
SLAC-PUB-2103
April 1978

AN IBM 3701360 SOFTWARE PACKAGE
FOR

DEVELOPING STAND ALONE LSI-11 SYSTEMS*

R.L.A. Cottrell and C.A. Logg

Stanford Linear Accelerator Center
P. 0. Box 4349

Stanford, California 94305

ABSTRACT

We have‘implemented'a software package for our IBM 360/
370 system at SLAC, which we use in the development of stand
alone LSI-11 software systems. Included in this package are:

* XASMll - a cross assembler which handles a substantial sub-
set of MACRO-11

* PL-11 - a cross compiler for a structured programming
language designed around the PDP-11 instruction set

* FORTRAN - FORTRAN code is compiled under RT:11, and the
object modules are transmitted to the IBM 360/370 for
translation and integration

* XLCVT - a conversion program which takes as input standard
DEC DOS/RT-11 object modules or LIBR files, or object mod-
ules produced by PL-11 and XASMll; it converts them to a
form suitable for input to XLINKll

* XLINKll - a cross linker which takes in relocatable object
modules and outputs a DEC DOS/RT-11 absolute loader format
module, or a format suitable for an IBM 360/370 PDP-11
simulator

* REFORM/EPROM - conversion programs which take as input a
DEC DOS absolute loader format module generated by XLINKll
and convert it to a format suitable for downloading into an
LSI-11 or for burning into EPROM's

* XREF - a cross reference program which takes as input a PDS
of XLINKll type object modules, and outputs cross reference
tables and information on each of the modules

* WYLBUR execute files - several files of commands which may
be executed from the terminal to create jobs in response to
simple prompts

* KERNEL - a set of MACRO-11 and PL-11 routines which have
been burnt into 2708 EPROM's and include a terminal emula-
tor, a down line loader, and several utility routines for
the LSI-11

All of this was accomplished by using the facilities already
available on our IBM 3601370 system. Most of this package has
been in regular use since Spring 1976, although new features
are still being added.

The manpower cost of researching, organizing, developing,
and integrating the tools has paid off well in terms of pro-
grammer productivity, source code readability, accessibility,
and integrity.

INTRODUCTION

In Group A at SLAC we have had a need for a
highly portable, rugged, reliable, compact, yet ver-
satile and easily reconfigured module for testing and
controlling equipment. After some thought and re-
search it was realized that building a system based
on a mini or micro computer with a minimum of bulky
peripherals could fulfill the need at a reasonable
cost. The lack of peripherals limited the program-
ming development tools that could be used on the
computer itself. Instead, therefore, we looked for
ways of developing programs on the large SLAC IBM

360/370 complex (the 'TRIPLEX' see Figure 1) and then
loading them into the mini/micro computer for execu-
tion. The existence at SLAC of an IBM 3601370 cross
assembler and linker for a PDF-11 prompted us to
choose LSI-11's to provide the computer base for the
test and control modules. Having made the decision
to use the TRIPLEX for our programming development,
it became apparent that there are many advantages
compared to using, for example, a fully configured
PDP-11 development system (for which we could neither
afford the money, the maintenance, or the space).
Not the least of these advantages was our familiarity
with using the TRIPLEX tools, in particular, the

*Work supported by the Department of Energy
(Contributed to the DECUS Spring Mini/Midi Symposium, Chicago, Illinois, April 25-28, 1978)

Figurel: User oriented equipment on the SIAC TRIPLEX
and a standard LSI-11 configuration.

powerful interactive editor and job entry system
(WYLBURl), the file system, data management facili-
ties, and job control language. Other attractive
facilities automatically available on the TRIPLEX
are:

permanently mounted mass storage facilities so
that data sets are immediately and continuously
accessible in a clean protected environment
data set management facilities such as data set
cataloging, archiving, auditing, date and time
stamping, and backup
availability of a full complement of peripherals
such as high density (including 6250 bpi) tape
drives, microfilm, microfiche, plotters, high
speed printers with a variety of print trains,
card readers and punches; these simplify transpor-
tation of programs, obtaining up to date listings,
preparing documentation, etc.
global access to the system from any site (in the
laboratory, at home, in the office) with a
telephone
multi user facilities for program development
widely accessible mass storage facilities for run
time data acquisition storage

