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Abstract 

We study random magnetic systems emphasizing the concept of gauge invariance and 

gauge invariant disorder (frustration) introduced by Toulouse and Anderson. We formulate 

our models in a gauge invariant manner and introduce gauge invariant correlation functions 

to isolate the effects of gauge invariant disorder. Specifically, we study the king and XY 

models in two and three dimensions in a frozen distribution of frustrations. Using duality 

transformations we obtain expressions for the energetics of frustrations and their effect on 

correlations. We study simple configurations of frustrations quantitatively. In addition we 

reformulate the quenching procedure in terms of frustrations. 
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0. INTRODUCTION 

Random magnets are. very complicated systems; Since the spin degrees of freedom 

interact with each neighbor through random bond interactions, naively it could be argued 

that all possible configurations of bonds are equally impcrtant. However, it is well known 

that there is a class of models, collectively known as Mattis models Cl], for which the 

randomness is trivial since it can be eliminated by a suitable redefinition of the spin 

variables. This situation led Anderson and Tolouse to the idea of relevant and irrelevant 

disorder. Anderson [Z] advanced the concept of frustration as a measure of relevant 

disorder and Toulouse [3] realized the existence of a local (gauge) symmetry of random 

magnetic systems at the microscopical level. . 

Once the existence of a local symmetry is recognized [4] it becomes apparent that 

there are certain configurations of bonds which cannot be transformed into that of a pure 

system by any redefinition of the spin and bond variables (gauge transformation). We say 

these configurations have frustration. 

The idea of frustration is that competing interactions in a random system can lead to 

configurations where not all the bond interactions can be simultaneously satisfied. In this 

situation, the ground state energy is always larger than in the “pure” system and the state is 

highly degenerate. 

The purpose of this paper is to present a systematic study of gauge symmetries in 

random magnetic systems and its consequences. In order to filter out relevant from 

irrelevant disorder, we make extensive use of the concept of gauge invariance. In fact, many 

of our ideas have been borrowed from lattice gauge theories studies [S]. 

in scctioli I, we shokv that the partition function of a nlagnet in a froren 
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configuration of bonds is gauge invariant. Then we conclude that only frustrations can 

change the nature of the phase transitions allowed for the system. In addition, we construct 

gauge i:variant spin-spin correlation functions. These correlation functions are defined 

along a path connecting the correlated spins and are path dependent. In fact, gauge 

invariant correlation functions along two different paths differ by the total amount of 

frustrations they encircle. ‘Hence, they provide a measure of the effect of the relevant 

disorder. This result is the analog of the Bohm-Aharonov effect in electrodynamics [6]. 

This path dependence is also closely related with the “fermionic” character of order and 

disorder variables, as discussed by Kadanoff and Ceva [7]. At the end of section I, we 

discuss the problem of quenching the frustrations, i.e. the averaging of the thermodynamic 

quantities over different configurations of bonds according with some probability weighting 

factors. It turns out that, when averaging gauge invariant quantities, frustrations behave as 

if they were an interacting system in thermal equilibrium with each other at an effective 

temperature. The classical interaction Hamiltonian can be calculated and turns out to be 

temperature dependent, The rest of the paper is devoted to the analysis of both the 

frustration network and the nature of their interaction in two and three dimensions. It 

should be mentioned that we make no attempt to study the possibility of a spin glass phase 

in any of the systems discussed below. 

. . 

Section II deals with the random two dimensional Ising model. By performing 

duality transformations, we derive a relationship between the energy associated with a frozen 

distribution of N frustrations and the N point correlatiqn function of the spins in the dual 

lattice. This result is analogous to results of [7]. We then use this relation to calculate 

explicitly the temperature dependence of the energy associated with having a single 

frustration and a pair of frustrated plaquettes in a sea of unfrustrated ptaquettes. It turns 

out that single frustrations cannot exist at low temperatures but it is eels)’ to create them in 

the paramngentic regime. For the case of a frustration ?;lir, we show that at low 

temperature their energq increases linearly with their separation, with a temperature 

dependent coefficient that me;lsurcs the line tension associated with the string that joins 

them. ‘l‘tiic confint‘menl picture is lost 31 the critical temperature. wticre “melting” of ttic 
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string leads to a finite energy for simple frustrations. Above T,, we show that this 

interaction is effectively screened by the rapid fluctuations of the spins of the lattice. Using 

again dt.@ity transformations, we compute the decrease in the effective magnetization of a 

trivally disordered Ising system brought about by the presence of frustrations. 

In section III, we study the 3d Ising model in a-frozen configuration of bonds. Here 

frustrations are never along but instead they arrange themselves into networks [3]. Using 

duality transformations, we then calculate the energy associated with a closed tube of 

frustrations and show that, at low temperatures, it is proportional to the area spanned by the 

tube, whereas in the paramagnetic phase, it becomes proportional to the length of such a 

tube. For interacting tubes, at low temperatures the tubes interact with each other through a 

linear potential at short distances which saturates at large separations. 

Sections IV and V deal with the XY model in two and three dimensions, respectively. 

In the two dimensional case, frustrations turn out to be equivalent to fractional impurities 

(vortices) in the 2d Coulomb gas. The particular case of half charges has been studied in 

detail by Villain [8]. As in the Ising case, we study the energetics of frustrations and the 

gauge invariant correlation function in both dimensionalities. 

A collection of appendices provide most of the technical manipulations we have used 

to derive duality transformations of gauge invariant correlation functions. 
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(A) Disordered Magnets and Gauge SymrWrits 
. . 

Cet us consider the problem of dcscrit,ing the behavior of a magnet in an arbitrary 

configuration of bonds. At first we will discuss frozen distributions of them, i.e. the bond 

distribuiion is held fixed and not allo,,::ed to fluctuate. The problem of quenching (i.e. the 

averaging of thermodynamic magnitudes over different distribution of bonds) will be 

discussed at the end of this section. 

To be more explicit, consider the case of a disordered [sing magnet in d dimensions 

[9]. This system consists of interacting Ising spin variables (Ti (ai=_+l) residing at the 

sites (i} of the lattice. The classical Hamiltonian is 

Iwhere K is the coupling (5=/3151) and the summation runs over nearest neighbor site:<. 

The variables A,j specify the distribution of bonds and reside at the links {i,j) of the 

lattice (Fig. 1). In general, the bo-ad variables {‘4i,} may bc arbitrary. However, +;e will 

only consider the case in which Aij=‘tl. Thus the kind of disorder .vV:lich may take place 

will grow from the competition between random ferrolnngnetic and antiferromagnetic 

interactions. 

We may ask how the thermodynamic quantities differ from one configuration of 

bonds to another. 

Consider the Hamiltonian (1.1) and single out a site i and ail the links emerging - 

from this site. Let us perform the !~c~?j transformation 

Aij + -Aij 

where ((i,j)) is the above mentioned set of links (Fig. 2). 

(1.2) 
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The Hamiltonian (1.1) is invariant under thii local tr:ln\fcii,n, :~cJ~J. 'bik!iWVCr, it is 

also invariant under the most general 101.~1 transformation of this type C((T,~) which can 

be constructed by an arbitrary combination of site transformations like (1.2). G{Ti) acts 

om thz?’ spins and bond variables as 

G(Ti}[loil;{A,jlI = Cf7iuLE;1TiAijTjlI (1.3) 

where 7;=*1 [IO]. The local symmetry we have just discussed is called a gauge symmetry, 

the transformations G(Ti} are gauge transformation and the A \*ariables are gauge 

variables. We shall see how this symmetry can be used to get information about order 

parameters, correlations, etc. 

As an example, consider how gauge symmetry works in an annealed spin glass. By 

an annealed spin glass we mean a system where the u’s and A’s are statistical variables to 

be averaged over at the same time. However, as is well known, this is an uninteresting 

system. In our “gauge language” this fact can be expressed as follows: the partition 

function of the annealed spin glass is given by 

Z annealed = c ev (1.4) 
Cd I/y 

t$C ui Aij uj) 
(in 

Suppose for the moment that we fix all the V’S to be 1. It is easy to set that there is 

no loss of generality involved in such a choice. III fact, for an arbitrary configuration of 

U’S and A’S [{ui){Aij)], we can always find a gauge transformation which maps this 

configuration to one another fo;. which all ui=l. In particular, if we choose for the gauge 

transformation defined in (1.3) 7i = ai, we get 

G(7i~ui);C(ui);{Ai,)1 = [~ll;f~iA,~uj~l = [{ t);(A\ij’)I (1.5) 

Since the Hnmiltonian (1.1) is gauge invariant, both configuratioric have the same 

energy and therefore give the same contribution to Z. Thus 

cc exp (K 
ibL\ ihi*) 

2 ‘Ti Aij “jj = 2” exp 152 Aij) 
<iY> <i;r> 

(1.6) 
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transformations. However, (1.6) is just the partition function of a system of indcp:ndent 

spins on the links interacting with an external uniform field K, which has a trivial 

solution. ./ 

r more interesting system is the frozen spin glass. In this case we will no longer 

consider the gauge variables on the same footing with the spin variables but we will first 

take the thermal average’ over CT, compute all interesting mabnitudes (free energy, 

correlation functions, mzignetization, etc.) in a given field of A’s, i.e. in a given 

distribution of flipped bonds. Later on we will average over distributions of gauge 

degrees of freedom according to some prescription. At first sight, it appears that the 

partition function in a given configuration of A’s, i.e. 

