}
\end{equation*}
$$

Thus, the correlation furction has the asymptotic behavior (R large)

$$
\begin{aligned}
& \left\langle\cos \left(\theta_{r_{5}}-\theta_{0}\right)\right\rangle_{k_{k}} \\
& R^{\left(\frac{1}{2 \pi} x_{i}\right)}
\end{aligned}
$$

For $R \gg d$, we can approximate $\omega \simeq \pi / 2-d / R$. If we confine ourselves to the case $q=\mathscr{2}$ (flipped bonds) then Eq. (4.29) becomes $\left\langle\cos \left(\theta_{\mathrm{R}}-\epsilon_{\mathrm{O}}^{-\Gamma} \psi\right)\right\rangle \mathrm{K}_{l}\{\mathrm{q},-\mathrm{q}\}=(-1)$ cont. $\left.\left[1-1 / 2(4 \mathrm{q} \mathrm{d} / R)^{2}\right] / \mathrm{R}^{(2 \pi K} /\right)^{-1}$

Again, as in the ling case, we pick up a (-1) in front of the gauge invariant correlation function signaling the existence of frustrations in the system.

Finally, it is interesting to see what the $X Y$ model with all plaquettes frustrated looks like. In the Coulomb gas representation, this means studying system with charged impurities at every site. One system with well behaved energetics is a "salt-crystal" with an impurity charge q on one sublatice and $-q$ one the other (Fig. 15). The ground state (zero temperature) configuration has no vortices present (all $m=0$). When $q=1 / 2$, though, there is another state degenerate with this one: $m=1$ at all dual sites for which $q=-1 / 2$ and $m=-$ 1 when $q=1 / 2$. This has the effect of shifting one sublattice into the other. Villain has studied this model with $q=1 / 2$ (the "odd model") and has also found this double degeneracy.

V. THE 3 DUHWSIONAL XY SDM GLASS

(A) Frustrations in the $3 \mathrm{~d} X Y$ model

The definition of the 3 dimensional $X Y$ spin glass follows naturally from its definition in 2 dimensions. The different dimersionality, however, changes the structure of the frustrations as well as the propertie:. of the dual models.

To begin with, let us consider the frustration network for this model. As in the 3 d Ising model, frustrations arrange themselves into spatial networks. The reason is that the frustration field in 3 dimension is a pseudavector, as follows from the definition (4.12)

$$
\begin{equation*}
2 \pi \bar{S}_{\mu v}(i)=\Delta_{\mu} \psi_{v}(\forall)-\Delta_{v} \Psi_{j}(i) \tag{4.12}
\end{equation*}
$$

This relationship also shows that the frustration field obeys a constraint, which is analogous to the one we discassed in section 111 . Eq. (4.12) makes $0_{\mu \nu}$ (i) the circutation of ψ_{μ} around the plaquette. In 3 d we can describe this circulation as a pseudovector, i.e., the flux of the field strength of the gauge variable ψ_{μ} though tive plaquette. Therefore, we can define a pseudovector α, which lives on the dual link piercing the plaquette, and describes the direction of the frustration flux across the plaquette, as

$$
\begin{equation*}
\varphi_{\alpha}(i) z^{1}!2 \varepsilon_{\alpha \mu \nu} \Phi_{\mu ;}(\mathrm{i}) \tag{5.1}
\end{equation*}
$$

where (i, α) is the link dual to the plaquetic $(\mathrm{i}, \mu v)[27]$. From Eq. (4.12) we see that $\varphi_{\alpha}(\mathrm{i})$ is just the curl of $\psi_{\mu}(i)$

$$
\begin{equation*}
2 \pi \varphi_{c \gamma}(\mathrm{i})=\varepsilon_{\alpha \mu \nu} \Delta_{\mu} \psi_{\nu}(\mathrm{i}) \tag{5.2}
\end{equation*}
$$

This expression has the same form as the megnatic field of electrodyramics. Notice that since $\varphi_{\alpha}(i)$ is a curl it is diverence free

$$
\begin{equation*}
\triangle_{\alpha} P_{\alpha}(\mathrm{i})=0 \text { (mod. intager) } \tag{5.5}
\end{equation*}
$$

at each dual site i. This is the analog of the constraint we found in the 3 d fing model.
If we now intergret the 3 d XY model as a latice version of the Ginzburg-tandau theory
for a superconductor, we can regard these structures as tubes of frozen fracticnal maynetic flux.

Because of the continuous nature of the degrees of freedom of the $X Y$ model, many other types of configurations ara also possible. In particular, since the frustration flux Φ_{μ} is a continuous variable, the flux can spread out with the result that any configuration of magnetostatic fields is possible for the frustrations themseives. For instance, we can construct configurations for which $\Phi_{\mu} \sim 1 / 5^{2}$, which is analogous to a magnetic monopole and its associated strings.

Let us now perform the duality transformations to partition function of the random 3d $X Y$ model, which is given by

$$
\begin{equation*}
Z\left\{\psi_{\mu}(i)\right\}=\int_{0}^{2 \pi} \Phi \theta \exp \left\{k_{i} \sum_{(i, \mu)} \cos \left(\Delta_{\mu} \theta(i)-\psi_{\mu}(i)\right\}\right. \tag{5.4}
\end{equation*}
$$

The procedure is essentially analogous to that we have already employed in the $2 d X Y$ case.

