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ABSTRACT 

We show that the cross section for large transverse momentum reactions 

A+B-. C + X can be expanded in terms of a sum of incoherent hard scattering 

reactions where groups of interacting constituents have small transverse 

momenta relative to A, B or C. The effects of large transverse momentum of 

the constituents cannot be represented in terms of simple convolution integrals, 

but are correctly incorporated in terms of a sum of subprocesses which, in 

_ 
physical processes, usually correspond to non-leading terms. This hard 

scattering expansion yields a series in inverse powers of 5; in the case of $3 

field theory or the constituent interchange model, and a series ia inverse 

powers of log (log pc ) in the case of asymptotically free field theories. 
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1. INTRODUCTION 

The study of high transverse-momentum products in proton-proton colli- - 
sions is very important to our understanding of the structure and dynamics of 

192 hadrons . The most successful models 3,495 separate the scattering into 

two steps, first the emission of a constituent from each proton and then the 

large angle scattering of these constituents as a subprocess. In addition to 

single-particle inclusive processes at high transverse momenta these hard 

scattering models predict jet processes ia which the products of the hard sub- 

process each fragment (or decay) into several particles which amongst them- 

selves have small relative transverse mome.nta but which, taken together, have 

a large transverse momentum relative to the incoming beam direction. The 

study of such jets gives new information on the properties of the hard scatter- 

ing process. The correlations between single particles 677 or jets 8 on one 

-. side and jets on the other side is particularly sensitive to the transverse 

momentum of the subprocess relative to the collision axis. Anomalously large 

transverse momenta have been observed for lepton pairs in the Drell-Yan 

+ - 9 production of p p and this suggests the transverse momentum of the quark 

constituents should be included in the description of such processes. We shall 

call the constituent transverse momentum, (transverse) fluctuations. 

Constituent fluctuations have generally been neglected in calculations 

because they have been assumed to be much smaller than the relevant kinema- 

tic parameters of the high pT process (total energy, detected transverse 

momentum, invariant masses). Their size was taken to be of the order of the 

typical mesoa transverse momentum in hadronic processes, a few hundred 

MeV, but it has been noted that the transverse momenta of the constituents 

which fragment alo.ng the collision axis could be as large as 1 CeV. 10 This 



-3 - 

remark implies a substantial spread in transverse mome,ntum of the constitu- 

ents within the incident particles themselves. 

ITis evident that the effect of constituent fluctuations merits detailed study 

especially in the light of striking claims that such fluctuations can strongly 

affect the predictions for the cross 4,11,12 
section -and the power-law 

behavior of high transverse momentum processes. 496 

Parton models for large transverse momentum processes A + Ip- C +X are 

generally based on the probablistic expression (1) corresponding to Fig. la 

E A (A+B-cC+X) = c 

1 

dp3 J 
dx G 

a&cd o a 

(1.1) 

iii do (xc) S(i+z+;)~ 3 (a+b-.+c+d) 

where the G(x) are the probability distributions in the (light cone) variable x, 

and g =xaxbs, ^t=xa/xCt, i=xb/xcu are the Mandelstam variables of the sub- 

process, which is effectively on-shell. In general there is an incoherent sum 

over the contributing hard scattering reactions a+ b-+c+d. Eq. (I. 1) is nor- 

mally derived in model field theories after making a rather long list of approxi- 

mations r In Section II we enumerate some approximations and illustrate their 

accuracy quantitatively. In fact we show that if all leading subprocesses are 

included in the sum in Eq. (I. 1) then Eq. (I. 1) gives the exact large p T cross- 

section to leading order. 

It is often assumed that Eq. (I. 1) can be immediately generalized to 

include transverse fluctuations by using simple convolutions of da/dt (taking 

^s = XaXbS - 21Za T’+’ etc. ) with probability distributions G a /A (xay rTa) ) 

Gb/B (xb’Fm) and Gc/c(Xc’ ‘Tc ). Although this procedure may have heuristic 
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value for small transverse fluctuations, it becomes increasingly misleading at 

large k 
aT * 

The difficulties are related to the following 

(1) The interacting partons a and b are in general 

we can write 

rGa + m2 txa) 
I-xa I 

since pA and pA- ka are effectively on the mass shell. (The quantity m2(xa) is 

considerations. 

off -shell and spacelike: 

a linear combination of particle masses squared). Thus for large kTa and/or 

xad 1 the subprocess da/d? (a+ b-c+ d) must be evaluated far off-shell. In the 

case of (massless) gluon exchange contributions in QCD calculations, this fact 

easures that the gluon pole at t” = 0 never occurs in the physical region. This 

crucial effect was neglected in the early calculations of Ref. 6 where artificial 

cutoffs were needed to ensure finite results for a gluon exchange model. 

(2) Because of the off-shell nature of the interacting particles, the gauge- 

invariance of subprocesses involving gauge fields cannot be maintained in 

simple hard scattering models. Further, it is clear that the probabilistic 

interpretation of the parton models fails; from the perspective of time-ordered 

perturbation theory, non-classical time-orderings of the interactions mustbe includ- 

ed when the intermediate states are far off the energy shell (large kT or x-4). 

(3) In general there are other processes such as a+ b -.c +d + e where 

three (or more) systems (jets or clusters) are produced with large transverse 

momentum and where the invariant mass of any pair grows with pT . The 

contributions from such subprocesses give additional terms in the summation 

(Eq. (I. 1) and represent coherence corrections from a+b-c+d in the large 

% region. In softened field theories, such contributions are non-leading by 

powers of pT . In renormalizable theories, the relative suppression is only 
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logarithmic. We discuss this in detail in Section II and III. 

(4) The heuristic approach to transverse momentum fluctuations leads to 

- 
confusion concerning the identification of subprocesses. For exa.mple consider 

the contribution to large -pT quark-jet production in pp collisions arising from 

qq-+qq shown in Fig. 2a. The radiated gluon in the figure is one source of 

kT fluctuations for the interacting quarks. When such fluctuations are large (of 

order pT ) this contribution to the Feynman diagram is better represented by 

Fig. 2b which can be identified with the parton model subprocess qg-qg. As 

another example consider the contribution to a high pT meson-baryon reaction 

shown in Fig. 2c. From one point of view, this is simply a high pT qi-.q< 

scattering reaction where the i already has a substantial transverse momen- 

tum fluctuation in the direction of the detector. However, because of the fact 

that the interacting c at large kT cc pT is far-off shell (spacelike), the mass of 

the 44 system in the final state can be very small! In fact in the case of MB-, 

M’X, i. e. , a high pT single meson trigger, the q< system can be identified 

with the trigger particle. [;This is actually a favored configuration since there 

is no suppression factor (typically of order 10 -2 ) from quark fragmentation 

q-M’. ] Thus from this point of view, the hard scattering subprocess can be 

considered as Mq-M’q’ where the interacting constituents have negligible kT 

fluctuations. Thus because of the lack of precision in the definition of hard 

scattering models, two seemingly dissimilar models are actually equivalent. 

Although the q<.+q< subprocess has canonical pi4 scaling in a renormal- 

izable theory such as QCD Born diagrams, one easily finds that the subprocess 

Mq-- Mq’ gives a pi8 contribution to inclusive reactions. In fact, the subpro- 

cess 

d$ (Mq-+M’q’) = A&. 
su 
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(which is part of the constituent interchange model (CIM)) is consistent with the 

scaling behavior and angular dependence of the subprocess extracted phenom- 
4 

enologically from Fermilab and ISR pp-. MX data below pT = 8 GeV assuming no 

% fluctuations3, 

(5) It is unnatural to consider arbitrarily large kT fluctuations (i.e. kT 

apT) as arising from an intrinsic parton momentum distribution with a hadron. 

In order for such fluctuations to occur there must be an internal hard scatter- 

ing processes (obtained, for example, from the iteration of the Bethe-Salpeter 

kernel), where the other constituents or gluons take up the recoil. Thus if we 

- again consider Fig. 2 from the standpoint of (off-shell) iq-.iq scattering, the 

production of the high pT systems cannot be localized within a single hard 

scattering subprocess. 

It is clear that as long as one considers small transverse momentum fluc- 

tuations satisfying 

-2 
kTa 

2 
2 -5c a 2 

1-xa e ‘T ’ 1-xb e ‘T 

the ambiguities and problems discussed above should give only non-leading cor- 

rections . However for ki N 0 (pt (1 -x)), the parton hard scattering model 

becomes ill-defined. 