(1.7) 

depends on all the details of the configuration of the gauge fi4ds. However, consider two 

configurations {A} and (A’s), which are related through a gauge transformation, 

Z{A’ij) = 2 exp (K 2 Ci A’ij Oj) = 

i 3 si W> 

x, : f 

Vi) 
expiK/ziTiAijTigL= 

Cl> > 

c exp K, U’iAijaj’ s Z(Aij} 
413) 

(1.8) 

where a’i=ciTi. 

Thus, Z(A) is invariant under gauge transformations and hence Z(A) is not a 

functional of the configuration {A) itself but rather on those features of that 

configuration which do non change with a gauge transformation. 

(II) Fi-ustrrtti011s 

We now turn to the problem of describing the znuge n\~nriant properties of a 

configuration elf gauge degrees of freedom. For the tin,: being, we shall restrict ourselves 

to ~ystzril:, ‘iv i 1: ! ISiilg JCgVcc:; uf frC;l!olll (,:\,cr=+l). S:lCll varj;lXc; arc’ ClCiil~iltS ol‘ Chc Z2 
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group. L:i!,:r <IN. I~CC shall discuss corresponding generalizations to more complex systems 

like the XY spin glass (a model with U(1) degrees of freedom). 

T%begin with, notice that the product of A variables around a closed loop of links 

cgn the lattice is invariant under a gauge I.ransformation. In fact, this is the most general 

giyge invam quantity that can be constructed from the A’s alone. In pnrticulir, 

consider the smallest possible loop, i.e. the loop made of four links surrounding an 

elementary squal-e (“plaquette”) of the lattice. Since the value of the product of the A’s 

around each plaquette of the lattice is a characreristic of the con-figuration of A’s, which 

is invariant under gauge transformations, it is natur.11 to define a plaquette variable @ijkl 

such that 

. . 

(1.9) 

where ij,k and I label the corners of the plaquette ijkl. We say that there is a frustration 1 
locatej at a plaquette if cP=-1 at this plaquette. Sir;ce A2=1, the prod:.lct of the A’s around 

an arbitrary loop of the lattice is equal to the product of the Q’s for each plaquette 

enclosed by i!:~ loop. Therefore, the value of all gauge invariant quantities are specified 

by the valt.es of the plaquctte variab!pS (D. 

The plaquette variable @ is the analog in Z, gauge systens of the field strength or 

gauge curvature of conventiortai gauge theories. When CD=-1 at a plaquette, we say, 

interchxngeabiy, that there is a frustration, curvature or dislocation there. For our 

purpose, this means that it is impossible to arrange the spins so as to satisfy all bond 

interactions around this plaquette (Fig. 3). 

The partition function (1.7) is gauze invariant. Thus, it is only a functidn of the 

value of the (P variables. This means that the partition function (anj the free energy) do 

not drpsnd on the detailed distribution of flipped bonds but only on the distribution of 

frustrations. Therefore, the parlition function has the property 

Z(A) = Z(A’) = i:(+) if {A)-{A’} 



-lO- 

Since Z(O) is the partition function in a fired distributio? of frustrations (pi), we 

define the free energy in slrch distribution to be 

KtF(Qr} = - log Z {~)i) (1.11) ~’ 
-c, 

In this language, we can understand the Mattis [l] model (Ai,=&i&j,&i=fl) as a gauge 

transformation of the pure Ising model (Arj=l). Thus the hfattis model is a random king 

model without frustrations’ (in fact the most general one) and it has the same (zero 

external field) free energy as the pure [sing model. 

As we have shown frustrations are the only type of disorder that can modify the 

nature of the phase transitions of the system. Let us give some sinple exaniples of 

frustrated 2-dimensional Ising models. Consider first the case with only one flipped bond 

(Fig. 4a). Accordin g with definition (1.9), the two plaquettes adjacent to the flipped bond 

are frustrated. Suppose now that we want to separate the frustrations. One possible way 

is to put a dual string of’flipped bonds between them, as shown in Fig. (4b). However, 

there are several configurations with the same frustration content. One of them is shown 

in Fig. 4c. Roth configurations differ by a gauge transformation. A closed dual string of 

flipped bonds, (e.g. Fig. 4d) 11~: q:o irastrations. A gauge transformation performed at all 

sites enclosed by the strin g transforms this contr;uration into all A=l. Notice that the 

lowest energy configuration for Fig. 4d is just an island of flipped spins whose borundary 

is the dual string. Analogously an infinite domain wa!i (Fig. 4e) has no frustrations. In 

this case the ground state has the spins on each side of the wall pointing in opposite 

directions. 

Constructing a frL:stration at .a single plaquette (Fig. 4f) cannot be accomp,tished by 

flipping a finite number of bonds near that piaquette. In fact, it is necessary to make a 

dual string of flipped bonds running from the frustrztion to the boundary of the lattice. 

In contrast to frustration free configurations (Fig. 4d-4e), where a ground state with 

all bonds satisifed is possible, configurations with frustrations always have unsatisfied 

bonds and hence have higher energy. For ins!ance, in Fig. 4b, the lowest crtcrgy 
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configuration has a!1 its spins pur:lllel. The difference in t‘n(:‘rz!i’ bc:tv.csn ;:l:tt slate and 

the unfrustrated situation is proportional to the length of the string. Thus, a single 

frustration will have an i.lfinite-energy. 
4 

. . 

The case shown in Fig. 4g has some interesting features. Even with the boundary 

condition that all spins point up at infinity, there are two degenerate ground states: the 

central spin up or down. This illustrates the fact that frustrations tend to create 

additional degeneracies in the ground state since not all bonds can be satisfied 

simultaneously [ll]. 

(C) Correlation Functions 

We have just discussed the meaning of the free energy in a fixed distribution of 

frustratio:l;. it is thus natural to ask the same kind of questions about the correlation 

functions. We should point an important difference between both qupntities. Suppose we 

are to compute the correlation 7unction between spins u at sites i and j. In a fixed 

distribution of A’s, we write 

(1.12) 

This correlation function is not gauge invariant since a local gauge transformation at site i 

(or j) changes the sign of this function. 

We have argued that only gauge invariant disorder (frustrations) can change the 

nature of the phase transition, and thus we need a gauge invariant correlation function to 

probe this transition. We map define a gauge invariant analog of <aiaj> by inserting a 

“string of A’s” between ai and oj. Then the ::auge invariant correlation function is given 

by 

<Ui(fI &Uj> G Z(A)-l FIUi(y,, ,IAik) Oj eXP (K 2 frIA,L’Tk} (1.13) 
r(i.j) c ’ 1.J Clk> 

where r(i,j) is a path connecting sites i and j and HA IX;II~S tl;e product of all the A 

variables along !hc llr1k.s of the path (Fi:. !) [I?]. Clearly this correlation function is 
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gauge irvariant. It depends both on th: position of thv: correlated spins and 011 the path I” 

itself. 

Cwsider two different paths I’,(i,j) and I’,(ij) (Fig. 6) and the corresponding 

correlation functions <ai,cJ>r1 and <oi,cj>rz. Let us define the closed loop r as 

I’=r,+T,. Then 

. . . 

<UiUj> = <U,Uj> 

h 

(IIA) = <UiUj> (F@) 

r2 r r2 

where S is the region enclosed by I’. 

(1.14) 

Thus, the two correlation functions differ by a factor of (-1) raised to the number 

of frustrations enclosed by the loop. Therefore, the difference of the gauge invariant 

correlation function along different path with same end point provides a measure of the 

frustration content within the loop. 

. - 

Consider now an arbitrary configuration of bonds free of frustrations (pure gauge 

disorder). Such a configuration is gauge related with the configuration Aij = 1 for all 

links. Then all these configurations of bonds will have the same gauge invariant 

correlation function. Certai lly, gauge non-invariant correlation functions will be 

different for different configurations. However, those differences are not related with 

any change in the phase transitions of the system. We know that both the pure 

ferromagnetic (Aij=l) and antifer-omagnetic (A,j=-1) lsing models are frustration free. in 

the ferromagnetic case, the gauge invariant correlation function reduces to the ordinary 

spin-spin correlation function. In the antiferromagnetic case, it reduces to the staggered 

correlation function. 

(II) The Spin Glass ns a Systen? of Frastrntions 

Up to this point, we have only dealt with a frozen distribution of frustrations. Now 

we wish to make some comments about the spin glass problem, i.e. the averaging of 

quantititcs over different distrib!.ttions of bonds (quenching). 
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{ 

P if A=1 
P(A) = 

1-P if A=-1 (1.15) 

and aSSume that the t.otal probability distribution P(A) for configurations of bonds 

factorizes, i.e. 

P(A) = ITrinks P(A) (1.16) 

Consider now the average of a t;auge invariant quantity, for instance, the free energy 

F-[@i}. As we have already shown, it is gauge invariant and depends only on the 

distribution of frustrations. The object we want to compute is <F>K,,P, where Kt is the 

inverse spin temperature and p the probability given in (1.14). Clearly, 

<F> - 2 PiAl F{@i,K,> 
K’vP - IAl 

I C ptkl (1.17) 
(4 

Since F(i9i) = FI.4) for all the configurations of bonds (link variables), which have 

the same distribution of frustration {pi}, Eq. (1.17) splits into sums over distributions of 

frustrations, i.e. 