The first step is again a Fourier expansion of (5.4) per link. After integrating out the angular degrees of freedom $\theta(i)$ we are left with the constrained system

$$
\begin{equation*}
Z\left\{{\underset{\mu}{\mu}}^{(i)}\right\}=\sum_{\left\{L_{j}(i)\right.} \exp \left\{-\frac{1}{2 k_{L}} \sum_{(i, \psi)}\left[_{\mu}^{2}(i)\right\} \exp \left\{-i \sum_{(i, p)} L_{\mu}(i) Y_{\mu}(i)\right\} \prod_{i} \delta\left(A_{\mu} L_{\mu}(i)\right)\right. \tag{5.5}
\end{equation*}
$$

which is the same as (4.17). The differences, however, become apparent as soon as one solves the constraint condition. In this case, we obtain

$$
\begin{equation*}
I_{\mu}(\mathrm{i})=\varepsilon_{\mu \nu \lambda} \Delta_{\lambda} n_{\lambda}(\mathrm{i}) \tag{5.6}
\end{equation*}
$$

where the integer valued variables n_{λ} (i) reside on the links of the dual lathice. fherefore, after solving the constraint of Eq. (5.6), the normalized partition function (5.5) can be written as an expectation value of the dalat system, which is a gauge theory with integer valued degrees of freedom $n_{\lambda}(i)$. Its partition function is given by

$$
\begin{equation*}
z_{\text {gauge }}=\sum_{\left\{n_{\mu}(\dot{j})\right\}} \exp \left\{-\left(\mathrm{l} / 2 \mathrm{~K}_{l}\right\} \sum_{\left\{\dot{G}_{\mu} \mu\right)}\left(\Delta_{\mu} \dot{\eta}_{\nu}(\mathrm{i})-\Delta_{\nu} \dot{\mathrm{T}}_{\mu}(\mathrm{i})\right)^{2}\right\} \tag{5.7}
\end{equation*}
$$

Then [28]

$$
\begin{equation*}
-\frac{Z\left\{\varphi_{\mu}(v)\right\}}{Z\left(\hat{Q}_{\mu}(i)+c\right)}=\left\langle\operatorname { e x f } \left\{\pi i \sum_{(i \mu,} n_{\mu}\left(s p_{\mu}(\dot{Q}\}\right\rangle_{q u y)}\right.\right. \tag{5.8}
\end{equation*}
$$

where the relationship between $\varphi_{\mu}(\underline{i})$ is given by (5.1). We should note that the partition function (5.7) is invariant under the local gauge transformation

$$
\begin{equation*}
\eta_{\mu}(\underset{\sim}{\mathrm{i}}) \rightarrow{\dot{\lambda_{\mu}}}_{\mu}(\mathrm{i})+\Delta \mathrm{S}(\mathrm{i}) \tag{5.9}
\end{equation*}
$$

Thus, Eq. (5.9) picks up a phase factor e $\mathrm{e}^{-2 \pi r i} \sum_{i} \mathrm{~S}(i) \triangle_{\mu} \mathcal{F}_{\mu}(\mathrm{i})$ under the transformation (5.9), and therefore it is not a gauge invariant amantitu

Hence, we can write

$$
\begin{equation*}
\left\langle\exp \left\{2 \pi i \sum_{(, \mu)} \pi_{\mu}(\dot{\varphi}) \hat{\rho}_{j}(\dot{i})\right\}\right\rangle=\underset{j \times v g e}{ } \tag{5.10}
\end{equation*}
$$

unless the frustration field obeys the constant ($\leqslant 3$). We should also note there is a fundamental difference between the constant (5.3) and the "neutrality" condition that we discussed in the section dealing with the $2 \mathrm{~d} X Y$ model. While the global symmetry involved in (4.20) can be broken by specifying suitable boundary conditions, the local symmetry (5.9) an never be broken. Thus Eq. (5.10) is an identity which is valid for all values of the coupling $\mathrm{K}_{/}$regardless of boundary conditions.

The partition function (5.8) can also be written in terms of the topological excitations of the ad XY model (quantized vortex strings) interacting via Coulomb interactions. Applying the Poison summation formula to (5.7) we obtain

$$
Z\left\{\hat{q}_{\mu}(i)\right\}=\sum_{\left\{m_{\mu}(i)\right\}}^{+\infty} \int_{-\infty}^{+\infty} \theta_{\mu} \theta_{\mu} \exp \left\{-\frac{1}{\left.2 k_{2}(i, \mu)\right\}} \sum_{\mu}\left(\theta_{\mu} \theta_{\nu}(i) \theta_{\mu} \theta_{\mu}(0)^{2}\right\} \exp \left[\sum_{(\mu)} i \pi_{i} \theta_{\mu}(c)\left(m_{\mu}(i)+\varphi_{\mu}(i)\right)\right\}\right.
$$

Where gauge invariance once again demand that (5.11) vanish tries the following
constraint is satisified

$$
\begin{equation*}
\Delta_{\mu}\left(\varphi_{\mu}(\mathrm{i})+\eta_{\mu}(\mathrm{i})\right)=0 \tag{5.12}
\end{equation*}
$$

Pefforming the integrals in Eq. (5.11), we obtain [29]

where $Z_{S W}$ is a spin wave partition function and the summation is restricted to those configurations which satisify (5.12), and in 3 dimensions the Coulomb lattice propagator $D(\underset{\sim}{i-j)}$ has the asymptotic form

$$
\begin{equation*}
\left.\mathrm{D}(\mathrm{i}-\mathrm{j}) \sim-(1 / / \mathrm{i} \sim \mathrm{j})^{2}\right)+ \text { const. } \tag{5.14}
\end{equation*}
$$

In the absence of frustrations, the constraint (5.12) requires the topological excitations of the $3 \mathrm{~d} X Y$ model to from closed loops. When frustrations are present and $\Delta_{\mu} \varphi_{\mu}(\mathrm{i})=$ integer, at a point one can have a moropole at that point and a vortex string that can begin (or terminate) there. This situation has already bien discussed by Einhorn and Savit [21].
(B) Energetics of Frustrations

(i) Low Temperatures

Consider first the excess free energy associated with a vosed tube of frustration flux, analogons to the configuration we have already discussed in the $3 d$ Ising model.