The only reliable solution to the above list of ambiguities resulting from high 

transverse momentum fluctuations is to carefully follow the guide of exact Feynman 

diagram calculations. Despite such complexities we have found in some 

model field theories that one can still define with some precision and numerical 

accuracy a hard-scattering expansion in which the transverse momentum fluc- 

tuations are implicitly included. In these model calculations, we have verified 

that the complete Feynman diagram contribution can be accurately expressed at 
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large pT - as a sum over distinguishable on-shell, low transverse fluctu- 

.- ation subprocesses a-d, where each of the interacting systems a, b, c, d 
-n 

are in general multiparticle systems. The scaling behavior in p 
T of each 

contribution can then be determined from the total number of active particles in 

the subprocess, using dimensional counting rules 18 . Further, the contribution 

from each of the subprocesses is well-approximated by ignoring transverse 

fluctuations. 

In the context of the hard-scattering models 1,3,13 we have examined the 

effect of constituent fluctuations on the cross section for detecting a particle at 

large transverse momentum in proton-proton collisions. All our calculations 

are for the cases where the detected particle is emitted at 90’ to the collision 

axis, although this is not crucial. The fluctuation-independent distribution 

functions for the emission of a quark from a proton are taken from the SLAC 

data on lepton-proton scattering 14 _ , and the transverse fluctuations are 

included by multiplying these functions by various normalized x-dependent 

distributions. 

We have paid particular attention to the effects of some common approxi- 

mations to the kinematics and dynamics of such processes in both physical and 

model processes. In Section II we consider an exact model G3 field theory 

analogue of relevant processes and we use it as a theoretical laboratory to 

discuss and illuminate the effects of approximations and their pitfalls. We 

contrast subprocesses which are respectively described by ^s and 3 channel 

poles. The transverse fluctuations have an effect which can be directly inter- 

preted in terms of a hard-scattering expansion of the full cross section 

discussed in (II. C). Each term conforms to the kinematic restrictions of the 

parton model in which the constituents have limited transverse momentum; 
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hence the necessity for grafting transverse fluctuations onto the parton model 

in some approximate way is obviated. 

In Section IV we consider several physically important subprocesses and 

discuss the effect of transverse fluctuations in the context of the approach 

developed in section II and III. The single lepton spectrum from the Drell-Yan 

process as a function of transverse momentum derived from a rapidly falling 

distribution is found to be very nearly independent of the effects of such consti- 

tuent fluctuations in agreement with the discussion in section II and III. Other 

competing subprocesses for lepton-pair and single-lepton production are listed. 

One model in particular is discussed 15 which may be interpreted as the origin 

of a dominant contribution to the transverse momentum distribution of anti- 

quarks in the proton at intermediate values of kT and which explains the 

experimentally observed transverse momentum distribution of p-pairs as a 

i function of their invariant mass. We find that at high transverse momentum the 

single-lepton spectrum predicted by this process agrees with that predicted by 

the naive (q@-+/.@) calculation. Prompt meson production in the Constituent 

Interchange Model (CIM) is briefly considered, and we discuss the quark-scat- 

tering subprocess for quark-jet production. In the latter case the errors of an 

on-shell approach are illustrated and the effects of quark transverse fluctua- 

tions are interpreted in terms of new subprocesses contributing to quark-jet 

production at high-pT . 

In section V we present our conclusions and suggest a general method for 

analyziag contributions to high momentum transfer processes involving bound 

states which is applicable to renormalizable and super-renormalizable theories. 
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II. STUDY OF AN EXACT MODEL: @3 THEORY 

horder to study the various approximations usually made in large trans- 

verse momentum calculations, we shall study in detail the behavior of the Born 

diagram structure of @’ field theory which we can evaluate exactly. The prin- 

cipal features of the calculation mimic the phenomenological features of most 

hard scattering models, including the pi8 behavior of the pp,nX data at fixed 

xT = 2pT/& and 0 
cm’ 

A. Kinematics 

In q3 field theory we consider scattering processes of the type depicted in 

Fig. la with the particles labelled by their four-momenta. All kinematic vari- 

ables are defined in the usual manner 16 and those referring to the hard-scat- 

tering subprocess (k,, kb)-(kc, kd) are $, f, and G. We separately discuss the 

two cases shown in Fig. lb and Fig. lc in which the subprocess is represented 

by an g-channel pole and al-channel exchange respectively. The differential 

cross-section may be written as 16 

da= g4 ’ 
k”,- p”, 

M 2. (@4. “4(pA+pB-Pa-Bb-kc-kd) 

A- 
(2.1) 

where 

. l-l d4pf &P:-- m$ 
f- 

(W3 

A=A(s, rni, mi) =(s-(mA+ mBj2) (S-tmA-mB)2) 

g is the vertex coupling constant and 

I g2((ka+ kb)2- rn2)-l for G-pole case 
M= 

g2((ka- kc)2 - m2)-l for $-pole case 

In the following we consider any collinear frame where the incident parti- 
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cles define the g-direction. Momenta are denoted by k’ = (k”,k , k3 ). We 

analyze the cross section (2.1) in terms of light-coae variables 16 defined by 
4, 

(Unless otherwise stated all formulas that are given for (a,A) alone are valid 

for (a,A)-(b,B)). Then 

(2.2) 

The parton 4-momentum k”, is determined by momentum conservation and is 

not on the mass-shell but satisfies 

kz=Xa(gA- r:+p: - Ti,“) 
(1 -xa) -x a 

where we always take MA< pa+ 

G 
a/A (xa, Ea) = iT2 

2(27r)3 

The subprocess invariant cross section is given by 

(2.3) 

m a’ We define the vertex distribution function 

xa (1 -Xa) 

(rz + (i-xa) (miBXagA) +x p2 )” 
(2.4) 

a a 

da-Ax7 1 
x-- 167~ A M2 

where - 

Using (2.2) and (2.4) we can cast (2.1) into the form of an invariant differential 

cross section for detecting particle p (z kc, see Fig. la) 

P 
od3cr 1 -=- 

dp3 r 
dxadradxbdEb 

*G b,-JJ(Xb’Eb) $ - - 
I; da 6 

ab J- A dt 

G a/A (Xa ’ Xa) 

(i+;+;-kt-ki-rnz-rni) 
(2. a 
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The function Ga,A (x,, xa) was defined in such a way that the form of (2.5) 
. 

has a simple parton model interpretation. 
4 

Ga,A(~a, Ea) dxadra is interpreted 

as the number of partons, a, emitted by particle A with longitudinal momentum 

fraction between xa and xa+ dxa (in the high-energy limit or in the infinite 

momentum frame) and with transverse momentum between Ti,. and Xa+ dEa. 

The partons ka and kb then scatter in an independent subprocess except that the 

particle flux is defined by xaxbs and not s. However, even though such an in- 

terpretation of (2.5) is seductive in its simplicity, we must emphasize that 

(2.5) is an exact representation of the process shown in Fig. la when interpret- 

ed as a Feynman diagram in which case the transverse momentum distribution 

of the partons is predicted and is given by (2.4). The kinematic region over 

which (2.5) is integrated is determined by solving the following constraints (17): 

o< x - a ,Xb <l - 

G-6) 

p2= t 
sr;-k2,%k2t2 

a b 

A& $9 k;, 
-Mf >0 

I - 

where 

,,;-k2 a-k; , t=t-ki- m:, i= i-k:- mz 

P is the transverse momentum of kc or kd in the subprocess center-of-mass 

frame. The delta function in (2.5) must also be solved to yield a relation 

between the integration variables. 

Ln Section II. B we will compare the exact calculation (2.5) with various 

approximations. From the form of (2.5) it is easy to infer the effective power 

law behavior of the invariant cross sections for xT N 1 or xTw 0 
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P O&* 

4 
4 

4 3 

dp3 

9=-g 
m4 

XT(l-XT) f(Ocm) (2.7) 

.- PTb 

where x T = 2pT /JZ, and g2/ m2 results from the integration of G(x,T?) over‘l2. 

In order to estimate which kinematic regions of the integral (2.5) yield the 

most important contributions to the cross section at large transverse momen- 

tum we must isolate all important hard scattering subprocesses. Following 

the counting rules ‘3 (which follow from dimensional analysis) each subpro- 

cess at fixed x T behaves like l/ (P;)~ where N = A * (no. participating parti- 

cles) - 2 where h = 2 for the G3 theory and A = 1 for the re.norma.lizable theory. 

The power F of (1-xT) is given by 2 . (number of spectator particles) - 1. In 

Fig. la-lc the subprocess selected for illustration is the one which leads to the 

conventional parton model interpretation discussed earlier where k recoils 
C 

. 

against kd . However, in both cases (lb) and (lc), subprocesses other than 

those illustrated are equally important and these are shown ringed by dotted 

lines in Fig. Id and Figs. lc and lf respectively. These extra subprocesses 

all give contributions which behave like p; 8 for fixed xT. The high transverse 

momentum generated by the process of Fig. (Id) is produced by kc recoiling 

against lla. In this subprocess ka is the t-channel exchange particle and hence 

k”, must be assigned its exact off-shell space-like value of order sT/(1-xa) - 

given by (2.3). (We ought not to fix k”,= rni as an approximation any more than 

we would put the exchanged particle in the original t-channel subprocess (fig. 

lc) on shell. Indeed, if we did the latter the calculation would lose all sem- 

blance of credibility.) From Eq. (2.3) the off-shell value of k”, depends (apart 

from masses) on the value of xa and I?a which, for the subprocess of Fig. Id 

is of the order of the pt of the trigger particle kc. Consequently the isola- 

tion of this subprocess explicitly shows the contribution that the transverse 
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momentum xa of the parton (relative to its parent FA) makes to the total 

large-p 
2 

scattering cross section. 