2 PiAl F{@i k,} q 2 { c’ PI MS FiQi,K,I 
(1.18) 

iA) ’ i+i\ iA\ 

where the sum c ’ P(A) runs over all the configurations of bonds with the sanle 

distribution of frustrations and therefore it we g.hts distributions of frustrations. Let us 

now define /If and cy to be two parameters such that 

P(A) = (a/2) exp @rA) (1.19) 

Eqs. (1.15) and (1.19) then give the result 

a/2 = p(l-p.) 

& = log (p,‘l-p)!/’ (1.20) 

This change of parameters allows us then lo write fclr the frustration distribution 

probability weighting factor 
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2’ PIA) = (a/2jN {;’ exi> {/3r 2 Aijj (1.21) 
w A -CiT> 

We can now easily recognize the right hand side of (1.21) to De (cx/~)~ times the -. 
- 

partiti3n function (1.7) written in the gauge c’i :: 1 for all sites. 

From Eqs. (l.ll), (1.18) and (1.21), we get 

<F>K,& = 2 e.up -C/If F~(~i$,->l F{Q,J+j/C w C-Pf F~~~;$f~ (1.22) 
141 l&1 

This equal.ion is not only valid for the free energy but for all the @USC invariant 

quantities. 

Therefore, when averaging thermodynamic quantities frustrations behave as if they 

were in thermal equilibrium with each other 2nd interacting through a classical 

Hamiltonian (configurational energy) given by F(@l,j3fj-. The temperature of the system 

of frustrations is given by l/pf. The Hamiltonian F{QI.pf) can be derived from the 

correlation functions of the dual system. We will illustrate this procedure in the 

following sections. We should note, however, that the hamiltonian will not be, in general, 

a simple sum of pairwise terms. In fact, it is a complicated configurational energy and it 

will depend on the temperature of t!ie frustrations. Notice that the quantity being 

averaged in (1.22) is the same Hamiltonian F{@l.j3f) evaluated at the spin glass 

temperature l/K,. Furthermore, the normalization factor can be easily shown to be equal 

to the partition function of the annealed system. 

In the spin glass literature, it i:; usual to find the phase diagram represented by a plot 

of K (spin temperature) VS. p (probability) [15]. We can now understand these diagrams 

in terms of the frustration temperature. At p = M, the frustrations are at infinite 

temperature (jI,=O). In this situation, the density of frustrations is extremely high. As p 

increases, the tempernturz of frustrations decreases and at p = 1 the frustrations are at 

zero temperature. This stn,.e is the pure ferrornngnet (p=l) and there are no frllstrations 

here. All the models which are connxted throui;h gauge transformations with the pure 

ferromnfl:ct nre also at zero frwtr:ltion tc:mperat!:re. The Gtu::tion is symmetric around 

the point p = l/i. 



(A) The Model 

% shall first discuss the 2d Ising model in an arbitrary configuration of bonds. 

The partition function is given by (Eq. 1.7) 

Z{Ai=2-N C exp (K 2 ci Aij aj) 
hiI <i-J> 

(1.7) 

In Eq. (1.8) we showed ttat Z(A) is gauge invariant, i.e., if (A) and (A’} are two 

bond confi::urati43ns related through a gauge tranformation, then the partition function is 

the same for both configurations and so is only dependent on the distribution of 

frustrations (CD}. Consider now the sum z: ’ Z{A) restricted io all configurations which 

have the same distribution of frustrations. From (1.8 - 1.10) we can write 

= 

1 

2”zpIq (2.1) 

where 2N is the total number of gauge transformations (volume of .the gauge group). 

Therefore, the partition function can be written as [ll] 

Z((r,i) = 2-” F [~S(A,jXj~Ai,hli’i,i-l)]~~ exp (K c;) ai “ij Oj) (2.2) 
ii\ i 

where i is the dual site at the center cf the plaquettc ijkl. The Kronicker’s 6 replace the 

conslraint in Eq. (2.1). Up to an (infinite) constant Eli. (2.2) takes now the form 

Z(~i> = 2-N iim CT 
ke** {i%J 1; 

exp (KL c aiAija.i) exp (KP 2 cPiAijAjkA,IA,i) ~ (2.3) 
<I57 L 

This partition function de:jcribt:s an Ising model with a frczen distribution of 

frustrations. In order to simplify matters we choose tke gau;c o = 1 (,lll sites) aiid, in that 

gauge, the partition function then rends 

Z{ipi} = lim c ex:, WI_ c w ke- I%\ <iJ> 
f\ij +Kp f ‘biA,j.4jkAk,A,i} (2.4) 
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(l3) Duality 

The duality properties of models like Eq. (2.4) with Q = 1 (unfyQ;trated case) have 

been e.&nsively discussed by Wegner [14] and Balian, et al [15]. In this section; we will 

show how to extend those methods to the frustrated case, i.e. (Di = -1. We will follow 

Bslian quite closely.. Let us apply the duality transformation to the model described by 

the partition function (2.4) in the case pi = 1 (all i). The dual partition funcl:ion (for K, 

finite) is given by 

Z = [(l/4) cash K, cosh2K,] pi C ew EC 
\Sil 

/?;(S,Sj-1) + ZiH’(Si-l)] (2.5) 
<iE> -” ” *) 

where N is the total number of lattice sites. The dual coupling /3i and dual external 

magnetic field H* are related to the original link and plaquette co~lplings through the 

relations 

e-*& = tanh K, 

e-2H’ = tanh K, (2.6) 

The dual mode1 is defined on the at‘,! of the squar: lattice. and at each dual site i 

there is a dual lsing spin si. Eq. (2.5) is just the partition function of a 2d lsing model in 

an external uniform magnetic field. 

If we now let K, -+ Co, the external field H* vanishes. Thus, the system becomes 

the well known 2d lsing model in zero field. Notice that Eq. (2.6) implies that low 

temperatures and high temperatures are exchanged through a cluality transformation. 

In the previous discussion the system was uniform (i.e., all the bonds were the 

same). However, the dualily transformation holds even in the case that the couplings K,, 

K,, vary throughout the lattice. In this case Eq. (2.6) becomes a local relationship 

bet+veen dual couplings. Since in two dimensions links are dual to links and plscluAtes are 

dual to sites, the coupling at each link transforms into the coupling on its dual link and 

the plaquette coupling transforms into a local external field. 
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We now turn o!ir attention to 11~ case (3 = -1 at sonte pl:iqUC!le which means to flip 

the sign of the coupling K, at that plaquette. Thas a system with some @i = -1 is just a 

system with some K, negative. 

From Eq. (2.6) we get the equivalency 

K P" -K, e H* + H* + iT/2 

So that, in genera:, the following identity is true 

e-(2ff* + iCnQlCl - (~~1) = tanh(K,Qi) (2.8) 

. 

(2.7) 

To flip the sign of a coupling is equivalent to shift the dual coupling by in/2. This 

trick has been exploited by Kadan .off and Ceva in their discussion of disorder variables 

in the 2d king Model. The identity 

exp(in(l-s)/2) = s s =-r-l , (2.91 

combined with Eq. (2.5) leads us to the conclusion th.tt when we flip a plaquette coupling 

in the original model we are bringing down a .dunl spin variable (at.the site dual to that 

plaquette) in the dual system. Thus, for arbitrary a. the normalized function (2.4) (for x 
finite KP) after a duality transformalion (2.6) - (2.8) becomes 

where the average is taken in the dual system. In order to fix a distriblnion of 

frustrations we now Ict K, -+ co. Then from Eq. (2.10) the normalized partition 

function (2.4) in a spccificd distribution of frustrations turns out to be equal to the N 

point correlation function of the dual zero field lsing model at the temperature given by 

/3;. Notice that the limit Kp --* 30 is essential not only to spccil‘y the distribution of 

frustrations but also to avoid the destruction of the phase transition of the 2d king 

n1orl2l. In summary 
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(ZK,{@i}),/(Zl,.,{@i = 11) = <nSj(l - Qj”‘>pi (2.11) 
w 1 

Since Z,,(~i} 3 eeKL F”Dil (F E free energy), then (2.11) gives the change in the 
u 

free en-ergy due to the effect of the frustrations as 

exp [-Kt AF{c~i}] = <lliSi(’ - ‘Pi)‘*>/37 ” e- 
(2.12) 

(C) The Energetic!; of Frirstrations 

Let us now discuss some specific examples. Unfortunately little is known about the 

behavior of this general N point correlation function. Nev’ertheless, some of the known 

general features are important for us. In the unrnagnetized phase of the dual Ising model 

(i.e., high temperatures in the dual Ising z low temperatures in the spin glass), the N 

point correlation function vanishes identically if N is odd. Thus, frustrations come in 

even numbers (neutral configurations) in the low spin-glass temperature phase. 

We now take full advantage of all the available information about the magnetization 

and the two point correlation function of the 2d lsing Model in zero external field in 

order to study the energctics of frustration systems [16]. 

The change in the free energy of the system due to the presence a single frustration 

is given by 

AFsingle = -(l/K,) log <s>p; = -(l/KL) lo2 blil(fi;) (2.13) 

where M(/I;) is the magnetization. Since the latter is exactly known we obtain 

AFsingle = -(l/SK, log (1-sinh42Kt) Kt < K, (high spin glass temp.) 