At low temperatures, the representation (5.11) is most convenient. The leading contribution to the free energy (all $\left.m_{\lambda}(i)=0\right)$ is given by Eq. $5-13$ and 5.14 as

$$
\begin{equation*}
\Delta F\left\{\varphi_{\lambda}(i)\right\}=-\frac{\pi}{2} \sum_{i, j+\lambda} \varphi_{\lambda}(i) \frac{1}{|i-j|} P_{\lambda}(\underline{j}) \tag{5.15}
\end{equation*}
$$

$$
\begin{equation*}
\Delta F=\text { const } Q^{2} R \log R+O(R) \tag{5.16}
\end{equation*}
$$

where ${ }^{-}$is the frustration flux in the tube.

The result (5.16) has a weaker dependence in R than the area law we found in th 3 d Ising model. The RbogR behavior arises from the fact that $X Y$ rotators can always relax continuously around a frustration tube.

(ii) High Tenperatures

A convenient representation to calculate the high temperature properties of the $X Y$ model is the constrained system described by the partition function

The integer valued yariable $l_{\mu}(\mathrm{i})$ lives on the (i, μ) lirik of the original latice and $\psi_{\mu}(i)$ is the gatige field angle. Therefore, to study the high temperature (K_{l}, mall) behavior of the $X Y$-Villain model in the presence of frustrations is equivalent to studying the constrained model (5.17) at low temperature ($1 / \mathrm{K}_{\boldsymbol{l}}$ large).

The lowest energy excitations of this model are elementary plaquettes with $l_{\mu}=1$ or -1 around the plaquette. The leading term in the low temperature expansion of (5.15) gives
where $\Phi_{\mu \nu}(i)$ is defined in Eq. (4.12). Let es look at the configurations of frustrations we examined at low temperatures. Consider a closed tube of frustration flax of strength Q and permeter lengh 1 . For this case (5.18) sives an exees; free energy

$$
\Delta F=\frac{2}{K_{l}}\left(1 \cdot \cos 3 \pi \hat{-42-} L \exp \left[-\frac{2}{k_{l}}\right]\right.
$$

$$
\text { if } L \mathrm{e}^{-2 / \mathrm{K}_{1}} \ll 1
$$

As in the 3 d Using model, we get a perimeter law.

Conchuding Remarks

Let us summarize the results of the above sections.

In two dimensions, at low temperatures, Ising frustrations have a linear interaction energy; XY frustrations, logarithmic. At high temperatures large spin fluctuations "screen" the frustrations and we have exponentially damped interactions. In both models frustrations decrease the magnitude of the spin-spin correlations, as expected.

In three dimensions the constraints require the frustrations to form divergenceless configurations: closed tubes in the Ising model and more general spread flux configurations in the XY model. At low temperatures we have an area law (L^{2}) for an Ising tube, $\mathrm{L} \log \mathrm{L}$ for the $X Y$ tube. At high temperatures fluctuations give a perimeter law (L) for both cases.

We would like to stress once again the importance of studying gauge invariant quantities. In particular, the gauge invariant correlation function emerges naturally as the correlation function to be studied when relevant disorder is present in the system.

Finally we observe that frustrations can be regarded as fractional topological excitations or merons of each model. In two dimensions a single frustration is a disorder variable in the sense that it breaks the symmetry of the dual model.

In three dimensions the situation is somewhat different due to the existence of constraints on the possible configurations of frustrations. In any case, it is always possible to construct a frustration network which behaves as a disorder variable in the sense that it has a non-vanishing expectation value in the disordered phase.

ACKNOWLEDGEMENTS

In elaborating these ideas we have profited from useful conversations with Dr. J. Hertz, Dr. L. P. Kadanoff, and Dr. L. Susskind.
E. F. and S. S. wish to thank L. Susskind and J. Kogut for the support and encouragement received while this work was performed.
5. S. would like to thank SLAC for their kind hospitality.

This work was partially supported by the National Science Foundation and the Department of Energy.

APPENDIX A: DUALITY RELATIONS FOR THE GAUGE INVARIANT SPIN-SPIN CORRELATION FUNCTIONS IN THE PRESENCE OF FRUSTRATIONS: USING MODEL $(\mathrm{d}=2,3)$

The gauge invariant spin-spin correlation function $\left\langle\sigma_{i}(\Pi A) \sigma_{j}\right\rangle$, in the $\sigma=1$ gauge, can be written as

We want to derive a duality relation for (2.21) - (3.9). The first step is to bring all the A variables into the exponentials. The following identify is useful for that purpose.

$$
A e^{B A}=i e^{\left(B-i \frac{\pi}{2}\right) A}
$$

Let us define a shifted link coupling $K_{\ell}(\Gamma)$ along the path Γ.

$$
\begin{align*}
& k_{i}\left(l_{i T}\right)=\left\{\begin{array}{lll}
k_{i} & ; & i \in \Gamma_{J} \\
k_{i}-i \pi / 2 & ; & \ell \notin \Gamma_{i J}
\end{array}\right. \tag{AR}\\
& k_{p}\left(\Phi_{i}\right) \equiv k_{p} \Phi_{i} \tag{A.3}
\end{align*}
$$