-8 The process of Fig. le contributes to the pT behavior of the cross 

section at fixed xT and the high transverse momentum is produced by q recoil- 

ing against Pa. The trigger particle, kc, is then produced by fragmentation 

(or decay) of q as one member of the low mass pair (kc, kd). As emphasized 

above k”, should be assigned its correct off-shell space-like value in order for 

this subprocess to be correctly included. 

In the language used so far the effect of transverse momentum fluctuations 

of a given parton is determined by analysing all possible hard-scattering sub- 

processes in which that parton carries the large pT momentum. Counting rules 

then tell us whether such processes contribute in the leading order or not. This 

procedure treats all kinematic regions democratically and never begins by 

i assuming that transverse momentum fluctuations may be ignored as an approx- 

imation when calculating leading order effects. Thus the production of a large 

pT particle can always be identified with one or more explicit hard scattering 

subprocesses. Using this enumeration, one need never refer to parton model 

wavefunctions with large transverse momentum fluctuations. 

In the phenomenological parton model picture which is often used as an 

approximation the fundamental process is defined to be given by Fig. la and the 

parton transverse-momentum distributions (2.4) are not necessarily deter- 

mined by the internal consistency of the model. The integral expression for 

the invariant cross section (2.5) is then used with various approximations to the 

kinematics in order to predict the large-p?, behavior of the process. The fact 

that this prescription does not explicitly exhibit the democracy of Feynman dia- 

gram approach discussed earlier does not detract from a given model which 
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might be validated on physical grounds. However such an approach may in 

some cases obscure the effects that a given approximation has on the final 
4, 

result. In this context a common error is to believe that the parton transverse- 

momentum fluctuations may always be included by convoluting the transverse- 

momentum distribution of the parton with the cross section calculated without 

fluctuations. Clearly the analysis discussed earlier cannot be interpreted in 

this way and a detailed inspection of (2.5) confirms that the integral cannot be 

rendered into the form of a convolution. 

In the next subsection we discuss the effects of various common approxima- 

tions to the integral (2.5)) especially with regard to the breakdown of the full 

processes into the relevant subprocesses as described in this section. In order 

to compare later to the often made parton model assumption (i.e. , simple im- 

pulse approximations) we introduce an on-shell parametrization for the par-tons 

-. ka and kb . We define 

kp = ([r2+(x a a p3)2+m2]’ aA , Ea, x,P;) 
(2.8) 

where x is the Feynman longitudinal momentum fractioa. This leads to a a 
purely ad-hoc modification of the integral (2.5) which is not kinematically con- 

sistent since it puts ka and kb on the mass-shell whereas we have already seen 

that momeatum conservation requires ki- rnt to be spacelike. The largest 

error occurs when k”, is farthest off-shell which from (2.3) can be seen to be 

for large a or ~~-1. 9 We will discuss the effects of putting the -partons on 

mass shell for various large pT proton-proton processes in section IV. 

B. Effects of Approximations 

The kinematic constraints which determine the region of integration in (2.5) 

are given in (2.6). Other equivalent constraints may be substituted for those in 
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(2.6) in terms of the external process variables s, t, u. However, in a calcu- 

lation which approximates the kinematics there can be a mismatch between 
4 

different sets of constraints and some may allow a region of integration to con- 

tribute which would be forbidden in an exact calculation (e. g. reaching a pole). 

AS an example consider the process for which the detected particle is at 90’ in 

the center-of-mass of the incident particles. Ln this case the delta function in 

(2.5) may be written, to leading order in s and ignoring masses, as 

6 (s+t+u-k;-k;) = 
(2.9) 

6 (Xaxbs-p&-iXa+x~) + p; - ,.f2 I xaFz xbXt ) 
d (l-xxa) + (l-xb)) ’ 

where 

For I!? and x2 a b small this gives the usual solution 

Xb = xa ‘T/F 

x;t- pT/p 

which in conjunction with the fall off (l-~)~ of the distribution functions g(x, k) 

determines the major contributioa to the integral (2.5) to be for xa, xb N 

2PT 16 - For the t-exchange subprocess the pole would be reached for %!a = 

CT , Xb = 0. Then 

Xb = 

which has solutions for xa N 0 and xb N pT &. However, for this particular 

region we find 
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x k2 
; = xax@?a-~$2 + (ltxa) + 

4, a 

which is space-like and hence unphysical since it cannot make two on-shell 

final state particles. Generally the effect of the space-like momenta of the 

partons is to ensure that the main contribution to the integral is from the (well- 

understood) region where xa, xb = 2pT/Js. We should beware of any approx- 

imation which allows the integral to receive a contribution from physically 

forbidden regions. The relation between integration variables, because of the 

delta function constraint, may also be altered by the approximations. 

The exact expressions for the relevant kinematic variables are 

s=(PA+PB)2Y t = (PA-PC) 9 2 u = (p,-p(+2 

^s = (ka+ kb)2 = xaxbs’ + k; + k2 
2 2 

b-2%a*cb + malmbl 
x x s’ ab . 

l=(ka-kc)2=xat1 +kz+mc m2 m2 +2Fa’ jTT + a.1 Cl 
xat’ 

k )2 = xbul + kE+ rnc 
2 2 

1;= (kb- c - +2F;6’pT + “bl”cl x u, 
b 

(2.10) 

slt’uf - M2t12 
A 

A(s, l$, ME) 
C 

where SI = pA.pB+ J(pA. p,) 2-M;M; , t’ = -PA’ PC- J@A* P,) 
2 2 2 

-MAMG, 

u’ = -pg. PC - ‘@B’ PC)2 -M;M; 

maL2=$+k2 a’ mbf=?b+ki, mcf=42 kc +m”, 

We have calculated the effects of several different approximations in the +3 

theory for the two cases where the subprocess in Fig. la is taken to be an 
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.- 

s”-channel pole or a l-channel exchange pole. The results of this investigation 

are contained in Figs. 3, 4, and 5. For the light-cone parametrization we 

have chosen six different approximations to the exact calcu1atio.n which are: 

(1) NO approximation - i. e. : exact calculation. 

(2) The matrix elements for the subprocess are simplified to be 

2 -1 
g2 tXaxbS- m ) ^s -pole 

M= 
2 -1 

iZ2 txat - m ) i-pole 

(3) The correct matrix elements are used but the transverse-momenta %!a 

and l? b are set equal to zero when calculating the effect of the delta-function 

constraint. 

(4) As (3) but the simplified matrix elements defined in (2) are used; i. e. 

(4) = (3) + (2) * 

_ - 
(5) The transverse momenta ra and ‘;;3 are put equal to zero everywhere 

except in the parton distribution function which is trivially integrated over ‘;za 

and Xb. The correct subprocess matrix elements are used. 

(6) As (5) but the simplified matrix element defined in (2) are used, i.e., 

(6) = (5)+(2). This corresponds to the naive impulse approximation. The 

difference between (4) and (6) is in the kinematic constraints (2.6) which are 

correctly included in (4). 

The results of these approximations for the single particle cross section at 

9o”, s = 800 GeV2, with all particle masses set equal to 1 GeV are shown in 

Figs. 3a and 3b as a ratio to the exact calculation (1). For s=800 GeV2 we 

expect the range 3 GeV( pT _ < 9 GeV to best illustrate our ideas since the edge 

of phase-space encroaches above pT = 9 GeV, and below pT =3 GeV we should 

not expect to properly distinguish between leading and non-leading subprocess 
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contributions. This is also the region in which parton-model calculations have 

.- been done to study high transverse momentum processes. From Fig. 3a in all 
4 

cases the contribution from the ?-channel exchange graph is reduced in this 

range by a factor of about 1.5 because of the approximations made. In the 

;-channel pole process from Fig. 3b for the same range of pT the contribution 

is decreased by roughly a factor of 2 for all approximations except one. In all 

cases where a reducti0.n occurs the reason for the decrease can be shown to be 

due to the elimination (by the pertinent approximation) of one of the extra sub- 

processes discussed in Section II. A. For an example we consider approxima- 

tion (2) in the E-channel exchange process in which the simplified subprocess 

_ 

2 -1 matrix element M= g2 (xat-m ) is used. For the subprocess of Fig. Id to 

contribute in leading order we require t^=q2= 0 (-m2), ki= -p$ and the exact 

matrix element then behaves like Mex - - 0 (-g2/2i2). However, since xa = 

pT/& andz=-pT,/- s we find that the simplified matrix element behaves like 

-g2/ pk which consequently suppresses the contribution of the subprocess (Id) 

by a factor N 4m4/pt with respect to its contribution in the exact calculation. 