{ 4 Kt > K, (low spin glass temp.) (2.14) 

where sinh 2K, = 1 is the critical point of the 2d Ising model. 

In fact, at low temperatures (spin glass), a sing1 c frustration is strictly forbidden 

since the excess free energy is infinite. At high temperatures of the spin glass system a 

single frustration costs a finite amount of free energy (it has a finite “mass”). The 

fluctrtntin: IsiriS spins screen th: fru;trr,!it3n at high temyeraturcs. 
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Lzt us now study the interaction energy for a pair of fruztrarions in :III unfrustrated 

sea of spins. The change in the free energy due to two frustrations can be obtained from 

the two point correlation function of the dual [sing model. There are two regimes. 1) At 

-low s$n glass temperatures (KI > K,) the dual system is in its disordered phase (high 

temperature implies /3i < K-l,). The correlation function decays exponentially at large 

distances with a cdrrelatiqn length, t, given by 

‘$(/I;) = (24--&l og sinh 2p;lj-I= (2 fiIlog sinh 2K&-’ (2.15) 

Thus the excess free energy associated v1iI.h a frustration pair separated by a distance 

R is given by 

AF(R) = -(l/K,) log <s&> - (R/K&) + O(log R) (2.16) 

As Eq. (2.16) shows, the excess free ::nergy grows linearly with R and therefore the 

energy necessary to separate two frustrations by an Infinite distance is divergent. Thus, in 

the low (spin glass) temperature phase frustrations are “confined”. One can picture the 

two frustrations as held together by a “string” whose tension T IS given by the coefficient 

of the linear term in (2.16), i.e. 

T = l/k,< = (J?/KLjllog sinh 2K,I (2.17) 

At the critical point the correlation length diverges and the string tension goes to 

zero like IK, - KJ In other words, “melting” of the string hclding thz frltstrntions 

together leads to a change in the force law. 

In the high (spin glass) temperatur e phase “confinement” is lost. Here the dual system 

is in its ordered ph:\se and hence the dual spin correlation function approaches a ccnstar.t 

value at inflnite distance 

<S&> - M2@~{1+(V,/R2) exp (-R/t) + . . . > 

where M(Ji) i: the m cignetization which is given by 

(2.18) 

(2.19) 
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5 is the correlation ‘length (2.15) and V, is the constant 

V, = (sinh 42K,)/4T(1-sinh 42k,)2 (2.20) . . 

Tl%refore, the excess free energy at high (spin glass) temperatures is given by 

AF(R) = 2AFsingie - (V,,./R2) exp (-R/t) (2.21 j 

This means that at high temperatures frustrations are “free” and they interact 

through an attractive short ranged screened Fotential. The range of the potential is just 

the correlation length 5. Notice that this range is strongly temperature dependent. 

(D) Correlation Functions of’ the Isin, fr model with Frustrations 

We now wish to study the effect of frustrations on the two point correlation 

function of spins on the original spin glass. Since we are not interested in the effect of 

non-serious disorder (i.e., the disorder which is not associated with frustrations), we have 

to study the behavior of the gauge invariant correlation function in the presence of 

frustrations. 

The gauge invariant correlation function is given by 

(2.20) 

The average is taken as c::cplained in E:q. (1.12). Cr(i,j) {pi} is a gauge invariant 

quantity. Thus all the arguments made for the partition function (1.7) which lend to the 

form given in (2.5) are valid in this case. 

Cr(ij) (ail as given by (2.20) can be rewritten as 
Y 
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These gauge invariant two point correlation function obey a duality transformation. 

Through this transformation the two point (gauge invariant) correlation fun<-tion in the 

presence of a distribution of N frustratiotrs maps into the N point gauge invariant 

correlazon function of the dual system in the presence of two frustrations, where the 

positions of frustrations and correlated spins are interchanged. Notice that the gauge 

in*/ariant dual N point correlation function has strings of dual link’variables a joining the 

dual spins pair wise. 

The relation is given by 

with a pictorial descripticn given by Fig. 7 and 

(a) @i is th e f rustration field of the dual system, and Qin = if c = ij 

(b) I‘, ($,ja) is a path of dual links which goes from site ia to &. The parameter a v 
labels the different paths. In the case when N is odd, one of these paths runs to the 

boundary; 

(c) Again remember that eS2P* = tanh K,; 

(d) In the factor (-l)“, n is the total number of intersections tetwecn the path T(i,j) and 

all the dual paths r (j,,j,). The derivation of Eq. (2.22) is given in Appendix A. -w 

Let us now discuss the influence of frustrations on the asymptotic behavior of the 

gauge invariant correlation function. We shall restrict ourselves to the case of two 

frustrations. 
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9 High Temperature Behavior 

The behavior at high (spin glass) temperatures can be most easily studied directly by ., 

means.af the high temperature expansion. 

In. Eq. (2.14) we showed that one free frustration can exist at temp,%tures higher 

than the transition temperature. Let us study the effect of one single frustration on the 

behavior of the gauge invariant two point correlation function. Consider the simple case 

of a frustration in between the correlated spins. The string of link variables is a straight 

line of links joining the spins with the frustration adjacent to the string. To make an 

explicit high temperature calculation we choose the special flipped bonds representation 

of the frustration shown in Fig. 8. To the first non-trival power in x=tanh Kt, we get 

<ai( T+ A)aj>KL (@iI 1 <oiaj>KL = 1 - 2d (R-d+l)x* - 
(2.23) 

where Ii-j1 = R and II-ii = d measures the distance of the frustration ‘to one of the spins. 

Of course, this formula is only valid when Rx<<l. As expected, the correlation function 

decreases in the presence of the frustration. 

An analogous computation for two nearest neighbor frustrations lying between the 

two spins (Fig. 9) gives the result 

<oi( n A)aj>Kt (@iI / <araj>Kt = 1 - 4d (R-d+l)x* 
r u (2.24) 

xztanh Kt 

Notice that the effect of a frustration pair on the correlation function is bigger than 

in that of a simple isolated frustration. 

(ii) Low Temperatures 

At temperatures lower than T,, there is long range order and the random system is 

“magnetized”. It is interesting to see how the magnetization is affected by the frustrations. 

Consider two frustrations a distance R apart and let IIS compute the (gauge invariant) 

ma~nctiration at n point ktwecn tlvrn nt :I distnnx d frcxn o:w 0i the t’rr~5tc-:ltions (Fig. 
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10). This situation is the dLlal of that shown in Fig. A for which we obtained the high 

temperature result above. 

The duality relation (2.22), together with (2.23), ailows us to write -c, 

<oi(nr(i,c;o)A>KI {(~) / <oi>KI = (-1) [l- 2d (R-d+l)(X’)*] (2.75) 

X+ = bnh pi = e-2Kl 

Once again Eq. (2.25) gives the answer to first non-trivial order. The magnetization 

is locaily decreased and the effect is non-uniform. In fact, this decrease is largest midway 

between the two frustration. The minus sign of Eq. (2.25) arises from the fact that the 

string of A’s (Fig. 10) we have chosen crosses the string of U’S in the dual case (Fig. 8). 

(C) Hippcd Gonds, Frustrations and Disorder 1’ararnetcr.s 

The results we have obtained in Section 2x can also be understood in terms of an 

Ising model with flipped bonds. 

One possible alternative realization of 2.n lsin, 0 model with 2 frus!rations is an lsing 

model with a dual string of flipped bonds connecting the two frustrated plaquettes along 

some path r (Fig. 4d). Any path is equally good; models ?vith differer,t paths differ only 

by a gauge transformation. Such a configuration of flipped bonds is ac!.ually an interface 

or domain wall, as discussed by Fisher and Ferdinalid [17]. Our string tension is nothing 

more than the interfacial tension of the domain wal! .that appears in their work. 

Kadanoff and Ceva have shown that therz is a dualit), transformation connecting the 

normalized partition function in the presence of a dt!a! string of flipped bonds and the 

correlation function in the dual system. T!~is quantity, which for us is the partition 

funclion in the presence of frustrations, in their ‘language is the correlation function of 

the disorder variables. Thus, frustrations h~vt: ;I close ::onncc!ion with disorder vari..rbles 

[7,1X 3. In fact, the “fermionic” character of the order and disorder variabl:?s (i.e.% the fact 

that one picks up a faclor of (-1) by moving disorder variables strings through spin 

l::!ri::blc:;) is jur;t the pxth c.ic:ixndcnc~ of the g::r!;c i!!t;:;ri::iIt corrci:!I;on ft:nction, as 

discussed in Section I. 
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III. THE 3 I)IMENSlO.\lAL ISING SPIN GLASS 
-c, 

(A) Frustrations in 3 Dimensions 

We want to discuss now fruslrations in the 3 dimensional lsing model. Frustrations 

will also be introduced here in the same way as in the 2d case. There is an A variable at 

each link and a frustration variable at each plaquette defined by 

(3.1) 

where ij,k,l are sites in the 3 dimensional cubic lattice which define the plaquette. Unlike 

the situation in 2 dimensions where the plaquettes are associated to dual sites, in 3 

dimensions plaquettes are associated with dual links (see Fig. 10). So the frustration in 3d 

has a vector character. From its definition, it is clear that the a’ variables obey the 

constraint: 

II’ faces@ = 1 

where the prodtict is taken over all faces composing a closed surface on the lattice. 