Define R to be the distance (= number of links) between sites i and j : $R=|i-j|$. With the definitions given above, the gauge invariant correlaton function reads (for finite K_{p}):
which turns out to be equal to

A.I Two Dimensions

In 2-D the duality relation takes the form (see Eds. (2.5) - (2.10))
where $\left\{s_{\underset{\sim}{i}}\right\}$ are Ising spins residing at the sites $\underset{\sim}{i}$ of the dual square lattice. $K_{\ell}^{*}(\mathrm{~F})$ and $H^{*}\left(\Phi_{i}\right)$ are defined as

$$
\begin{align*}
& k_{i}^{*}(\Gamma)=-\frac{1}{2} \ln \tan k_{p}(\Gamma) \\
& H^{*}(\Phi)=-\frac{1}{2} \ln \tanh k_{p}(\Phi) \tag{A.7}
\end{align*}
$$

Remember that K_{ℓ}^{*} and K_{ℓ} follow the same duality relationship. Since

$$
\begin{equation*}
i \cosh \left(\beta-\frac{i \pi}{2}\right) e^{\frac{1}{2} \ln \tanh \left(\beta-\frac{i \pi}{2}\right)}=\cosh \beta e^{\frac{1}{2} \ln \tanh \beta} \tag{A.8}
\end{equation*}
$$

The duality relations (A.7) together with the fact that

$$
\begin{equation*}
\tanh \left(\beta-\frac{i \pi}{2}\right)=(\tan \beta)^{-1} \tag{A.10}
\end{equation*}
$$

lead us to the conclusion that the link dual couplings $K_{\ell}^{*}(I)$ satisfy

$$
k_{i}^{*}(\Gamma)=\left\{\begin{array}{lll}
-k_{n}^{*} & i f & 2 \in \Gamma \tag{A.11}\\
k_{n}^{*} & \text { if } & i \neq \Gamma
\end{array}\right.
$$

We conclude that the string of gauge variables IA transforms into a string of flipped dual bonds (Fig. 8). The flipped dual bonds are those which are pierced by the string.

We now return to the constrained situation $K_{p} \rightarrow \infty$. Thus we set $H^{*}=0$. The correlation function, in the dual system (with a dual string of flipped bonds), is written as

We now proceed to write (A.12) in a gauge invariant manner.

Define $A_{\underset{\sim}{j}}$ to be the dual gauge variable of dual link $\underset{\sim}{i j}$. Then (A.12) holds for the configuration

$$
Q_{i j}=\frac{K_{i}^{*}(F)}{k_{i}^{*}}
$$

Introducing strings of A 's between the s variables pairwise, Eq. (A.12) can be written (for this configuration of A's)
with the same conventions used for Eq. (2.22). Again n is the number of times the path I connecting the correlated spins i and j crosses the paths $\tilde{\Gamma}$ joining the frustrations. Eq. (A.13) is manifestly gauge invariant, Thus, from Eq. (2.1), we can write
where

$$
\tilde{\Phi}\left(i^{\prime}\right)=\left\{\begin{array}{lc}
-1 & i^{\prime}=i, j \\
& \vdots
\end{array}\right.
$$

A. 2 Three Dimensions

We have already pointed out in Section III that the 3-D Ising model is dual to the 3-D Ising gauge theory (Eq. (3.7)). Therefore, all the manipulations we have performed from Eq. (A.5) up to Eq. (A.12) can be paralleled here too. Thus, in analogy with (A.12) we can write

(A.15)
where

$$
K_{p}^{*}(r)= \begin{cases}-K_{p}^{*} & \text { if the plaquatte } p \text { is pierced by } r \\ K_{p}^{*} & \text { otherwise }\end{cases}
$$

Since frustrations come in tubes (see Section III) from Eq. (A.15) it follows that the gauge invariant spin-spin correlation function in the presence of frustrations dualizes into the loop integrals in the presence of a tube of overturned plaquette couplings. This tube begins and ends at the correlated spins and follows the path Γ of A variables.

APPENDIX B: DUALITY RELATIONS FOR THE GAUGE INVARIANT SPIN-SPIN CORRELATION FUNCTION IN THE PRESENCE OF FRUSTRATIONS: KY MODEL $(d=2,3)$

The gauge invariant function for an $X Y$ system is given by

$$
\begin{equation*}
C_{\Gamma}=\left\langle\operatorname { c o s } \left[\sum_{i, \mu)}\left(\Delta_{\mu} \phi \operatorname{sic}-\psi_{r}: i\right): s_{\mu}(i,]_{\left\{\theta_{\mu}(i)\right\}}\right.\right. \tag{B.1}
\end{equation*}
$$

where $\psi_{\mu}(i)$ are the gauge variables, $\phi_{\mu}(\underset{\sim}{i})$ is the frustration field $\left(2 \pi \phi_{\mu}(\underset{\sim}{i})=\varepsilon_{\mu \nu \lambda} \Delta_{y} \psi_{\lambda}(i)\right.$ and $s_{\mu}(i)$ is an integer variable which specifies the path Γ connecting the correlated spins, ie.,

$$
S_{\mu}(l)= \begin{cases}1 & \text { if }(i, \mu) \in \Gamma \tag{B.2}\\ 0 & \text { otherwise }\end{cases}
$$