We therefore have developed an integrated pack-
age of software components for developing LSI-11
software on the TRIPLM. The package includes a PL-
11 cross compile?, a cross assembler, a cross
linker, RT-113 support, and several utilities. The
main components and their interrelations are shown in
Figure 2. By providing the basic necessities in the
EPROM's (a terminal emulator, serial interfacedevice
handler for communication to the TRIPLEX, and down
line loader), we have at our disposal the full power
ofkthe TRIPLEX for system development anywhere we
have an LSI-11 and a telephone. In addition the
absence of LSI-11 peripherals increases the reliabi-
lity of the system and reduces maintencance costs.
All the hardware is standard and available commer-
cially off the shelf. We now describe in more detail
each of the major components of the software package.

THE EPROM KERNEL

The EPROM KERNEL is composed of a set of PL-11
and XASMl14 routines which support the link to the
TRIPLEX and the stand alone systems.

Included in the KERNEL are:

TRIPLEX

RT-1 t
FORTRAN

PL-11
(Cross compilsr)

XASM tl
1 MACRO1 1 cross orrrmbler)

XLCVT
(convert relocatable obiect module formats)

Figure 2: Components of the TRIPLEX software support
package for LSI-11 software development. The down
line loader file is loaded into the LSI via a WYLBUR

execute file.

a terminal emulator program that has serial line
(DLVll) device handlers for an ASCII terminal and
the TRIPLEX link which supports both full and half
duplex communication
a down line loader which enables us to down line
load an absolute load module created on the
TRIPLEX
a simple memory test and sizer routine which
checks for simple problems such as loose chips in
the memory boards and checks the size and location
of the types of memory accessible (ROM, RAM, and
device addresses)
a boot strap for booting RT-11 from a floppy disk5
ROLL - a facility for saving and restoring memory
contents on a floppy disk
a test to compute the check sum of each EPROM and
compare it versus its recorded value
several utility routines used by the EPROM pro-
grams and made available to stand alone systems
via EMT and TRAP calls
a facility for interpreting and executing various
commands directed to the LSI-11 EPROM program;
commands to execute EPROM programs are indicated
by typing the ASCII escape character followed by
the appropriate command character

These facilities enable the console terminal
attached to the LSI-11 to be used as a normal termi-
nal attached to the TRIPLEX and as an LSI-11 console
terminal concurrently. They also provide basic sup-
port for the stand alone systems which are download-
ed. The interrupt driven terminal emulator routines
allow the user to continue communication with the

-2-

TRIPLEX while simultaneously running a stand alone
system.

XASMll

The XASMll assembler has been heavily modified
to accept almost all of DEC's MACRO-11 language. The
main restrictions are: immediate conditional assem-
bly directives a&e not supported, and macros are
treated differently.

Macros may be resolved either from source or
from a macro library. The macros are expanded by
passing the source through a modified version of
IBM's level F assembler6. This means that macros are
defined using IBM's syntax. The modifications mean
that they can, however, be referenced in almost the
standard DEC MACRO-11 fashion. The major modifica-
tions to IBM's level F assembler expansion facility
were to allow:

* a colon in the label field
* an equals sign to be an operator
* the characters " ' & ! to appear

field
* operator symbols to begin with a

equals sign

in the operand

period or an

A few restrictions are placed on the MACRO-11 syntax
by the macro facility. The most important restric-
tions are:

* To use an equals sign as an operator, it must be
separated from the other fields by spaces, i.e.
Rl=%l must be written as Rl = %l.

* Since the IBM assembler uses the & as an escape
character to designate a macro time variable, when
using & in constructs such as

IFNDF FAE & FIS & EIS
the & must be separated by spaces from the other
symbols.