From (2.9) we can see explicitly that in the region discussed above t^ can indeed 

have a small absolute value since the terms depending on ra cancel the large 

negativeVcontribution from xatl + k”, when ka= TT(rrc) which is the case under 

consideration. 

The result of approximation (5) may be similarly explained for this ?-pole 

process. Even when the integrand of (2.5) is being evaluated for large ra, the 

matrix element is approximated by its value at xa= 0. This is very similar to 

the case just discussed and because of the approximation the matrix element 

again behaves like -g2/pt in a region where in the exact calculation it behaves 

like -g2 /4m2. Consequently the subprocess of Fig. Id makes a negligible 
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contribution. The effects of approximations (2) and (5) on the i-channel pole 

process of Fig. lb are analyzed in a manner identical to that above where the 
4 

processes of Figs. le and If become artificially suppressed. 

It is interesting that the effect of approximation (3) suppresses the result 

in the %-exchange case but not in the g-pole case. In this approximation the 

delta-function constraint is calculated with xa= rb = 0. The constraint then 

becomes 

XaXbS-(Xa+Xb) pT+o (2.11) 

This overestimates xa for a given xb and for ra- zT , $ = 0 compared to the 

exact calculation in the same region which requires 

XaXbS-(Xa+X,,) p,& +2p; - 
2 

‘T -0 
l-x,. 

(2.12) 

Whichever of Eqs. 2.11 and 2.12 pertains, g is able to assume the small values 

(see 2.10) (of order of the quark mass) required for the subprocesses of Fig. 

le and If to contribute. For the s-pole process both xa and xb are calculated 

to be larger in the approximate situation (Eq. 2.11) than in the exact calcula- 

tion (Eq. 2.12), but there is no suppression from the structure functions since 

G(x) N x(1-x) and the product G (xa) . G (x,) assumes roughly equal values in the 

two cases (for G(x) -(l-x) the approximate case would be suppressed). For the 

e-exchange process no values for xa, xb (05x,, ~~21) are compatible with 2.11 
2 and ^tN 0 (-m ) (see 2.10) which is the requirement for the process shown in 

Fig. Id to contribute in the approximate situation. 2 is forced to be 0 (pt ) and 

the result is therefore diminished because the contribution of the subprocess of 

Fig. Id is suppressed by 0 ((m2/p:)2 ), The remaining approximations are 

superpositions of those already discussed and so their effects are easily 

deduced. 
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In order to test the subprocess interpretation in a different way we modi- 

fied the structure functions (2.4) so that the parton fluctuation distributions 4\ 

were 

G(x,k) = G(x,z) 3M4(x) [E2 + M2(x)] 2 

where Mu= m2(1-x+x2) and G(x,E) is defined in (2.4) (equal mass case). 

Because of the faster fall-off in I?’ only those subprocesses shown in Fig. lb 

and lc now coatribute in the leading order. The effects of approximations (l)- 

(6) are shown for the l-exchange pole and g-channel pole processes in Figs. 3c 

and 3d respectively. As is expected there is no significant suppression in any 

of the cases (note the change of scale relative to Fig. 3a and 3 b) since there are 
-8 now no leading pT subprocesses to be eliminated. This model is akin to 

usual models of physical processes where it is assumed that the parton trans- 

verse fluctuations fall off much faster than the transverse mome,ntum in the 

ce.ntral subprocess. 

We have studied the effects of the on-shell parametrization (2.8) of the 

parton momenta in which the intermediate-state partons are on the mass-shell 
2 2 2 (ka= kb= m ) and the results obtained for i-exchange and $-chanael pole proc- 

esses respectively are compared in Figs. 4a and 4b with the equivalent calcu- 

lations using the light-cone parametrization. 

There are several relevant experimental quantities which we can study in 

the +” model in order to estimate how accurately they can be predicted for the 

more complex physical processes. The effective power analysis suggests that 

a good representation for the invariant cross section is 

d3c 
po - = 

Ax; (l-~~)~ A( l-~~)~ 

dp3 
24 = 

(P;+m ) (P$ + m2)2 
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for a fixed energy. For s = 800 GeV2 we fitted the form 

4 1 3 
do 

Tpo-= 
A(~-x~)~ 

XT dp3 (PG + mzfflN 

to the calculated invariant cross section over the range 3.5 GeV 5 pT 5 8 GeV 

(0.25 (~~(0.55, xT = 2pT/ Js ). All masses were set equal to m= 1 GeV, 

and then the scale of the transverse fluctuations is of order 1 Ge Ti! . The 

fitted values of N and F were 

g-channel subprocess N = 1.66 f 0.14 F=4.63* 0.41 

i-exchange subprocess N= 1.75rt 0.16 F =4.63 f 0.49 

The errors quoted are the square-roots of the diagonal covariance matrix-ele- 

ments for the linear least-squares fit to log (p 0 &a - ) . 
dp3 

The analytic value for 

N at p: >> m2 is N =2, and for xT-. 1 one predicts F-3. Deviations for N and 

F are expected because of the mass corrections and the limited range of xT . 

In general the other final state particles do not lie in the plane defined by 

the incoming particles (k A, kB) and the detected particle pa. ~~~~ is the 

3-momentum of p out of this plane where 

where aI symbols denote 3-mome.nta, The average value of this variable is a 

measure of the scale of the transverse fluctuations of the intermediate coastitu- 

ents; < pout 2> is calculated in the exact’ Feynman graph calcu1atio.n and is -c 

plotted as a function of pT in Fig. 5 for both subprocesses discussed above. The 

fact that pout , with MS= 1 GeV is consistent with measured values indicates 

that the mass parameters which govern the magnitude of scale-breaking are set 

correctly in this model. It should be emphasized that even though the kTfluc- 

tuations may give a small correction to the inclusive cross section, they still 
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may contribute significantly to the physical values of heuristic quantities such 

.- y pout,: 

C. DISCUSSION 

-. 

In order to understand the role of parton transverse momentum we must 

consider the Feynman graph interpretation of Fig. la. The regions of integra- 

tion from which the cross-section receives its major power-law-behaved 

contributions mustbe analyzedby examining all the possible hard scattering sub- 

processes. All leading-order subprocesses in pT are equally important to the 

integral. For a given leading subprocess the large transverse momentum is by 

definition generated by scattering within the subprocess and hence only parti- 

cles internal to the subprocess carry large transverse momenta of order pT . 

The initial constituents in the sub-scattering have only small kT (i. e. much 

less than p,) since otherwise they would constitute the high-p?, exchange 

particle of a differeat subprocess which has already been cou,nted or which does 

not contribute in the leading order. 

As an example consider the $-channel pole which has two contributing sub- 

processes shown in Fig. lc and Id. In Fig. lc, ka and kb are the incident 

constituents and q carries the large transverse momentum. In Fig. Id pA and 

q are the incident constituents and ka carries the large transverse momentum. 

The latter subprocess isolates the contribution in which the erstwhile constitu- 

ent ka has large kI,. However, this particle is no longer interpreted as a con- 

stituent of the incident particle but as a participant created in the subprocess. 

It is now clear that constituents can be defined consistently to have only 

small transverse momenta. This is, of course, necessary for the parton- 

model interpretation since it is required that the intermediate constituent state 

be close to the energy-shell in old-fashioned perturbation theory 19 
, which in 
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turn demands that the constituents have small transverse momenta. The x- 

distributions of each constituent differ with each choice of high-p?, subprocess. 
4 

In our example of the subprocess in Fig. lc we have, for both constitue.nts 

G(x) = x(1-x). For the subprocess of Fig. Id we have for constituent pA , 

G(x) =6 (x-l) and for q, G(x)Cr x(1-x)~. In this subprocess q is a constituent 

from the three-body wave-function of pB , the other two constituents kd and Qb 

have zero transverse momenta and are absorbed into a low mass core. We 

thus recover the simple parton model interpretation of the high-p?, scattering 

process where all constituents have small transverse momenta. We must sum 

over all possible subprocesses with the relevant constituent x-distributions in 

order to obtain all the leading-order contributions of the exact approach. We 

refer to this summation as the hard scattering expansioa. 

The results of the preceding analysis enable the following prescription to 

be formulated for calculating all leading order pin f( xT , Ocm)‘contributions to 

the cross section for high pT inclusive processes. This prescription includes 

all effects which were hitherto known as parton transverse fluctuations but 

which are now sublated to new subprocesses. 