The thermal average is taken in a fixed distribution of frustrations. So

$$
C_{\Gamma}=\frac{\operatorname{Re}_{e} \int \hat{\theta} \exp \left[i \sum_{i, \mu} s_{\mu}\left(\delta_{\mu} \theta(i)-\psi_{\mu}(i)\right] \exp \left[K_{i} \sum_{i, \mu)} \cos \left(\delta_{\mu} \theta(i)-\psi_{\mu}(i)\right)\right]\right.}{\int \varepsilon \theta \exp \left[K_{i} \sum_{\left(\xi_{j} ; i\right)} \cos \left(\theta_{\mu} \nu(i)-\psi_{\mu}(i)\right)\right]}
$$

The first step in the duality transformation for $a n$ XY model is to perform a Fourier expansion at each link. Further integration over the angular $X Y$ variable θ at each site leads to the existence of constraints in the transformed model. Within the Villain approximation the correlation function (B.3) takes the form
where $Z\left\{S_{\mu}\right\}$ is the partition function

$$
\begin{equation*}
\mathcal{Z}\left\{S_{\mu}\right\}=\sum_{\left\{L_{\mu}(i)\right\}}^{\infty} \exp \left\{-\frac{1}{2 \pi_{2}(i, \mu)} \sum_{i,}^{2}(i)\right\} \prod_{i}^{2} \delta\left(\hat{S}_{\mu}\left[\hat{z}_{\mu}(i)+S_{\mu}(i)\right]\right) \tag{B.5}
\end{equation*}
$$

These expressions are valid regardless of the dimensionality d of space. In fact, Jose, et al., (23) have obtained Equation (B.5) in their discussion of the correlation functions of the pure 2-D XY model. We follow closely their approach. Space dimensionality becomes important in solving. the constraints.

B. 1 Two Dimensions

In two dimensions the constraint that the integer valued link variables ℓ_{μ} (i) must satisfy

$$
\begin{equation*}
\Delta_{\mu}\left[Q_{\mu}(i)+S_{\mu}(i)\right]=0 \tag{B.6}
\end{equation*}
$$

can be satisfied if we write $\ell_{\mu}+S_{\mu}$ as a curl, i.e.

$$
\begin{equation*}
\ell_{\mu^{\prime}}(i)=E_{\mu v} \Delta_{v} \eta(i)+s_{\mu}(i) \tag{B.7}
\end{equation*}
$$

where the dual variables $n(\underset{\sim}{i})$ are the (integer valued) degrees of freedom of the (dual) surface roughening model in two dimensions.

Hence, Eq. (B.3), written in terms of the surface roughening variables $n(\underset{\sim}{i})$, reads

$$
\begin{aligned}
& 2 \pi f i j=\varepsilon_{\mu} A_{\mu} i_{\because} \therefore
\end{aligned}
$$

The partition function $Z_{S R}\left\{S_{\mu}\right\}$ represents a surface roughening model with all its integer variables shifted by one unit on those dual links perpendicular to the original path Γ. Defining the dual of the string variable $S_{\mu}(i)$ as

$$
\begin{equation*}
t_{\mu}(i)=\varepsilon_{\mu \nu} S_{\nu}(i) \tag{B,9}
\end{equation*}
$$

the partition function $2_{S R}\left\{t_{\mu} \underset{\sim}{(i)\}}\right.$ takes the form

$$
\begin{equation*}
Z_{S . R .}\left\{t_{\mu}(i)\right\}=\sum_{\{n(i)\}} \exp \left\{-\frac{1}{2 k_{2}} \sum_{i, j, \mu)}\left(\Delta_{\mu} T(i)+t_{\mu}(i)\right\}^{2}\right\} \tag{B.10}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
C_{\Gamma}=\left\langle\cos \left[\sum_{i} \operatorname{zin}(i) \psi(i)\right]\right\rangle_{s, k}\left\{t_{y}(i)\right\} \tag{B.11}
\end{equation*}
$$

For arbitrary boundary conditions, the frustration field $\phi(\underset{\sim}{2})$ must satisfy the "neutrality" condition $\sum_{i} \phi(\underset{i}{i})=0$ (mod. integer) (Eq. (4.21)).

From (B .II) we see that, through a duality transformation, shifted bonds are mapped into correlated dual variables and vice versa. We have already found this result within the Using model duality transformations.

Finally, we can perform a further duality transformation: the mapping to the Coulomb gas. The Poisson summation formula transforms (B.11) into the expression
and

In order to integrate out the \mathcal{X} variables, it is useful to expand the square and to rewrite $(B .12)-(B .13)$ in the compact form

where the source $J\{\phi\}$ is given by

$$
\begin{equation*}
J\{\varphi\}=2 \pi i\left(\varphi(\underline{i} ;+m t i)-\frac{1}{k_{t}} \Lambda_{\mu s}{ }^{+} \mu(\dot{G})\right. \tag{B.15}
\end{equation*}
$$

After performing the path integral, the expression between brackets in (B.lf) becomes
where $C_{S W}(\Gamma)$ is the spinwave result for the correlation function of the pure system

$$
\begin{equation*}
C_{\text {sin }}(P)=\exp \left\{-\pi k_{2} \sum_{\left(g_{i j}\right)} \Delta_{p} s_{\mu}(i) G^{\prime}(i-j) \Delta_{\nu} \Sigma_{y}(j)\right\} \tag{B.17}
\end{equation*}
$$