[Consider, for instance, an elementary cube of the lattice (Fig.. 10). If we consider the 

product (3.2) on that sllrface, it is clear the A variable al each link of that cube occurs 

twice in the product. Since A 2 = 1, Eq. (3.2) is an identity.] 

Frorn the view point of the dual lattice (not the dual model), this constraint says that 

there should be an even nllmber of dual frust.rated links assxiated entering each dual 

site. Thus, the only allowed configurations of frustrations correspond to closed loops of 

dual links on the dual lattice; a result already pointed out by Toulouse [33. 

(R) Ihnlity 

We start with a 3d Ising ~nodel with a fixed distribution of frustrations. In analogy 

with Eq. (2.4), we write for the partition function [lS] 
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(3.3) 

. . 

W; define the excess free energy of the frustrated system in analogy with the 2d 

case. It is known &hat the partition fun&on (3.3), for K, finiie, and @ijkl = 1 at all 

plaquettes, is self dual. Link interactions transform into plaquette interactions, and vice 

versa, through the duality relationship 
e-2K* 

P = tanh K, 

e-2K; = tanh K P (3.4) 

Let Aij to be the gauge variable associated with the dual link i j (i and j are two 

neighboring sites in the dual lattice). The normalized partition function (3.3) (finite KP) 

which is eqrlal to the correlation function 

(3.5) 

Z(9i j)/Z(‘Pi j=l) = rI L2i j (3.6) “W *Y $> We 

The proof of (3.5) is entirely analogous to the proof of the 2d ca3e. Again we are 

interested in the constrained situation K[,-,M and (3.4) irnpiies that K;-+O. Thus the 

averages (3.6) are taken in the pure gauge system described by the partition function 

1 1 

7 -gauge z . c exp {Ki % ai j aj k ak I al i) (3.7) 

\ \ IL;, 
4Tkl> 

The Hamiltonian of* (3.7) is 
2 c ,‘e 
gel uge invariant [i.e. it is invariant under the 

transformations (1.2)-(1.3):]. Elitzur [19] has shown that such local symmetries are never 

broken, i.e. the expectation value of any gauge non-invariant quantity 0 is identically zero 

for all values of the coupling constant i.e. 

(3.3) 
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Therefore, one may ask in which case is the quantity in (3.6) gnu$e invariant. As we 

have already discussed in Section I.B only the product of a variables around any closed 

loop of links is gauge invariant. This is the way in which the constraint discussed in (3.2) 

is real%ed in the dual system. Notice that in contrast to the 2d situation the partition 

fcnction for one frustrated plaquette is zero for all temperatures. 

(C) Enel*getics of I;rustrations 

As discussed above, the simplest configuration of frustrations is a closed tube of 

frustrated plaqurttes (Fig. 11). 

The normalized partition function of this tube is equal to the expectation value of 

the product of the a variables along the loop I’ of dual links threading the frustration 

tube. This expectation value is a familar object in gauge theories: the Wilson loop 

integral c51. 1 

‘The excess free rinergy for this tube is given by 

AF(K,) = -(l/K,) log tTIa>,; (3.9) 
r 

From high and low temperature expansions (in the dual model), it is known that the 

loop integral has the asymptotic behavior [5,14,18-J 

<rlu>K; - exp (-aA} K; < K; 
r 

exp WA Kj > K; (3.10) 

where A is the minimal area spanned by the loop r and L is the perimeter of that loop. 

Kc is the critical coupling of the dual model and is the dual of the critical coupling K, of 

the 3d lsing model. The coefficients (Y and p are temperature dependent. In the original 

lsing model, this implies that the excess free energy of a closed tube of frnstrntions 

behaves Ii kc 
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K, > K, (low spin glass temperatures) 

Kt< K, (high spin glass temperatures) (3.11) 

Let us now look at the interaction between two tubes of frustrations in various 

relative orientations. 

Consider first two face-to-face tubes (Fig. 12). In order to compute the excess free 

energy of that configuration of frustrations at low tempcraturcs. it is useful to go to the 

dual system and consider there the expectation value of the two dual loops of -a variables 

at high temperature. The leading diagram in the high temperature expansion of the dual 

system is that one which covers the minimal area surface spanned by the loops. This is 

the just dual analog of the statement made by Toulouse [3] and Kirpatrick [ll] that the 

ground state configurations correspond to covering surfaces of minimum area. For one 

loop, we then obtain 

(3.12) 

which is the area law quoted above. 

For two loops, tire character of the mir.imai surface changes with the distance R 

between them. The two situations are shown in Fig. 13(b.c). If d is the linear dimension 

of the loop, we get, to leading order, 

AFKL(R,d) = 8dR R<<d (3.13a) 

AK,,(R,d) = 4d2 R>>d (3.i3b) 

at low spin-glass temperatlures (K,>>K,). At high spin temperatures, the excess free 

energy can be evaluated directly :hrough the high temperature expansion in the fsing spin 

glass model. The result is to (lzading order) 

AFK, (Rtd) = Sd, K,<<K, (3.16) 
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loops whose strength is proportional to th\: perimctzr d of thC 100l;s. :I i’<hltli :,I!;:,:Si~al by 

the 2d results. In contrast with the 2d case. though, this potential saturates at a distance 

R-d and, for R>>d, has only a weak R dependence. Thus, loops of frustrations tend to 

bind bin they are not confined. There is also an orientation effect in the interaction 

between tubes. For two loops oriented as in Fig. 13:(l), the minimal surface does not 

change character so -there is no strong distance dependence. In analogy wiih 2d case, at 

high (spin-glass) temperatures, the R dependence is weak for all distances. 

In the 3d case, it is also possible to compute gauge invariant correlation functions 

using duality transformations, as we did in the 2-D case. The proof and results are given 

in Appendix A. 
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IV. TIK 21) XY SPIN GIASS 

“(A) Gauge Symmetries in Random XY i’/Iodels 

Up to now, we have discussed random Ising spin systems. We can extend our 

treatment to XY systems fbr which the ,dcgrees of freedom are fixed-length 2 dimensional 

planar rotors S = (cos6’,sin8) sitting at the sites of the lattice. 

The standard nearest neighbor ferromagnetic coupling is usually written as 

where ij are nearest neighbor lattice sites and K, is the coupling constant for this link. 

This interaction favors configuration: with neighboring spin parallel to each other. 

\Ve can introduce disorder in the system by adjusting the interaction to favor 

configurations with neighboring spins tilted by an angle pi, at each link (ij). The -form 

of the interaction is now 

K, COS (oi-Uj-$ij) 

In particular ~ij = n corresponds to flipl)in, (7 the sign of I.he interaction. 

Define a link gauge degree of freedom Uij such that [5] 

Uij = esp {i#ij) 

Then Eq. (4.2) can be rewritten as [20] 

(K,/2) [Si Ui4 S; -t h. c.] 

with S I E eie. I’ 

(4.2) 

(4.3) 

(4.4) 

The partition function in a fixed configuration of gauge c.+ 1a7”rees of freedom (U,j} is 

given by 
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Z{Uijf = s {si) er.p ((K1/2) 2 <ij> [S, U;; Si + h.c.1) (4.5) 

where S means a normalized integration over.all the angles between 
. . 

- {Sil -77 to Il. 

Define a local gauge transformation G(Vi}, with Vi = exp {i;(;l, such that the spin 

and link degrees of freedom transform under C(Vi) like 

Si 4 Vi Si (4.6) 

Uij 3 Vi Uij Vf 

In compact notation 

G(V) (S,,Uijj = {ViSi, Vi Uij V;> (4.7) 

Hence, each spin is rotated by xi and each link-angle by the difference xi-xj. Again 

the key point is that the interaction (4.3) is .ir<variant under the gauge transformation (4.6). 

With the above definitions all the remarks already made in Section I apply to XY 

systems with al most tri\iial modifications. In particulj.r, the partition function (4.8) is 

gauge invariant and we only need the gauge invariant features of tile gauge: configuration. 

Let us define a frustration angle 2rC’ljkl at plaquette ijkl such that 

&2n@ijkl = lJij ujk uk, u,~ 

around that plaquette. 

(4.8) 

Thus, from Eq. (4.3), the frustration angle may :le written as 

From the periodicity of the interaction (4.2) ‘we arrive to the conclusion that only 

fractional values of cfp are meaningful. f-or instance, if we want. to reverse the sign at the 

link ij, (i.e. ‘C,ij=n, 1c/Ik=O otherbisc) iS equivalent f0 set ‘t‘ijkl q %+integer for ail the 

plaquettes which contain the reversed link as St&owl by Villain [S]. 
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Thus, the random XY model is a frozen configuration of frustration:; Fiji!, derived 

from the angles pi,, has a Hamiltonian given by 

- H = Kt C<ij> COS (8i-Bj-$ij) (4.10) 

Instead of writing Eq. (4.10) JS a constrained Hamiltoninn, as we did in the fsing 

case, it will prove to be more convenient to deal with a Hamiltonian depending explicitly 

on the angles $ij. 

. . 