(i) Respective constituent members (a, b) of the incident hadrons (A, B) are 

chosen. . (These constituents may be elementary fields such as quarks or gluons 

or may be composites of these fields). All remaining constituents of A and B 

are integrated into the respective cores (AZ, BE) of these particles. These 

spectator systems have essentially fixed masses and have no transverse 

momentum. 

(ii) The transverse momentum of the constituents is neglected and the x- 

distributions G a/A txa) and Gb/B txb) are determined either by analysis 

or by experime.nt (a more detailed discussio.n, including hadronic constituents 
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can be found in Refs. 1, 3, 18). 

.- (iii) The high-p?, trigger particle, C, is produced in the subprocess 
4 

a+b-.c+ . . . as a fragment of the constituent c with fragmentation function 

GC,c (x,). do( ^s) The differential cross section for the subprocess 8 is calcu- 

lated with the incident constituents a and b with zero mass. This is a good 

approximation as long as xa or x b are not close to 1. The correct value at 

zero transverse momentum, from (2.3)) is 

g=xa M;- M;; 
I 

(l-xa) 

(iv) The inclusive cross section A+B-C+X is given by the incoherent 

sum over all relevant subprocesses and constituents (a, b): 

3 
da= c 

1 G 

dp3 subpro - -F 
a/A tx,) Gb/B tx,) G(-/c(XC) ’ -i- 

2 
cesses 
a+b-c+. . . 

“.C 
(2.13) 

. f da(;) S(;+&-;) dxadxbdxC - 
7r dt 

(v) The structure functions to be used are defined by 

opT 
G a/A lx,) = 

/ 
dT;, G a/A (Xa ’ s”;t ) (see section III) 

0 

where a < 1, apT >> 0 (m). In super-renormalizable theories (see section III) the inte- 

gral is insensitive to the upper limit which may be replaced by 00. This is 

compatible with the results of approximations (5) and (6) studied earlier since 

the expansion (2.13) automatically selects kinematics with xa= Fb = 0. 

In order to avoid double counting in (2.13) the undetected particles in the 

final state of the subprocess a+ b-. c + I I d . . . must all share in the high-p?. 

recoil of the trigger particle (i. e. carry transverse momentum greater than 
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e!PT). This means that the leading subprocesses will produce only two final 

state low-mass systems in general, otherwise the cross section is suppressed 

by extra powers of pT . Equation (2.13) is represented pictorially in Fig. 6. 

We have tested the validity of the hard scattering expansion (2.13) for the 

differential cross section and the consequent approximations by considering the 

G-channel process in q3 field theory (Fig. lb). We compared the exact Feyn- 

man graph calculation for the differential cross section with an explicit calcu- 

lation (subject to the prescription stated above) of the sum of all terms 

contributed by leading-order subprocesses (shown in Figs. lb, le and If) to 

(2.13). The contributions of the subprocesses shown in Figs. le and If involve 

the fragmentation of the particle carrying momentum q into the high-p?, trigger 

particle, kc . If z is the light-cone variable describing the fragmentation then 

(kT= 0, ecm= 90’) 

m2 m2 . 
qT=P$- 4mp” , 4” - 

T z(l-z) (2.14) 

where 

‘P$ =(pT+ (p2,+m2))/2z J- 

Ignoring mass effects yields qT = pT /z but near z = 1 this is a bad approxima- 

tion and’ in our calculation the exact expressions (2.14) were used. The calcu- 

lation was done for s = 640,000 GeV2 and806 GeV2 , 0.2 (xT < 0.8. All masses 

were set equal to 1 GeV. In both cases the agreement between the exact Feyn- 

man graph calculation and the result of summing all leading terms in the hard 

scattering expansion was accurate to - 10%. 

The results of this section indicate that the simple parton model may be 

successfully employed to calculate inclusive cross sections as loag as we 

recognize that the high transverse-momentum is always produced in a constitu- 
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ent subscatter and not in the wavefunction of the incident hadrons. The sum 

&over guch subscatters then accounts for all the leading contributions from the 

exact Feynman graph calculation whilst at no stage violating any of the condi- 

tions for applicability of the parton model. In the next section the validity of 

these results is discussed in the context of renormalizable field theories. 

III. VALIDITY OF THE HARD SCATTERING EXPANSION 
IN RENORMALIZABLE AND 

SUPER-RENORhIALIZABLE FIELD THEORIES 

In the preceding section the hard scattering expansion was developed by 

- considering explicit examples in $3 field theory. Because of the super-renor- 

malizability of the interaction, or alternatively because of a dimensionful 

coupling constant, processes calculated in G3 field theory exhibit the features 

of the parton model when they are considered in the appropriate kinematic 

limit. The situation in renormalizable field theories is more complex and the 

validity of the hard-scattering expansion and its parton model nature must be 

reexamined in the context of these theories and specifically for QED and &CD. 

We consider the representation for the single-particle inclusive differential 

cross section given in (2.5). The delta-function is accounted for by integrating 

over xa-and the exact result may be written as 

(3. I) 

All unnecessary notation has been suppressed and the dependence on quark 

masses and on coupling constants is implicit. The function f (x T’i$,‘Ea’T;b’ “d 

includes all factors resulting from the xa integration as well as the differential 

cross sectioa do/d{ and the sundry factors which accompany it. Equation (3.1) 
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is still an exact representation of the Feynman integral under consideration and 

for con-creteness we shall consider it in the context either of the $I~ theory i- 

pole process of Fig. lb or the QED (QCD) process of Fig. lg. We consider the 

various regions of the ra and l?b integrations in (3.1) for fixed xT ( =2pT/&) 

in order to define the hard-scattering expansion and to isolate the power- 

dependence of each term in (l/p;). For this purpose the functions G(x, ‘If) are 

parametrized by (see Eq. (2.4)): 

G(XX) = G o tx) 

(T;2+m2)1+E 
(3.2) 

where E is the dimension of the coupling constant, g. The mass scale, m, is 

generally x-dependent but this makes no difference to the conclusions following. 

We discuss the situation in which the function da/d; contains four powers of the 

coupling constant (Born terms) and hence l/g4. f (x,, pT, Ea, xb, xb) has dimen- 

sion (mass) -4. (l+E) 
. We isolate terms in the hard scattering expansion by 

considering three integration regions 0 ( Ea 5 CY pT ; a! pT ( sa 5 pp,; pp,~ 

ka 5 PT and similarly for Eb ; these regions are shown in Figure 7. (The 

division of the integration regions can also be made in a covariant manner by 

using 02 k”, < a2 pi 
I I- 

etc. where ki is given in(2.3). ) In order to isolate the 

leading and non-leading contributions we expand the expression (3.1) about m=O. 

However, in order for each term to be well defined at the lower end of the xa 

and Eb integrations a simple inspection of (3.1) shows that we should consider 

the expansion of 

m4Ed3c h, m4~ Go tx,) 

/ 

Go txb) 

dp3 (tia+ m2 )l+e (w 
f (x,, $7, Ea, Fb> xb) d”bd2’;, 

d2xb 

(3.3) 
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First consider E >O. For o~[za~,~‘;bl La+ the integral is dominated by 
46 

J/m - from the lower end of the Xa, Tib integration and then, since the only 

parameter with dimensions is pT, we find that the expression (3.3) behaves 

like l/ (pt )’ (l+e). In the limit rn-. 0 in (3.1) this is the only term that sur- 

vives for this region and represents a leading term in the hard-scattering 

expansion. In @3-field theory for which E = 1 this p:f (x,) term was exhaus- 

tively analyzed in the previous section, and for the s-pole process corresponds 

to the subprocess of Fig. lb. In QED (or QCD) in the tree approximation (no 

vacuum polarization) E =0, and the integral is only logarithmically divergent in 

- m. For O(Irai,/EbJ(apT we then easily find that the leading contribution 

behaves like (log PC/m2 )‘/ p: . This corresponds to the subprocess explicitly 

illustrated in Fig. lg. 

ForaPT~Ixai,<+7 and no restriction on Eb from (3.3) for e>O we find 

that the integrand behaves like (PC)-e (m2)-’ (pk)l+e. In the limit of m-+ 0 

this contribution to (3.3) vanishes like m 26 and hence the leading coatribution 

in this region is suppressed by (m2/ pk )E relative to the leading terms. Refer- 

ring to Figs. lb and lg this corresponds to the Z-3 subprocess pA+ kb-.Pa+kc 

(=p)+ kd, wh ere ka and q share in carrying the large-p?, momentum. In G3 

field theory this is a non-leading contribution since E = 1 and is suppressed by 

(m2/ p;) factors. In the tree approximation this contribution is however sup- 

pressed in QED (QCD) only by log (pk/ m2 ). The region ppT ( /Eai 5 pT/xT, 

Of. $ La+ I I 
is similarly analyzed, but it is best first to rearrange the repre- 

sentation (3.3) to highlight a new subprocess namely that in which ka is the 

internal exchange particle. For the ‘s-pole process in $3 theory this is illustra- 

ted in Fig. le. The ‘;a integration may then be converted to an integration over 

the low momentum region of a transverse momentum variable of a new struc- 
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ture (or fragmentation) function. In the case of Fig. le this variable is the 

transverse momentum% d characteristic of the fragmentation q-kc+ kd. In 
4 

Fig. 7 the main regions of contribution A, B, C are illustrated. A corresponds 

to the subprocess of Figure lb or lc, B corresponds to Figs. Id or le, and C 

corresponds to Fig. If (this is a leading contribution only in the case of the i- 

pole process). The same analysis of course applies to any graphs with the 

same topology as Figs. lc-lf (e.g. Fig. lg). 