$Z\{\phi\}$ is the partition function of the Coulomb gas with impurities, $G(\underset{\sim}{i}-\underset{\sim}{j})$ is the lattice Coulomb propagator and

$$
\begin{equation*}
G^{\prime}(i-j)=G(i-i)-G(0) \tag{B.18}
\end{equation*}
$$

The reduced lattice Coulomb propagator $G^{\prime}(\bar{r})$ is asymptotically equal to $\log |\bar{r}|$ $(d=2)$. Following JKKN ${ }^{(23)}$ we make use of the Cauchy Riemann equations for $G^{\prime}(z)$.

$$
\begin{equation*}
\varepsilon_{\mu \nu} \Delta_{\nu}^{j} \operatorname{Re}_{c} G^{\prime}(i-j)=-\Delta_{\mu}^{j} I_{m} G^{\prime}(i-j) \tag{B.19}
\end{equation*}
$$

We also define the angle $\theta(\vec{r})$

$$
\begin{equation*}
\theta(\vec{r})=\operatorname{Im} G^{\prime}(\vec{r}) \tag{B.20}
\end{equation*}
$$

which represents the angular position of the vortex or frustration respect to the integration site j. The branch of the logarithm is chosen in such a way that θ is measured accordingly with the usual convention from the positive X axis and ranges between 0 and 2π. Thus,

$$
\begin{aligned}
& =-\sum_{j} \Delta_{v}^{j} I_{m} G^{\prime}(i-j) S_{v}(j)= \\
& =-[E-i j-E i-i j
\end{aligned}
$$

where the expression between brackets is the parallax angle of the frustration (or vortex) as seen from both ends of the path Γ. However, it has to be specified whether this angle is being scanned clockwisely or counterclockwisely. Such a specification depends on the position of the path (ie., is path dependent). Consider the case in which the path is a straight line r_{0} from site i to site j. Then for all frustrations lying to the left (right) of the path, the parallax angle has to be computed clockwisely (counterclockwisely). For an arbitrary path Γ the rule goes as follows: Compute first the parallax for the straight path Γ_{0}. Then compute the closed line integral (B.20) along the path $\Gamma+\Gamma_{0}^{-}$(where Γ_{0}^{-}is the negatively oriented path Γ_{0}). If the frustration is left inside the closed path and the orientation of that path is positive (negative) then the line integral (B.20) along an arbitrary path Γ is shifted by $2 \pi(-2 \pi)$. For a pure vortex, all these considerations are unimportant since they imply shifting the argument of (B.15) by $2 \pi \mathrm{~m}$. Since frustrations are fractional vortices, these shifts are detectable. In fact, they are in analog of the $(-1)^{n}$ factor already found in the $2-D$ Ising model.

Finally, the gauge invariant correlation function $C_{p}\{\phi\}$ in the coulomb gas representation is
where the numerator is averaged in a Coulomb gas with a fixed distribution of impurities (frustrations) $\phi(i)$ and the denominator is the pure Coulomb gas. The sites i and j are the endpoints of the path r. Notice that since the denominator is evaluated in the pure Coulomb gas, it is path independent.

B. 2 Three Dimensions

In three dimensions the constraint

$$
\begin{equation*}
\Delta_{\mu}\left(L_{\mu}(i)+S_{\mu}(i)\right)=0 \tag{B.23}
\end{equation*}
$$

can be solved by requiring $\ell_{\mu}+S_{\mu}$ to be a curl, ie.,

$$
\begin{equation*}
Q_{\mu}(i)=\varepsilon_{\mu \nu \lambda} \Delta_{v} r_{\lambda}(i)-s_{\mu}(i) \tag{B.24}
\end{equation*}
$$

where the dual variables $n_{\mu}(\underset{\sim}{(i)}$ are the integer valued degrees of freedom of the (dual) gauge theory in three dimensions.

Hence, Eq. (B.3), written in terms of the (dual) gauge variables $n_{\mu}(\underset{\sim}{\text { (})}$, reads

where

$$
\begin{equation*}
t_{\mu \nu}(\underline{i})=\varepsilon_{\mu \nu \lambda} s_{\lambda}(\underline{i}) \tag{B.26}
\end{equation*}
$$

and $Z_{G T}\left\{t_{\mu \nu}\left(\frac{i}{\sim}\right)\right\}$ represents the partition function of the (dual) gauge theory with a tube of shifted plaquette interactions.

$$
\mathcal{Z}_{G . \pi}\left\{t_{\mu \nu(i)}\right\}=\sum_{\left\{n_{\mu}(\dot{i})\right\}} \exp \left\{-\frac{1}{2 n_{2 i, k}} \sum_{i, k}\left\{\Delta_{\mu} n_{\nu}(i)-\Delta_{\nu} n_{\mu}(i)-t_{\mu, i n}(i)\right)^{2}\right\}
$$

Thus, the gauge invariant correlation function is

$$
\begin{equation*}
C_{\Gamma}\left\{\varphi_{\mu}(i)\right\}=\left\langle\cos \left\{2 \pi \sum_{\left(i_{i} \mu\right.} n_{\mu}(i) \varphi_{\mu}(i)\right\}\right\rangle_{G \cdot T}\left\{t_{\mu \mu}(i)\right\} \tag{B,28}
\end{equation*}
$$

In the gauge theory picture, the line $S_{\mu}(i)$, defining the path of the correlaLion function in the $3-\mathrm{D} X \mathrm{X}$ model, is just a line (tube) of external magnetic flux "injected" in the system by sources residing at the endpoints of the path Γ. Here again the frustration field is constrained by the condition $\Delta_{\mu} \phi_{\mu}(\underset{\sim}{i})=0$ (mod. integer) .