(B) The 2d XY Spin Glass 

It is convenient to change our notation. A link whose ends are the sites i and j can 

be equivalently described by one of the sites (i) and a direction (11). Thus we write [22] 

‘clij E 1cl,ti) (4.11) 

A plaquette is defined by a corner (i) and two directions ~1 ahd Y, i.e. (i,py). In 

particular, the frustration field can be written as 

277@P,,(i) = A,+,(i) - A,$@) (4.12) 

where AP is the finite difference operator 

A,x(i) = x(i) - x(i-t$) (4.13) 

where $ is the unit vector pointing in the p direction. In 2 dimensions a plaquette (i,pv) 

is uniquely associated to the dual site i at its center and we often consider the scalar 

frustration G(i) residing there 

Q(i) = l/5 E!,,~, (DPV(i) (4.14) 

where elly is the 2d Levi-Civita tensor. 

In this notation, the resemblance between the frustration field GiLy(i) and the 

electromagnetic field tensor is evident (Eq. 4.12). 
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arbitrary field of frustrations (Eq. 4.10) 

Z{@(i)) = S DO ertp( 2 K, cos (A,U@i) - #,A(~)) (4.15) -’ 
cp) -c, 

Following references 2 & 3, we consider the Villain approximation of (4.15). i.e. 

&cqse y eP C exp[-/3j2 (e-ad+ (4.16) 
9 -. 

Performing a Fourier expansion at each link, we obtain a system of integer valued 

variables I,(i) residing on links. The partition function now reads 

By soliing the constraint 

, 

(4.17) 

(4.18) 

we can map the (normalized) partition function (4.17) into a correlation function of the 

surface roughening model [23] whose partition function is given by 

(4.19) 

Thus, we obtain the result 

If we perform a g!o5;?1 shift by m of ali the n(i) variables the partition function 

(4.19) is left unchanged, but the espcctation value (4.20) picks up a phase e:~i~~l~%i) 

Hence, for arbitrary boundary conditions, th:: expectaiio~l value (4.20) vanijhes identic: Ily 

unless the frustration system is “neutral” i.e. 

c (P(i) = 0 (mod. 
i * 

integer) (4.21) 
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breaking quantities such as Eq. (4.20) to develop non-vanishing expectation values. 

. . 
By using the Poisson summation formula [23], we can write in terms of the coulomb 

gas picture 

The evaluation of ,:he Gaussian path integral then gives the result 

(4.23.a ) 

where ZSw is a spin wave partition function and the summation is restricted to strictly 

neutral configurations, i.e. 

The propagator D(i-j) is the lattice coulomb Green’s function and in 2d has the 
--.-a 

asymptotic behavior 

D(kj,) - log Ii - jl + n/2 I (4.24) 

where s”/2 provides an effective chemical potential for the vortices m(i). 

Therefore frustrations in the XY mode: map into fractionally charged impurities in 

the coulomb gas. 

(C) Ewx@ics of Vrustrations 

Consider two frustrations (charges) located at dual sites i and j with strength ‘Di = q L 
and 9j = -q. 

N 

At low temperatures, tie 2d Coulomb gas is a dic!ecl.ric [25] (a dilute gas of 
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inreraction renormaiized by di4cctric constant given by 1261 

E = 1 + Sri/K, exp (-2K,ll), K,>>l (4.25) -. .- 

FFr the single frllstration, the excess of free energy is logarithmically divergent and 

excludes its existence at low temperatures. 

On the other hand, ai high temperatures, the 2d Coulomb i;as is a plasma and we 

expect Debye screening to take place. Therefore, the impurities interact via a short range 

screened Yukawa potential and the excess free energy of an isolated frustration is now 

finite. The excess free energy of a single frustration at high temperatures is easily 

computable in the low temperature expansion of the dual (surface roughening) model. 

(D) Gauge Invariant Correlaticn Functions 

As in the Ising model, the spin-spin correlation function is distorted by the presence 

of frustrations. We define the gauge invariant correlation function for this model 

<Si.Sj>rij as 

<Si’Sj>[‘ij = CSi(I-I U,i> Si + h.C.> = <COS (Oi-Oj- c hk)> (4.26) 
rli,j) 

where c means the summation of the # variable:5 along all links on the path r(ijj 
PlSjl 

between sites i and j. 

Just as in the Ising model, this correlation function is path dependent. Consider two 

different paths r,(ij) and r,(ij) such that inside the :.rea enclosed between them there are 

frustrations of total strength 2gQ. Then 

z: +lk = c ‘C’lk + 2nQ (4.27) 
rili,j) ry# jl 

Thus, the phase of the cosine in (4.26) is shifted by 2nQ. When Q n ‘,i, this result 

gives the usual (-1) factor that we obtained in the 2d lsing model. 

For the pure XY system, al low temperatures, there is strong evidence that the two 

point cc~r:e!ntion functic!n falls off \ViIh ;I power law l-.?.ij. In OIciL’r lo evaluate thl: ctt‘ect 
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of frustrations on the correlation function, we go to the Coulomb gas picture which gives 

(see Appendix B). 

where the left hand side averages are taken in the XY model and the right hand side in 

the Coulomb gas. 

The angle B&j) is the polar angle of the vector j-j, where j and j are the positions of 4 *c 
the correlated spin and the frustration and [Ocj-i) - Q(j-j)]r, is the angular paralax of the u Iv 
frustratizm (or vortex) as seen from the ends of the path r [23,27]. The rules for 

computing these paralaues are given in Appendix B. The fact that the gauge invariant 

correlation function is path dependent resides entirely in the way the paralaxes are 

computed. For instance, if a frustration Q lies to the j-ight of a path and to the left of 

. - one another, the argument of Eq. (4.28) differs by 27rQ between both’paths. The reason is 

that the paralax is spanned counterclockwise in the first case and clockwise in the second 

(see Fig. 14). 

For instance, let us compute the spin correlation function in the presence of two 

frustrations q and -q (Fi g. 14). At very low temperatures, the leading term (all m=O) gives 

the result 

(4.29) 

Thus, the correlation fur:ction has the asymptotic behavior (R large) 
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. . 

Fsr R>>d. we can approximate w z rrr/2 - d/R. If we confice ourselves to the case 

q= 55 (flipped bonds) then Eq. (4.29) becomes 

<cos (BR-L?~-~ +)il;, {q,-q) = (-1) const. [l-%(4q dlR)2]/R(‘zK~C’ 
K.0 

(J-31) 

Again, as in the lsitlg case, we pick up a (-1) in front of the gauge invariant 

correlation function signaling the existence of frustrations in the system. 

Finally, it is interesting to see what the XY model with all plaquettes frustrated looks 

like. In the Coulomb gas representation, this means studying system with charged impurities 

at every site. One system with well behaved energetics is a “salt-crystal” with an impurity 

charge q on one sublattice and -q one the other (Fig. 15). The ground state (zero 

temperature) configuration has no vortices present (all m=O). When q = 112, though, there is 

another state degenerate with this one: m = 1 at all dual sites for which q = - IL? and m = - 

1 when q = 112. This has the effect of shifting one sublattice into the other. ViIlain has 

studied this model with q = 112 (the “odd model”) and has also found this double degeneracy. . - 



(A) Frustrations in the 3d XY model 
-. 

TlVe definition of the 3 dimensional XY spin glass follows naturally from its 

definition in 2 dimensions. The different dimensionality, hol.vever, changes the structure 

of the frustrations as well as the propertiezO of the dual models. 

To begin with, let us consider the frustration network for this model. As in the 3d 

lsing model, frustrations arrange themselves into spatial networks. The reason is that the 

frustration field in 3 dimension is a pseudovector, as follows from the definition (4.12) 

(4.12) 

This relatio.nship also’shows that the frustration field obeys a constraint, which is 

analogous to the one we discussed in section Ill. Eq. (4.12) makes 0 y.y (i) the circulation 

of #P around the plaquette. In 3d we can describe this circulation as a pseudovector, 

i.e., the flux of the field strength of the gauge variable #P through the plaquette. 

Therefore, we can define a pseudovector $lcc, which lives on the dual link piercing the 

plaquette, and describes the direction of the frustration flux across the plnquette,as 

where (La) is the link dual to the plaqueitc (i,py) [27]. From Eq. (4.12) we see that vcr(iJ 

is just the curl of q,(i) 

2mpa(i) = eapv +, #,ti) (5.2) 

This expression has the same form as the magnetic field of electrodynamics. Notice that 

since q,(i) is a curl it is diver[.cnce free h 

c?,cp,(o = 0 (mod. integer) (5.5) 

at each dual site i This is the analog of the constraint we found in the 3cl lsing model. 

If we now interpret the 3tl XY model as a lattice version of the Ginzburg-l.,ar?daI.r theory 
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for a superconductor, we can regard these structures as 

f ractknal magnetic flux. 

tubes of frozen 

Because of the continuous nature of the degrees of freedom of the XY model, many 

other ;^ypes of configurations are also possible. In particular, since the frustration flux QP 

is a continuous variable, the flux can spread out with the result that any configuration’of 

magnetostatic fields is possible for the frustrations themselves. For instance, we can 

construct configurations for which QcL -l/‘r*, which is analogous to a magnetic monopole 

and its associated strings. 

Let us now perform the duality transformations to partition function of the random 

3d XY model, which is given by 

The procedure is essentially analogous to that we have already employed in the 2d XY case. 