For E > 0 the upper limit onzd is not important but for E =0 log (p; /m2 ) 

factors modified by functions of xT occur. For both cases in the examples 

cited we retrieve leading contributions to the Feynman integrals. If we include 

the effects of vacuum polarization in the QCD calculation then the effective 

structure function behaves like l/ (x2 log(lZ’/ A2 )) in transverse momentum and 

for the region 05 [“‘I ( (Y pT the enhancement is only a factor log(log(pt /A’)/ 

_ log(m’/A2)) and not log(p: / m2) as it was in the tree approximation. For QED, 

the exact incorporatio.n of the vacuum polarization is not understood because of 

the problems inherent in the Landau singularity. 

It is clear that the hard scattering expansion is most useful in soft field 

theories with (fixed point) E > 0 such as e3 theory. In the case of subprocesses 

which involve hadronic constituents, as in the constituent interchange mode13, 

the effective theory has E = 1 or 2 (for mesons and baryons, respectively) if the 

underlying quark field theory is renormalizable. In such models, the trans- 

verse momentum fluctuations are correctly represented by the hard scattering 

expansion. In the case of renormalizable theories the enhancement of leading 

terms is only logarithmic. In QED, the log(s/m2J enhancement is responsible 

for the equivalent photon approximation. 20 In &CD, the log log factors often 

exponentiate to a power of logarithms in infinite order. The non-leading terms 
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are then only suppressed by a power of logarithms. 

Examples of relevant physical processes are examined in the next section 

in the context of the hard scattering expansion. 

IV. PROTON-PROTON REACTIONS WITH TRANSVERSE FLUCTUATIONS 

B. The Origin of kT Fluctuations 

A very general description of the quark distribution functions G(x, ET) can 

be based on the decomposition of the hadronic wave function shown in Fig. 8, 

corresponding to the different constituents which balance the quarks transverse 

momentum. This series generates an effective ET distribution at large k!I, 

dn ozc(kT) c4m2 c6m4 
-N -- 
d< k; + 4 + k6 

+ . . . (4-l) 

kT T 

-’ where the power of kT increases with the number of constituents sharing the 

recoil. The first term from QCD gluon recoil holds for k2T< 0. (pk ). The k: 

from quark or antiquark recoil is a standard CIM model contribution. The 

general form for the G-function in the case of Fig. 8d where the recoil system 

contains n constituents is 

d2N 1 -x) Zn-1 
= g(xtkT) cc ( 

dxdk; tk; + MeEW2” 
(4.2) 

These rules follow from the power-law behavior of the minimally connected 

Bethe-Salpeter wavefunction from the QCD tree graphs. Here 

M2,ff (x) ‘xM2core + (l-x) M;-x(1-x) gp 

This describes the emission of a quark of mass M 
4 

recoiling against a system 

of mass M core. The core mass is a parameter of the model and in order to fit 

the Regge behavior of the crosssection, the core mass must behave 21 as 

M2 core- tM~J2/x- The form of Eq. (4.2) ensures the covariance of the final 
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results. In the case where there are spectators X at low kT , e. g. Fig. 8a-8c, 

the distribution functions can be obtained from a two step process where p-H+ 4 
X, and the system H produces the quark at large kT with no low kT spectators. 

This is consistent with the hard-scattering expansion since the system H is at 

low kT . 

We can now consider the effect on various physical pp large pT processes 

which follow from fluctuations of the general form (4.2). In each case we have 

calculated the differential cross section in the framework of the hard scattering 

model shown diagramatically in Fig. 9 for which the notation of Fig. la is 

retained. Where appropriate the distributions G(x) for q and i were taken 
14 from fits to the SLAC deep-inelastic lepton-hadron scattering data . 

B. Drell-Yan Process 

The simplest process to consider for illustration of the effects of kT fluc- 

tuations is the Drell-Yan process pp-- +/J-X in which the s&process is q& 

p+lJ-. Let us first consider the case in which the distribution is given by Eq. 

(4.2) with n;2. This corresponds to the situation in which all the spectator 

quarks recoil as a low mass system as shown in Fig. 8d. In Fig. 12 the single 

1-1 invariant cross section derived from this process as defined by (2.5) with 

exact kinematics is plotted against pT for s =600 GeV’, ecm= 90’. The approx- 

imate calculation ignoring the transverse momentum fluctuations (i. e. : the 

standard parton model) is not shown since it is negligibly differe.nt from the 

exact calculation. This is expected since there are no other leading subproc- 

esses in this particular model of single muon production when n2 2 in (4.2). 

This feature will hold true in any model where the kT fall-off is sufficiently 

fast. At pT = 5 GeV/c, this single muon production (including color) is a factor 

23 of about 3 below the data which is also shown in Fig. 12. 
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The anomalously large average transverse momentum distribution of dilep- 

tonsz4, which grows with the pair mass, has prompted some authors to suggest 
4 

that the parton transverse momentum fluctuations are quite large 10-12 . These 

fluctuations might then be expected to give a boost to the single lepton cross 

section. Such an effect can only occur if there are new hard scattering sub- 

processes (e. g. involving quark or gluon recoil) which can compete with the 

qG-.-p+cl- (lepton recoil) subprocess at moderate values of pt. Such proc- 

esses can be q&+ g y*, 25 (which is implicit in Fig. Sa), qg-y*q, qgqqy”, 

Mq--y*q. The last subprocess (shown in Fig. llb) is that considered by Duong- 

van, Vasavada, and Blankenbecler 15 29 
and by Fontannaz . This model fits the 

lepton pair transverse momentum distribution as a function of pair mass, and 

the normalization 15 of the subprocess Mvy*q is compatible with the normali- 

zation3 of pp - TX at large pT from the CIM subprocess Mq-Mq. 

In principle, the effect of these subprocesses is included in the exact Feyn- 

man diagram calculation of the pp-,uX cross section using the first two terms 

of Eq. (4.1). 

The subprocess Mq- y*q subsumes the Drell-Yan subprocess (which cor- 

responds to the first (crossed) graph of Fig. llb) when the final state quark has 

small transverse momentum and hence may be counted as part of the low-mass 

core. From the discussion of (II. C) the crossed graph includes the effect of 

transverse fluctuations of the anti-quark constituent in the Drell-Yan process 

which arise by recoil against a single quark in the proton wavefunctioa. The 

second (uncrossed) graph of Fig. llb which is negligible in the Drell-Yan limit 

(i. e. zero transverse momentum of the muon pair) is necessary for preserving 

QCD gauge invariance. Hence this reaction contains extra contributions which 

represent the effect of transverse fluctuations in the Drell-Yan process as well 
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as containing the Drell-Yan process itself. As we cautioned in (II. C) we should 

.- not double count by including the qq- y* subprocess independently. We remark 4 

that the uncrossed graph of Fig. llb is a new hard scattering contribution which 

does not contain qq-annihilation and whose contribution would be ignored in a 

naive approach to the effect of transverse fluctuations which assigns a trans- 

verse momentum distribution to the anti-quark in the structure function. The 

single lepton transverse mome.ntum distribution for this model is plotted in Fig. 

12 and the results reflect the extra pi6 contribution included in the Mq- y*q 

subprocess. At large pT this extra effect vanishes and the results for single-p 

production from Mq-. y*q is asymptotic to the results for single-p production 

from q<- y*. 

The contributions from the (p;f) QCD subprocess qg-. y*q, q& gy*, etc. 

will also increase the single-p yield. Using the hard scattering expansion these 

will yield further p;f contributions at fixed xT and 6cm and will re-normalize 

the q&p+p- contribution to single muons. However, because of the trigger 

bias effectz6 (from y * -++/J- fragmentation) these contributions are relatively 

suppressed. These events are interesting and can be distinguished because 
25 they contain a recoil quark or gluon jet rather than a recoil muon (as is the 

case for q& p+h-). 