To write Eq. (B.28) in terms of the topological excitations of the 3-D XY model, we use once again the Poisson summation formula

$$
\begin{align*}
& Z_{G . T}\left\{t_{\mu \nu}(i)\right\} C_{\Gamma}\left\{P_{\mu}(i)\right\}= \\
& =\operatorname{Re} \sum_{\left\{m_{\mu}(\underline{i})\right\}} \int_{-\infty}^{+\infty} \sum_{\mu} \exp \left\{2 \pi i \sum _ { (i , \mu) } \left(\hat{i}_{\mu}\left(\dot{2}+\operatorname{mon}_{\mu}\right) x_{\mu}(0\}\right.\right. \\
& \times \exp \left\{\frac{1}{2 K_{2}} \sum_{i=1}\left\{\Delta_{4} x_{4}(6)-\Delta_{x} x_{\mu}\left(\dot{s}-t_{\mu}(s)\right\}^{2}\right\}\right. \tag{B.29}
\end{align*}
$$

Expanding the square in the exponent we obtain

(B. 30)
where the current $J_{\mu}(\underset{\sim}{i})$ is given by

$$
\begin{equation*}
J_{\mu}(i)=2 \pi i\left(Q_{\mu}(i)+m_{\mu}(i)\right)+\frac{1}{k_{\mu}} \Delta_{\nu} t_{\mu_{v}}(i) \tag{B.31}
\end{equation*}
$$

Since $t_{\mu v}(\underset{\sim}{i})$ is an antisymmetric tensor, the last term in the current does not affect the constraint equation (5.11)

$$
\begin{equation*}
\Delta_{\mu} J_{\mu}(\underline{i})=0 \tag{5.11}
\end{equation*}
$$

Hence, we obtain

$$
\begin{aligned}
& \left.\mathcal{Z}_{G_{0},}\{ \}_{\mu},(i)\right\} C_{p}\left\{\hat{Y}_{\mu}(i)\right\}=
\end{aligned}
$$

where $G^{\prime}(\underset{\sim}{i}-\underset{\sim}{j})$ is the reduced Coulomb lattice propagator in three dimensions. and the summation is restricted to those configurations which obey Eq. (5.11). After some algebra, Eq. (B. 30) takes the form

where the averages are taken in the gas of topological excitations with impurities (numerator) and without impurities (denominator).

The spin-spin correlation function of the pure system is given by

$$
C_{\Gamma}\left\{\varphi_{\mu}(i)=0\right\}=C_{s w}\left\langle\cos \left\{\frac{1}{2} \sum_{\dot{i} j} m_{\mu}(i) G^{\prime}(i-j) \varepsilon_{\mu \nu, i} \Delta_{\nu}^{j} \varepsilon_{\lambda} i j d\right\}\right\rangle_{i \cdot e}\left\{F_{\mu}(i)=0\right\}
$$

The factor $C_{S W}$ is the spinwave approximation to the correlation function

$$
\begin{equation*}
C_{s y,}=e_{x p}\left\{-\frac{1}{2 k} \sum_{i j} A_{x} E_{x}(i) G^{\prime}(6-j) A_{p} E_{p}(i d\}\right. \tag{B.35}
\end{equation*}
$$

At large distances, $c_{S W}$ is given by

$$
\begin{equation*}
C_{s w} \simeq \exp \left\{\frac{1}{4 \pi k_{2} R}\right\} \tag{B.36}
\end{equation*}
$$

References

1. D. C. Mattis, Phys. Lett. 56A, 421 (1976) and J. M. Luttinger, Phys. Rev. Lett. 37, 778 (1976). A good review of the theoretical and experimental situation in spin glasses can be found in "Proceedings Second International Conference on Amorphous Magnetism," edited by R. A. Levy and R. Hasegawa (Plenum, N. Y. 1977).
2. P. W. Anderson (private communication).
3. G. Toulouse, Commun. Phys. 2, 115 (1977).
4. Dzyaloshinkskii and Volovik (preprint 1978).
5. a) K. G. Wilson, Phys. Rev. Di0, 2445 (1974).
b) J. Kogut and L. Susskind, Phys. Rev. D11, 395 (1975).
c) B. Baaquie, SLAC preprint (1977).
6. The analogy is even stronger in the case of the 3d $X Y$ model.
7. L. P. Kadanoff and H. Ceva, Phys. Rev. B11, 3918 (1971).
8. J. Villain, J. Phys. C10, 1717 (1977) and preprint (1977).
9. Up to any formal changes in notation, the results of this section are valid for any magnetic system. Noteworthy differences will be made explicit in the text.
10. We sometimes write Eq. (1.3) as $G_{\tau}(\sigma, A)=(\tau \sigma, \tau A \tau)$
11. S. Kirkpatrick, Phys. Rev. B16, 4630 (1977).
12. In general, we shall write $\left\langle\sigma_{i} \sigma_{5}\right\rangle_{\Gamma(i, y)}=\left\langle\sigma_{i}\left(\prod_{\Gamma(i \mathrm{i})}\right) \sigma_{J}\right\rangle$
13. G. Grinstein, A. N. Berker, J. Chalupa and M. Wortis, Phys. Rev. Lett. 36, 1508 (1976).
14. F. S. J. Wegner, J. Math. Phys. 12, 2259 (1971).
15. R. Balian, J. M. Drouffe and C. Itzykson, Phys. Rev. D11, 2098 (1975).
16. Barry M. McCoy and Tai Tsun Wu "The Two Dimensional Ising Model" Harvard University Press (Cambridge, MA 1973).
17. a) M. E. Fisher and A. E. Ferdinand, Phys. Rev. Lett. 19, 169 (1967).
b) H. Yang, M. E. Fisher and A. E. Ferdinand, Phys. Rev. B13, 1238 (1976).
c) H. Yang, Phys. Rev. B13, 1266 (1976).
18. E. Fradkin and L. Susskind (preprint 1977).
19. S. Elitzur, Phys. Rev. D12, 3978 (1975).
20. To simplify the formatism, we set $U_{i J}=U_{J i}^{*}$, which in turn implies $\Psi_{i J}=-\Psi_{J_{i}}$
21. R. Savit, Phys. Rev. B17, 1340 (1978), and M. Emhom and R. Savit (preprint 1978).
22. We follow the notation of ref. 21.
23. J. José, L. P. Kadanoff, S. Kirkpatrick and D. R. Nelson, Phys. Rev. B16, 1217 (1977).
24. a) S. T. Chui and J. D. Weeks, Phys. Rev. B14, 4978 (1976).
b) H. J. F. Knops, Phys. Rev. Lett. 39, 776 (1977) and V. J. Emery and R. H. Swendsen, Phys. Rev. Lett. 39, 1414 (1977).
25. a) E. H. Hauge and P. C. Hemmer, Phys. Norv. 5, 209 (1971).
b) J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973).
26. J. Zittartz and B. A. Huberman, Solid State Commun. 18, 1373 (1976).
27. A vector φ_{α} related with a tensor $\phi_{\mu \nu}$ through Eq. (5.1) is called the dual of the tensor. This geometrical duality is related to but is distinct from the algebraic duality we have been discussing.
28. Strictly speaking, it is necessary to choose a gauge if we want to identify the partition function of the XY model with that of the gauge theory. The difference with the gauge non-fixed partition function in the (infinite) number V^{N}, where V is the volume of the gauge group and N the total number of sites. All our arguments invoking gauge invariance can be rephrased as statements concerning independence under gauge fixing. Despite these considerations statements like Eq. (5.8) remain valid.
29. To perform this gaussian integrat it is necessary to fix a gauge. This is discussed by T. Banks, R. J. Myerson and J. Kogut, Nuclear Physics, B129, 493 (1977).