. - The first step is again a Fourier expansion of (5.4) per link. ‘After integrating out 

the angular degrees of freedom 6(i) we are left with the constrained system 

t5e5) 

_ which is the same as (4.17). The differences. however, become apparent as soon as one 

solves the constraint condition. In this case, we obtain 

(5.6) 

where the integer valued variables n (i) reside on the links of the dual lattice. Therefore, A- 
after solving the constraint of Eq. (5.6) the normalized partition function (5.5) can be 

written as an expectation value of the dual system, which is a gauge theory with integer 

valued dcgrecs of freedom nA(i). Its partition function is given by . . 
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7 -gauge = c ex~{4/2K,j 2 (Ap~&)-Av?+,fi))~) 
p).‘$, \ (-- .i, J,P) 

Then [28] 

(5.7) 

(5.8) 

where the relstionship between cpF(i) is given by (5.1), We should note that the partition Y 
function (5.7) is invariant under the local gauge transformation 

Thus, Eq. (5.9) picks up a phase factor e-*~ri~s~)A~fF~(~ ?. under the transformation (5.9). 

and therefore it is not a gauge invariant nrlantitv 

Hence, we can write 

. - 

unless the frustration field obeys the constaint (5.3). We should also note there is a 

fundamental difference between the constaint (5.3) and the “neutrality” condition that we 

discussed in the section dealing with the 2d XY model. While the global symmetry 

involved in (4.20) can be broken by specifying suitable boundary condition:;, the local 

symmetry (5.9) can never be broken. Thus Eq. (5.10) is an idenc’ty which is valid for all 

values of the coupling K, regardless of boundary conditions. 

The pal-tir.ion function (5.S) can also be written in terms of the topological 

excitations of the 3d XY model (quantized vortex strings) interacting via Coulomb 

interactions. Applyin g the Pois.;on summation formula to (5.r) we obtain 
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ccnjtraint is satisified 

Pzforming the integrals in Eq. (5.11), we obtain [29] 

(5.12) ~. 

(5.13) 

where ZSw is a spin wave p.:lrtition function and the summation is rczstricted to those 

configurations which satisify (5.12), and in 3 dimensions the Coulomb lattice propagator 

D(i-2 has the asymptotic form 

DC-j*> w -(l/li-ilj+ const. (5.14) 

. - 

In the absence of frustrations, the constraint (5.12) requires the topological 

excitations of the 3d XY model to f+rm closed loops. When frust!.atfons are present and 

A,@) = integer, at a point one can have a monopole at that point and a vortex string 

that can begin (or terminate) there. This situation has already been discussed by Einhorn 

and Savit [21]. 

(B) Energetics of Frustrations 

(i) Low Temper;\tures 

Consider first the excess free ,:nergy associated -.vith a closed tube of frustration flux, 

analogous to the configuration we have already discussed in the 3d king model. 

At low temperatures, the representation (5.11) is most convenient. The leading 

contribution to the free energy (all m;\(iJ=O) is given by Eq. 5-13 and-5.14 as 

(5.15) 



I - 

(5.16) . . 

where- is the frustration flux in the tube. 

The result (5.1G) has a weaker dependence in R than the area law we found in th 3d 

lsing model. The RlogR behavior arises from the fact that XY rotators can always relax 

continuously around a frustration tube. 

(ii) High Temperatures 

A convenient representation to calculate the high temperature properties of the XY 

model is the constrained system described by the partition function 

The integer valued variable L,(i) lives on the (i,p) lir,k of the original lattice and 

lc/,L(i) is the gauge field angle. Therefore, to study the high ter;lperature ($small) behavior 

of the XY-Villain model in the pre’!.ence of frustrations is equivalent to studying the 

constrained model (5.17) at low temperature (Uylarge). 

‘The lowest energy excitations of this model are elementary plaquettes with jP=l or 

-1 around the plaquette. The leading term in the low temperature expansion of (5.15) 

gives 

(5.18) 

where c!),,(i) is defined in Eq. (4.12). Let us look at the configurations of frustrations we 

examined at low temperatures. Consider a closed tube of frustration flux of streng?h Q 

and pcrimercr IC:l~til L. For thic cast (5.18) sives an cyccs:; free cncrgy 

--1__ - -  
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if L e-2/KI<<1. 

As‘in the 3d lsing model, we get a perimeter law. 

(5.19) 
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Concluding Remarks 

Let us summarize the results of the above sections. 

In two dimensions, at low temperatures, lsing frustrations have a linear interaction 

energy; XY frustrations, logarithmic. At high temperatures large spin fluctuations “screen” 

the frustrations and we have exponentially damped interactions. In both models frustrations 

decrease the magnitude of the spin-spin correlations, as expected. 

In three dimensions the constraints require the frustrations to form divergenceless 

configurations: closed tubes in the Ising model and more general spread flux configurations 

in the XY model. At low temperatures we have an area law (L2) for an Ising tube, L IogL 

for the XY tube. At high temperatures fluctuations give a perimeter law (L) for both cases. 

We would like to stress once again the importance of studying gauge invariant 

quantities. In particular, the gauge invariant correlation function emerges naturally as the 
. - correlation function to be studied when relevant disorder is present in the system. 

Finally we observe that frustrations can be regarded as fractional topological 

excitations or merons of each model. In two dimensions a single frustration is a disorder 

variable in the sense that it breaks the symmetry of the dual model. 

In three dimensions the situation is somewhat different due to the existence of 

constraints on the possible configurations of frustrations. In any case, it is always possible 

to construct a frustration network which behaves as a disorder variable in the sense that it 

has a non-vanishing expectation value in the disordered phase. 
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APPENDIX A: DUALITY RELATIONS FOR THE GAUGE INVARIANT 
SPIN-SPIN CORRELATION FUNCTIONS IN THE PRESENCE OF 

FRUSTRATIONS: ISING MODEL (d = 2,3) 

The gauge invariant spin-spin correlation function (0. (IIA)c.) , in the 
1 WJ) ’ 

CT = 1 gauge, can be written as 

(A.1) 

We want to derive a duality relation for (2.21) - (3.9). The first step is to 

bring all the A variables into the exponentials. The following identify is 

useful for that purpose. 

& B 
A 

e =ie y 14 -ip 
. - 

Let us define a dki@tQd fink cuup.&zg K%(r) along the path I'. 

(A.2) 

(A.3) 

Define R to be the distance (= number of links) between sites i and j: 

R = Ii - jl. With the definitions given above, the gauge invariant correla- 

tion function reads (for finite Kp): 

(A.41 
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which turns out to be equal to 

(A.51 

A.1 Two Dimensions 

In 2-D the duality relation takes the form (see Eqs. (2.5) - (2.10)) 

(~.6) 

where (Si} are Ising spins residing at the sites i of the dual square lattice. 

Kc(r) and H*(Qi) are defined as 

(A.71 

Remember that Ki and KR follow the same duality relationship. Since 

(~.8) 

is an exact identity, (~.6) can be written as 
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(A.9) 

The duality relations (A.7) together with the fact that 

(A.10) 

lead us to the conclusion that the link dual couplings K;(r) satisfy 

a (A.11) 

We conclude that the string of gauge variables nA transforms into a M%& 06 
. -. 

Q?Lpped dLLae ban& (Fig. 8). The flipped dual bonds are those which are 

pierced by the string. 

We now return to the constrained situation K -+ 00. Thus we set H* = 0. 
P 

The correlation function, in the dual system (with a dual string of 

flipped bonds), is written as 

(A.12) 

We now proceed to write (A.12) in a gauge invariant manner. 
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Define A.. to be the dual gauge variable of dual link ij. Then (A.121 
13 ."." 
w-9 

holds for the configuration 

Introducing strings of A'S between-the s variables pairwise, Eq. (A.12) can be 

written (Par this configuration of A's) 

. (A.131 

with the same conventions used for Eq. (2.22). Again n is the number of times 

the pafzh r connecting the correlated spins i and j crosses the paths I' joining 

the frustrations. Eq. (A.13) is manifestly gauge invariant. Thus, from Eq. 

(2.11, we can write 

-- 

where 

N -1 

ii! i; 
’ (?)= 

. 

(A.141 

.I 
1 = i,j 

. 
t: / .’ ST- _ 
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A.2 Three Dimensions 

We have already pointed out in Section III that the 3-D Ising model is 

dual to t%e 3-D Ising gauge theory (Eq. (3.7)). Therefore, all the manipulations 

we have performed from Eq. (A.5) up to Eq, (A.12) can be paralleled here too. 

Thus, in analogy with (A.12) we can write 

. - 

where 

Since frustrations come in tubes (see Sectionm) from Eq. (A-15) it follows 

that the gauge invariant spin-spin correlation function in the presence of 

frustrations dualizes into the loop integrals in the presence of a tube of 

overturned plaquette couplings. This tube begins and ends at the correlated 

spins and follows the path I' of A variables. 
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I 
APPENDIX B: DUALITY RELATIONS FOR THE GAUGE INVARIANT SPIN-SPIN 

CORRELATION FUNCTION IN THE PRESENCE OF FRUSTRATIONS: 
XY MODEL (d = 2,3) 

The gauge invariant function for an XY system is given by 

I 

. . I 

03.1) 

where $,(i) are the gauge variables, o,(i) is the frustration field 

CWp(i) = &I-lyX y A A $ (i) and sp(i) is an integer variable which specifies the 

path r connecting the correlated spins, i.e., 

The thermal average is taken in a fixed distribution of frustrations. So 

C3.3) 

The first step in the duality transformation for an XY model is to perform a 

Fourier expansion at each link. Further integration over the angular XY vari- 

ables 8 at each site leads to the existence of constraints in the transformed 

model. Within the Villain approximation the correlation function (B.3) takes 

the form 
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(B.4) 

where Z{Su) is the partition function 

(B.5) 

These expressions are valid regardless of the dimensionality d of space. In 

fact, Jose, et al:, (23) have obtained Equation (B.5) in their discussion of 

the correlation functions of the pure 2-D XY model. We follow closely their 

approach. Space dimensionality becomes important in solving. the constraints. 