C. Single Pion Production 

We have analyzed the leading constituent interchange process for the 

production of prompt pions, pp- nX, in a way similar to the analysis of the 

previous subsection. The subprocess under consideration, meson+ q4 ?rq, is 

shown in Fig. llc and the quark is given a mass of 1 GeV. The full distribution 

function (i. e. including transverse momentum) of the meson in the proton is 

taken from ref. 3. 
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The inclusion of transverse fluctuations with rapidly falling distributions 

.- (N13 in (4.2)) makes a negligible contribution to the differential cross section 
4 

as we should expect in the light of the previous discussion. To discuss the 

effect of constituent transverse fluctuations in general, we aeed to discuss sub- 

processes such as meson + meson-. 7r qi. A simple power analysis shows that 
-12 the contribution falls like pT compared to the leading pi8 CIM contribution. 

Thus the effect is more rapidly damped than the corresponding modification by 

non-leading subprocesses (e. g. Mq-. y* q) in direct /J production 27 . 

D. Quark-Quark Scattering Subprocesses 

We can also investigate the effects of transverse fluctuations with respect 

to the QCD scattering processes, qq.+qq, qg-.qg, gg-. gg, which are expected 

to be particularly relevant to high pT jet production in hadron collisions. 

As we emphasized in the introduction, the use of on-shell constituent kine- 

matics cannot be justified and requires arbitrary cut-offs in the calculations. 

In order to see explicitly the source of difficulties in this procedure we have 

calculated the QCD qq-.qq subprocess contributions using the on-shell paramet- 

rization (2.8). 

If transverse fluctuations are now introduced, the regions of integrations 

surrounding the ^t and6 poles contribute, This singular enhancement must be 

regulated; e. g. by a fictitious g1uo.n mass or a linear cutoff in the integration 

region. The consequent result is thus not only regulator dependent but is domi- 

nated be a region of integration, which in fact does not actually contribute in the 

exact calculations. 

The features of such calculations are exemplified in Figs. 13 and 14, the 

effects of various on-shell qq-qq models are compared with the calculations 

with exact off -shell kinematics. Four cases are considered: (1) no transverse 
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momentum; (2) a rapidly falling distribution- kG8 derived from Eq. (4.2) with 

2n= 4; (3) a normalized exp (-3kT) distribution where dT>= Z/3 GeV; and (4) 

a norm^alized exp (-3k$ ) distribution with <kT>= .51 GeV. The gluon mass was 

set to Mq or&O M , with Mq= 300 MeV. 
q 

In Fig. 13 we plot the contributions to the inclusive cross section Ed3c/ 

d3p dxa at s = 800 GeV -1 , pT= 4 GeV/c, 0 cm= 90’ as a function of xa where 

all other variables have been integrated over. The results for cases (l), (2) 

with either off-shell or on-shell kinematics all coincide at the scale used in the 

figure and are shown as curve (a). Curve (b) represents case (3) with off-shell 

_ kinematics and curves (c) and (d) represent case (3) with on-shell kinematics 

for Mg = MS, &O Mq respectively. The exact kinematics calculation 

shown as curve (a) shows that the region of x,5 0.08 (which is the kine- 

maticboundary) does not contribute to the cross section for any choice of trans- 

verse fluctuations. However, for case (3) which has a moderately falling exp(-3kT) 

distribution, the on-shell calculation receives large contributions from the x,-O 

region which is sensitive to the t -’ pole. The effect of this region is 

governed strongly by the gluon mass as illustrated in curves (c) and (d) of Fig. 13 

which correspond to the two cited choices of M . Near xa = 0 the ratio of 
g 

the two curves is 1:lOO reflecting the M -4 dominance of the cross section. In 
g 

case (Z), for on-shell kinematics, the x adO region contributes but is numeri- 

cally suppressed for these values of Mg by the strongly damped distribution. 

The corresponding inclusive cross sections for p-+Xare shown in Fig. 14. 

The on-shell calculation with e -3kT is anomalously high (curve (d)) compared to 

the off-shell kinematics calculation with e -3kT (curve @I)). Curve (a) represents 

cases (1) and (2) and curve (c) represents case (4) with either off-shell or 

on - shell kinematics. It is clear that the spurious on- shell contribution 
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is not physical but is a result of the breakdown of the on-shell approxi- 

mation when including transverse fluctuations. The method of regulating the 
a 

pole is arbitrary and tantamount to choosing the final result at will. 

As we have discussed in Sections II and III, the true effect of transverse 

momentum fluctuations can be determined by the hard scattering expansion. 

From this point of view, it is clear why the inclusion of transverse momentum 

fluctuations with exponential or power law kq (n> 4) distributions causes 

negligible change in the differential cross sections. These contributions can be 

identified with non-leading processes in the hard scattering expansion relative 

- to the leading p: terms. As discussed in the introduction to this section 

with reference to Fig. 8 and Eq. (4.1) it is possible to generate less steeply 

falling distributions by recoiling the active constituent against other constitu- 

ents in the incoming hadrons. The leading terms correspond to simply gluon 

recoil which can be analyzed from the Feynman graphs by considering all Z--3 

subprocesses in &CD, e. g. qq-.qqg. To leading logarithmic order, the 2-3 

contributions can be represented by all possible Z-2 QCD hard scattering sub- 

processes. As shown in Fig. 2a and 2b the effects of gluon bremsstrahlung in 

qq scattering can be reinterpreted in terms of the hard scattering subprocess 

qq-.qq with gluon emission along the initial and final quark lines, plus the 

subprocess qg-. qg. Figure 2a can be identified with the jet topology of stand- 

ard qq-. qq scattering. Figure 2b is distinguished by the appearance of the 

gluon jet in place of a quark jet. The remainder of the 2+3 qq-.qqg subprocess 

corresponds to 3 jet production processes and is a logarithmically non-leading 

term in the hard scattering expansion. These contributions include the effects 

associated with the first term of Eq. (4.1) and thereby treat the transverse 
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momentum distribution of quarks in a consistent gauge-invariant way. 

All of the above QCD Born contributions generate only p: contributions to 

the inzusive cross sections modulo logarithms. Contributions with higher pz 

are generated by diagrams such as those shown in Fig. 10 where a quark 

recoils in the wavefunctions via the exchange of internal gluons. One of these 

contributions (Fig. lob) can be identified with diquark + glue-qq subprocesses 

which are suppressed modulo logarithms by a factor of f2 /pk in QCD where f 

is a dimensional constant which arises from the integration over the relative 

momentum of the diquark system. 

In a similar manner one can generate higher power fall-off contributions 

corresponding to the other terms in Eq. (4. l), Fig. 8. These correspond to 

subprocesses based on ha&on-quark interactions, such as Mq+Mq (see Fig. 

2~). Although such contributions have nominal p: fall-off, they can temporar- 

ily dominate the QCD p: terms at moderate pT in single particle production 

because of (a) the trigger bias effect 26 (P; or pTp > pT (trigger)) and (b) possi- 

ble enhancements due to the binding of color singlets. 

V. CONCLUSIONS 

AS we have shown in this paper, the effects of constituent transverse 

momentum fluctuations are in general very complex. The exact treatment 

requires consideration of off-shell and coherence effects and ultimately sub- 

processes involving multijet final states. The hard scattering expansion, how- 

ever, can be used to theoretically isolate the origin of all large transverse 

momentum exchanges within a set of hard scattering subprocesses, yielding a 

tractable, systematic expansion of the inclusive cross section at high pT . In 

the case of $3 field theory or the constituent interchange model (which focuses 

on quark-hadron scattering subprocesses), the hard scattering expansion yields 
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a series in inverse powers of p: at fixed x T” Within the expected numerical 

accuracy the sum of the leading par-ton model terms in the hard scattering 
4 

expansion for G3 theory was shown to reproduce the cross section obtained 

from an exact calculation of the Feynman amplitudes. The indication from per- 

turbati0.n theory is that in the case of asymptotically free theories such as &CD, 

the series is in inverse powers of log (log $,/AZ)). 

We have also shown that the effect of transverse momentum fluctuations in 

qq scattering calculations are of minor importance in inclusive cross sections 

if (1) the correct off-shell kinematics are used, and (2) the kT distribution 

functions reflect non-leading subprocesses. 28 We emphasize that the neglect 

of the essential off-shell nature of the constituents when considering the trans- 

verse momentum distributionviolates momentum conservationand allows otherwise 

forbidderrkinematic regions such as%=0 or small xa and xb to contribute. These 

pathologies in turn lead to divergencies which must be arbitrarily regulated. 