FIGURE CAITIONS

Fig. $1^{\text {- }}$ Location of the degrees of freedom of the spin glass system. Here the dark dots represent the spin (site) variables σ and the crosses represent the link (gauge) variables A.

Fig. 2 A gauge transformation. Dark circles are spins pointing up and white circles are spins down. The signs on the links denote the values of the link variables A.

Fig. 3 A frustrated plaquette.

Fig. 4 (a) One flipped bond creates two frustrations.
(b,c) Two separated frustrations are created by a dual string of flipped bonds between them. The broken line is the dual string. The strings shown in (b) and (c) are equivalent.
(d) A closed dual string of flipped bonds is a closed domain wall. It does not create frestrations.
(e) An infinite domain wall is a dual string running from one side of the boundary to one another.
(f) A single frustration has a infinite string of flipped bonds.
(g) Four frustretions created by 2 flipped bonds. The orientation of the central spin (dark dot) is the degeneracy of the ground state.

Fig. 5 A gauge invariant correlation function is defined for two lattice sitcs (\mathbf{i} and \mathbf{j}) and the path $\Gamma_{i j}$ of links joining both sites. There is a σ variable at each end and an A variable at each link of the path $\Gamma_{i j}$.

Fig. 6 Two differens paths between stes i and j. The correlation function for both paths differ in a factor $(-1)^{N}$ where N is the number of frustrations within the dashed area.

Fig. 7 (a) The gauge invariant spin-spin correlation function. The correlated spins reside at sites i and j, and $\Gamma_{(i j)}$ is the path of the string of gauge variables A. The frustrations, here denoted by crosses, are linked together by strings with paths Γ.
(b) The dual transformed of the situation described in Fig. (7.a). Correlated spins and frustrations exchange their roles. The string r intersects the paths r three times: the correlation function picks up a minus sign (eq. 2.22).

Fig. 8 A frustration lying between two correlated spins. The dark links represent the flipped bonds we choose as a representation of the frustration (cross). The broken line is the path Γ of link variables.

Fig. 9 Two nearest neighbor frustrations pierced by the string of link variables.

Fig. 10 Magnetization of a region between two frustrations. The situation is the dual of that depicted in Fig. 9.

Fig. 11 A cube and the six links dual to its faces.

Fig. 12 A closed tube of frustrated plaquettes. The broken line represents the loop of dual links involved in the loop integral (3.10).

Fig. 13 (a) Two face to face tubes frustrated paquettes bere represented by the cosed loop of dual link variables threading the paquettes together.
(b) When $R \ll d$ the minimal sufface spanned by the loons is the lateral surface (shaded in the figure).
(c) When $R \ggg$ d the minimal surface is the surface spanned by each loop independently.
(d) The minimal surface spanned by two orthogonal loops.

Fig. 14 The gauge invariant spin-spin correlation function in the presence of two frustrations (impurities) of strength q and $-q$. The paralax is 2ω. The dark line represents the slring of ga ge variables ψ.

Fig. 15 The "salt crystal". Each plaquette is frustrated. The strength is q. This is Villain's "odd model".

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

(a)

(b)

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

(b)
(a)

(c)

(d)

Fig. 13

Fig. 14

	-	+	-	+	-	
	+	-	+	-	+	
	-	+	-	+	-	
	+	-	+	-	+	
	-	+	-	+	-	
	+	-	+	-	+	

Fig. 15

[^0]: *Work supported in part by the National Science Foundation and the Department of Energy