Using XASMll with the macro expansion facility to-
gether with a WYLBUR execute file to change '=' to
? = I in the operator field, we have successfully
assembled 26,000 lines of DEC's RT-11 system code
with changes being made to less than 20 lines.
All changes were simple, and their necessity
immediately apparent from the XASMll error
diagnostic. Also after the changes, the code
was still compatible with DEC's MACRO-11 syntax.
The assembler has also been used to generate
code for a PDP-11134 and a PDP-11/55.

PL-11

PL-11 is a block structured programming language
with a rich set of structured facilities so that
GOTO's can be virtually eliminated. It includes bit,
byte, integer (16 bit), logical, real (32 bit),
CAMAC type variables, arrays, FORTRAN like named com-
mon blocks, TEMPLATES to provide simple record struc-
ture facilities, local and global procedures, and the
ability for global procedures to call or be called by
DEC RT-11 and RSX/ll FORTRAN routines. A simple fa-
cility is also provided for separating the code and
data sections of the procedures. All variables must
be declared and full type checking is made by the
compiler. It is designed around the PDP-11 instruc-
tion set for efficient compilation and execution.
This allows the programmer to have the power, speed
and data manipulatibility of assembly language and
the readability of a higher level structured program-
ming language. The cross compiler is written in ANSI

FORTRAN and can be run on most large computers. A
version of the compiler written in PL-11 also exists
and can be run on a PDP-11.

We have slightly extended PL-11 with the addi-
tion of support for the Standard Engineering U type
CAMAC crate controller, and a facility whereby com-
ments can be inserted anywhere by enclosing them
between " marks.

RT-11 FORTRAN SUPPORT

There are some applications where PL-11 or as-
sembly language are insufficiently high level. One
example was a relatively simple beam polarization
measurement system that required DOUBLE PRECISION
floating point to maintain accuracy. For this appli-
cation the language of choice was FORTRAN due to its
support of DOUBLE PRECISION arithmetic, our famili-
arity with it, and its availability. Since no FOR-
TRAN cross compiler generating PDP-11 code existed,
we decided to use the RT-11 FORTRAN compiler on one
of our LSI-11's that had a floppy disk unit. Unfor-
tunately the location where the beam polarization
measurement was required was cramped, so it was unde-
sirable to use valuable space for a floppy disk drive.
Also the location was considered too dirty to allow a
floppy disk unit to work reliably. Therefore we de-
veloped the source code using WYLBUR on the TRIPLEX,
transferred the FORTRAN source files to RT-11 files
on the LSI-11 with a floppy disk, compiled them, and
transferred back the listings and object module files
to the TRIPLEX. Object modules from the RT-11 FOR-
TRAN object time system (OTS) library (FORLIB) and
the system library (SYSLIB) were also transferred to
the TRIPLEX. These RT-11 object modules were conver-
ted, saved, linked together and the resulting load
module down line loaded into the LSI-11 by the
methods outlined in the following sections.

In addition to the-software development tools
already on hand, all that was needed was a simple
FORTRAN program (running under RT-11) to emulate a
terminal, provide read and write access to RT-11
files, provide a terminal operator dialogue to re-
quest the file name and direction of transfer, and to
encode/decode RT-11 .OBJ and .SAV files. This pro-
gramperforms filetransfersbetweentheWYLBURactive
fileandthenamedRT-11 filebysendingcommandstoWYL-
BURtoeitherlisttheactive file (transfer toRT-11) or
to collect (in the active file) input from the ter-
minal (transfer to WYLBUR).

In order not to invoke too much of RT-11, the
following restrictions had to be observed in the
polarization measurement program:

All FORTRAN READ/WRITE statements are replaced by
ENCODE/DECODE statements, with the I/O being per-
formed by subroutine calls that in turn referenced
EMT's contained in the EPROM's.
The main program is in assembly language. It sim-
ply sets up the interrupt vectors for the errors
(FIS interrupt, stack overflow, etc.) and calls
the FORTRAN routine. This prevents some of the
unwanted FORTRAN/RT-11 initializations.

In addition:

The error EMT used to report execution time errors
hy the FORLIB routines had to he rewritten.
The RT-11 FORTRAN OTS work area (OTSWA) is located
in a location compatible with our memory utiliza-
tion, initialized to zero, and the RT-11 OTS vari-
able $AOTS is made to point to it.
The FORTRAN OTS STOP and EXIT processors are sim-
plified to type a message out and then HALT.