Of course for fast falling distributors such as exp (-3k;), it can be seen 

from Fig. 13 that for on-shell kinematics the contributions from small xaand xb 

are negligible although non-zero. The consequence of this fact is, however, 

that only small values of kT are relevant and as shown in Fig. 14, curve (c), the 

correction at moderate pT (-3-4 GeV) is less than the order of 30%. This 

result can be easily verified by using the mean value theorem for integrals which 

dictates the replacement (pi + m2) - (p T-ET)2+m2 in the final answer where 

Alternatively for slowly falling distributions with on-shell kinematics 

spurious contributions are picked up from singular regions as seen from 

Figs. 13 and 14. This is clearly incorrect. A comparison with the canonical 

form for the differential cross-section 
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E d3c -3 cc pi4 (l-XT )7 
dp .- 4 

at 6 c.m. = 90’ for qq-qq is shown in Fig. 15. For the exp (-3g ) distribution, 

even though <kT > N . 511 GeV, the deviation from the curve with no smearing 

(curve (a)) is of the same order of magnitude as the deviations induced by mass 

effects and rapidly disappear with increasing pT. For the exp (-3kT) distribu- 

tion, which falls off much more slowly, the off-shell curve (b) in Fig. 15 does 

exhibit an increase from the canonical form at low pT. As we have already 

argued the contributions associated with increases of this kind should be identi- 

- fied with other, non-leading, subprocesses in the systematic way described in 

Section III. 

It should be emphasized that it is in principle impossible to treat consti- 

tuent transverse momentum fluctuations as a phenomenon distinct from the hard 

_ scattering subprocess; the same basic interactions must account for both. For 

example, as has been discussed in Refs. 15, 29 and Section IV, the pT distribu- 

tion of high mass lepton pairs in pp- B+P-X which is often ascribed to the 

intrinsic quark and anti-quark distributions in the proton is, from a different 

perspective, the distribution for high pT massive photon reactions which is 

usually considered as arising from a standard hard scattering subprocess. 

Thus theoretically it is most advantageous to localize all the large transverse 

momentum exchanges explicitly within hard scattering subprocesses. 

From another perspective, the central difficulty of large kT fluctuations is 

the fact that they cannot be treated as a classical effect. This can be seen in 

the framework of the Drell-Yan time-ordered perturbation theory analysis. 30 

The lifetime of a constituent is of the order T life = x (1-x)P/ki and the time of 

interaction is of order T int = P/(PT -kT J2* Thus for large kT , 71ife can be 
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less than 7int ; just the reverse of what is assumed for the validity of the 

partonpodel expansion. In covariant language a. far- off-shell line cannot be 

considered as a classical particle, but must be considered as part of a larger 

process. 

Finally, our considerations in this paper suggest a computational proce- 

dure which in principle yields the correct asymptotic form for cross sections 

at large pT and takes into account the complications of the hadronic wave- 

functions: 

(1) Starting from a given field theory, one constructs the coupled set of 

multiparticle wavefunctions 31 ‘n(kTi, xi) in time-ordered perturbation theory 

using the standard light-coae variables. 16 The effective potential is covariantly 

cut-off so that intermediate states which are far off-shell are excluded: 32 

[M2 - Ho] Xl?=G(l?- Ho+02p;) VP (5-l) 

where Ho= F (mf + k$) /xi. As in Section III, we define the quantity 02<<1 in 

order to separate explicit hard scattering processes from the implicit soft proc- 

esses already contained in the wavefunction via (5.1). Given these wave- 

functions, one can unambiguously compute the structure functions specific to 

the constituents of each interacting hadron. 

(2) All relevant hard scattering contributions to the large pT process are 

now computed using Eq. (2.13). A given hard-scattering subprocess is includ- 

ed in the perturbation expansion only if 

M2 - : (kci+ mf)/ xi ) 2 Q2pt (5.2) 

where the sum is over the constituents of the bound state of mass M; i.e. , all 

large energy denominators are isolated in subprocess. For an exact calcula- 

tion the subprocess cross section itself must be computed with the correct off- 
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shell parametrization. This, however, is only a correction of order o!. 

m example of this procedure applied to deep inelastic ep scattering is 

illustrated in Fig. 16. If the energy denominator for the indicated intermediate 

state in Fig. 16a or 16b satisfies the criteria (5.2) with o12p~-+02Q2, then these 

diagrams represent the hard scattering contributions (a) eq-.eqg and (b) eg-. 

eG. Otherwise these contributions are automatically included in the eq-.eq 

subprocess with the respective Iqqqg> and {qqqqi> wavefunctions satisfying 

Eq. (5 ,l). Of course, when one builds phenomenological models, the sum of 

contributions from all subprocesses together with the assumed form of the 

wavefunctions and resulting distributions G a/A tx, 5 9 Q2) must match the 

observed deep inelastic lepton scattering cross sections. 

The above procedure, specialized to electron scattering on a quark target, 

reproduces the Alterelli-Parisi 33 equations for leading logarithms in &CD. 

More generally this procedure allows one to sort out the contributions which can 

be associated with the bound state wavefunctions (including scaling violations) 

from those which can be associated with large momentum transfer, and in 

principle accounts for all non-leading terms. 
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FIGURE CAPTIONS 

1. Contributions to the hard-scattering process: 
4 

(a) Example of hard-scattering subprocess and definition of momenta. 

(b) G-pole subprocess in $3 field theory. 

(c) i-pole subprocess in G3 field theory. 

(d) The subprocess other than that of Fig. lc contributing in leading order 

to the $-pole hard scattering expansion in G3 field theory. 

(e) and (f): The two subprocesses other than that of Fig. lb contributing in 

leading order to the g-pole hard scattering expansion in $3 field theory. 

(f) QCD (or QED) analogue of the G3 field theory G-pole scattering process. 

2. (a) quark + quark-quark + quark (gluon brehmsstrahlung contribution). 

(b) quark + gluon, gluon + quark. 

(c) The rearrangement of the q&q9 subscatter in M+B scattering to show 

the contributing subprocess M+ q-M+ q. 

3. The ratio of various approximate calculations to the exact calculation 

versus pT (s=800 Ge V2, m=l GeV) for high-pT scattering in $3 field theory. 

The curves are labelled by the number of the particular approximation as 

given in section IIB. 

(a) t-pole subprocess. 

(b) &pole subprocess. 

(c) l-pole subprocess with (q , kt) distribution replaced by (kt + M(x~)-~. 

The contribution of the subprocess of Fig. Id is then suppressed. 

(d) As (c) but for g-pole subprocess. The contributions of Fig. le and If 

are suppressed. 

4. Ratio of on-shell kinematics calculation to exact calculation versus pT 

(s=800 GeV2, m=l GeV) for (i) no transverse fluctuations (ii) (~;+M(x)~)-~ 
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transverse momentum distribution, (logarithmic scale) 

(a) :-pole subprocess. 

(;) i-pole subprocess. 

5. <Pout2 I i 
> distribution versus pT (s=800 GeV2, m=l GeV) for 

(a) %-pole subprocess 

(b) s-pole subprocess. 

6. Representation of hard scattering expansion. 

7. A, B, C are the main areas of (ra, Tib) p s ace contributing to the $J~ field 

theory inclusive high-pT scattering. a!, P,y <<la pT, pp,, ypT>> m . 
4 

These regions correspond to the different subprocesses shown in Fig. 1. 

8. The origin of quark transverse-momentum in the hadron wavefunction 

showing the various recoil constituents and the remaining low-mass, low- 

kT core X. See Eqn. 4.1. 

9. Generic Hadron + Hadron-( high-pT trigger) + X. . 

10. Examples of subprocesses contributing to the hard scattering expansion 

contained in the qq-. qq subscattering process for proton-proton scattering. 

(a) quark+ quark-quark+ quark (quark recoil contribution). 

(b) diquark+ gluon, quark+ quark. 

11. (a) -Drell-Yan subscatter q<.-.p+p- . 

(b) CIM subscatter Mq-.y* (-++p-) q. 

(c) CIM subscatter Mq-rq . 

12. E d30/dp3 for single-p production at high-p?, versus pT for s=600 Ge v2 

(a) Drell-Yan q& p+p-. 

W CIM W+@+p-)q. 

(c) data (ref. 23). 

13. E d4a versus x for quark jet production (qq-.qq) for s =800 Gej! and 
dp3dx 
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pT = 4 GeV where x is the light-cone variable of one constituent. The nor- 

malization is arbitrary. The curves shown are: 

(a) Eases (1) and (2) (given in Section IV D) for either on-shell or off-shell 

kinematics (these all coincide at this scale). 

(b) Off-shell kinematics with normalised e-3kT distribution (case 3). 

(c)On-shell kinematics with normalised e-3kT distribution (case 3) for 

Mg=M * q 
(d)As (c) but for Mg =dlO Mq. 

14. d30 for production of a quark jet at 90’ versus pT for s=800 GeV2. 
Eg 

The 

curves shown are: 

(a)As (a) in Fig. 13 

(b)As (b) in Fig. 13. 

(c) Normalised e -3k; distribution (case (4) Section IVD) for either on-shell 

or off-shell kinematics. 

(d)As (d) in Fig. 13. 

15. 27+ log . p;/(l-x~)~ 1 
for the cases (a) -(d) given in Fig. 14. 

16. Contributions to ep scattering from (a) Iqqqg> wavefunctions and 

(?3) lqqqqs > wavefunctions. 
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