B.l Two Dimensions 

In two dimensions the constraint that the integer valued link variables 

au(i) must satisfy 

can be satisfied if we write R + S 
lJ u 

as a curl, i.e., 

(B.6) 

(B.7) 

where the dual variables n(i) are the (integer valued) degrees of freedom of 

the (dual) surface roughening model in two dimensions. 

Hence, Eq. (B.3), written in terms of the surface roughening variables 

n(i), reads 
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(B. 8) 

The partition function Zs,(Slll p re resents a surface roughening model with all 

its integer variables shifted by one unit on those dual links perpendicular to 

the original path r. Defining the dual of the string variable Sll(i) as 

the partition function ZSR(tu(i)) takes the form 

(B.9) 

t 

(B.10) 

Thus, 

c, = (B.11) 

For arbitrary boundary conditions, the frustration field $(;ir) must satisfy 

the "neutrality" condition ,2$(i) = 0 (mod. integer) (Eq. (4.21)). 
i - c 

From (B.ll) we see that, through a duality transformation, shifted bonds 

are mapped into correlated dual variables and vice versa. We have already found 

this result within the Ising model duality transformations. 

Finally, we can perform a further duality transformation: the mapping 

to the Coulomb gas. The Poisson summation formula transforms (B.ll) into the 

expression 
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(B.12) 

and 

1 (B.13) 

In order to integrate out the X variables, it is useful to expand the square 

and to rewrite (B.12) - (B.13) in the compact form 
. - 

(B-14) 

where the source J(9) is given by 

(B.15) 

After performing the path integral, the expression between brackets in (B.14) 

becomes 
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where CSW(T) is the spinwave result for the correlation function of the pure 

system 

(B.17) 

Z{$) is the partition function of the Coulomb gas with impurities, G(i - j) is " -. 

the lattice Coulomb propagator and 

(~.18) 

The reduced lattice Coulomb propagator G'(T) is asymptotically equal to log 171 

(d = 2). Following JKKN (23) we make use of the Cauchy Riemann equations for G'(z). 

(B.19) 

We also define the angle et';3 

which represents the angular position of the vortex or frustration respect to 

the integration site j. The branch of the logarithm is chosen in such a way 

that 8 is measured accordingly with the usual convention from the positive X 

axis and ranges between 0 and 2n. Thus, 
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(B.21) 

where the expression between brackets is the parallax angle of the frustration 

(or vortex) as seen from both ends of the path I'. However, it has to be 

specified whether this angle is being scanned clockwisely or counterclockwisely. 

Such a specification depends on the position of the path (i.e., is path depen- 

dent). Consider the case in which the path is a straight line To from site i 

to site j. Then for all frustrations lying to the left (right) of the path, 

. - the parallax angle has to be computed clockwisely (counterclockwisely). For an 

arbitrary path r the rule goes as follows: Compute first the parallax for the 

straight path Yfo. Then compute the c,&Jded line integral (B.20) along the path 

r + I', (where '0 is the negatively oriented path To). If the frustration is 

left inside the closed path and the orientation of that path is positive 

(negative) then the line integral (B.20) along an arbitrary path r is shifted 

by 2~ (-27~). For a pure vortex, all these considerations are unimportant 

since they imply shifting the argument of (B.15) by 27rM. Since frustrations 

are fractional vortices, these shifts are detectable. In fact; they are in 

analog of the (-l)n factor already found in the 2-D Ising model. 

Finally, the gauge invariant correlation function Cl.($) in the Coulomb 

gas representation is 
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(B. 22) 

where the numerator is averaged in a Coulomb gas with a fixed distribution of 

impurities (frustrations) 9(i) and the denominator is the pure Coulomb gas. 

The sites i and j are the endpoints of the path r. Notice that since the 

denominator is evaluated in the pure Coulomb gas, it is path independent. 

B.2 Three Dimensions 

In three dimensions the constraint 

. - 

can be solved by requiring R + S P 1-I 
to be a curl, i.e., 

(B-23) 

(~.24) 

where the dual variables nu(i) are the integer valued degrees of freedom of 

the (dual) gauge theory in three dimensions. 

Hence, Eq. (B.3), written in terms of the (dual) gauge variables n,,(r) I 

reads 

(B. 25) 



where 

(~.26) -- c, 

and ZGTttUy(;)) represents the partition function of the (dual) gauge theory 

ukth a tube 06 hi&$&d plaqueAXe intmatiann. 

(B.27) 

Thus, the gauge invariant correlation function is 

In the gauge theory picture, the line Su(i), defining the path of the correla- 

tion function in the 3-D XY model, is just a line (tube) of.external magnetic 

flux "injected" in the system by sources residing at the endpoints of the 

path r. Here again the frustration field is constrained by the condition 

A @I (i) = 0. (mod. integer). 
lJ v- 

To write Eq. @LB) in terms of the topological excitations of the 3-D 

XY model, we use once again the Poisson summation formula 

(B.29) 
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Expanding the square in the exponent we obtain 

(B.30) 

where the current J,(z) is given by 

03.31) 

Since tuv(&) is an anti-symmetric tensor, the last term in the current does not 

affect the constraint equation (5.11) 

(5.11) 

Hence, we obtain 

(B.32) 

where G'(i - j) is the reduced Coulomb lattice propagator in three dimensions., I ." 

and the summation is restricted to those configurations which obey Eq. (5.11). 

After some algebra, Eq. (B.3g) takes the form 
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(B.33) 

where the averages are taken in the gas of topological excitations with impuri- 

ties (numerator) and without impurities (denominator). 

The spin-spin correlation function of the pure system is given by 

(B.34) . - 

The factor C SW is the spinwave approximation to the correlation function 

c s 'rrf 

At large distances, Csw is given by 

(B.35) 

(~.36) 
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FIGURE CAIYrIONS 
-* 

Fig. 1” Location of the degrees of freedom of the spin glass system. Here the dark dots 

represent the spin (sil:e) variables u and the crosses represent the link (gauge) 

variables A. 

Fig. 2 A gauge transformation. Dark circles are spins pointing up and white circles are 

spins down. The signs on the links denote the values of the link variables A. 

Fig. 3 A frustrated plaquette. 

Fig. 4 (a) One flipped bond creates two frustrations. 

(b,c) Two separated frustrations are created by a dual siring of flipped bonds 

between them. The broken line is the dual string. The strings shown in (b) and 

(c) are equivalent. 

(d) A closed dual string of flipped bonds is a closed dom?in wall. It does not 

create frcstrations. 

(e) An infinite domain wall is a dual string running from one side of the 

boundary to one another. 

(f) A single frustration has a infinite string of flipped bonds. 

(g) Four frustrations created by 2 flipped bonds. The orientation of the central 

spin (dark dot) is the degeneracy of the ground state. 

Fig. 5 A gauge invariant correlation function is defined for two lattice sites (i and j) 

and the path Tij of links joining both sites. There is a u variable at each end 

and an A variable at each link of the path Tij. 
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Fig. 6 Two tIifferen%i paths bctwt-en site5 i and j. The ~~rrt’lation function for both 

paths differ in a factor (-1)N where N is the number of frustrations within the 

dashed area. 

Fig. 7- (a) Th e gauge invariant spin-spin correlation function. The correlated spins 

reside at sites i and j, and T(ij) is the path of the string of gauge variables A. 

The frustrations,’ here denoicd by crosses, are linked together by strings with 

paths r. 

(b) The dual transformed of the situation described in Fig. (7.a). Correlated 

spins and frustrations exchange their roles. The string I? intersects the paths r 

three times: the correlation function picks up a minus sign (eq. 2.22). 

Fig. 8 A frustration lying between two correlated spins. The dark links represent the 

flipped bonds we chaos, e as a representation of the frust,ration (cross). The 

broken line is the path r of link variables. 

Fig. 9 Two nearest neighbor frustrations pierced by the string of link variables. 

Fig. 10 Magnetization of a region between two frustraticns. The situation is the dual of 

that depicted in Fig. 9. 

Fig. 11 A cube and the six links dual to its faces. 

Fig. 12 A closed tube of frustrated plnquettes. The broken line represents the loop of 

dual links involved in the loop integral (3.10). 

Fig. 13 (a) Two face to face tubes frustrated plaquettes here represented by the closed 

loop of dual link variables threitding the p’aquettes together. 

(b) When R<<d the minimal surface spanned by the loops is the lateral surface 

(shaded in the figure). 
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(c) When R>>d the minimal surface is the surface spanned by each loop 

independently. 

c, (d) The minimal surface spanned by two orthogonal loops. 

Fig. 14 The gauge invariant spin-spin correlation function in the presence of two 

frustrations (impurities) of strength q and -9. The paralax is 2~. The dark line 

represents the string of ga lge variables 1c/. 

Fig. 15 The “salt crystal”. Each plaquette is frustrated. The strength is q. This is 

Villain’s “odd model”. 
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