The main disadvantage with developing software
this way is the file transfer time. For example at
2400 baud, it takes 7 minutes to transfer the 37 RT-
11 blocks of SYSLIB.OBJ (481 lines of 80 hexadecimal
characters each), or 35 seconds to transfer a FORTRAN
source program of 88 lines (6 RT-11 BLOCKS). The
number of file transfers during development can be
considerably reduced by:

* using a compazble subset of IBM FORTRAN and RT-11
FORTRAN and then simulating the special input/out-
put devices by separate subroutines using random
number generators and testing the program to some
level on the TRIPLEX

* using the RT-11 editor, FORTRAN compiler and
LINKER, and executing on an LSI-11 with a floppy
disk

Both of these techniques have drawbacks in that
the first can't allow a full test, and the second
ties up the single user LSI-11 for a long period.
However, judicious use of these techniques has
allowed us to integrate FORTRAN code with PL-11 and
MACRO-11 code to create stand alone LSI-11 systems
with reasonable success.

XLCVT

The object module format required as input to
the cross linker (XLINKll') is not standard DEC DOS/
RT-11 object module format. Thus object modules cre-
ated by PL-11 or DOS/RT-11 programs must be converted
before being input to XLINKll. XLCVT is a FORTRAN
program that takes as input PL-11 or DOS/RT-11 object
modules or RT-11 LIBR files and converts them to the
XLINKll format. It may optionally write the convert-
ed object modules, and XASMll object modules into an
OS partitioned data set (PDS) library specifically
c‘reated for object modules. Each module is saved as
a member with a member name equal to the object mod-
ule name, and aliases equal to the entry points (if
there are any). The modules are also stamped with
the time, date, and the jobname which includes user
identification. This information may be easily ac-
cessed via a batch job or from WYLBUR to enable users
to ascertain the current status of any given object
module.

The ability to handle RT-11 object modules has
enabled object modules created by RT-11 FORTRAN to be
transferred to the TRIPLEX, converted, saved in PDS
libraries and/or to be linked on the TRIPLEX together
with object modules produced by X&Ml1 and PL-11 on
the TRIPLEX.

XLINKll

XLINKll is a cross linker program that takes as
input the PL-11, XASMll, or DOS/RT-11 object modules
which have been translated and converted by XLCVT.
XLINKll processes object modules, relocates them, and
assigns absolute addresses. During this process it
may search through user specified PDS object module
libraries to satisfy global references. The output
of XLINKll can be either in DOS absolute loader for-
mat or a format suitable for loading into a PDP-11
simulator7 that runs on the TRIPLEX. A load map is
also produced.

REFORM/EPROM

Since the serial line link to the TRIPLEX is set
up for 7 bit character transfers, pure 8 bit binary
DOS absolute loader modules cannot be transmitted

over the link. Further, the terminal concentrator at
the TRIPLEX (an IBM 3705) interprets certain 7 bit
charactersascontrolcharacters foritsownuse. The
REFORMprogramovercomes thisby convertingeachbytein
a DOS load format module into 2 hexadecimal charac-
ters. TWO different checksums are included in each
record. The first is a checksum for the load address ~-
and the second covers the remaining bytes and comes
at the end of the record. The use of two checksums
means that the LSI-11 down line loader knows immedi-
ately that the load address is valid and so it can
start loading the following data directly without
buffering it (as it would if it had to wait until the
end of the record to know if the load address was
good). A further redundancy that the down line load-
er checks is that only the hex characters '0' through
'F' appear in the records. Since unsolicited mes-
sages may come from the TRIPLEX computer operator or
other users during the loading procedure, it is im-
portant to be able to try and guarantee the integrity
of the data transmitted. When an invalid character
is noticed during down line loading, the remaining
part of the record is printed on the console terminal.
This allows the user to see any messages sent to him
by other users even during down line loading. In
such a case the down line loader then sends a check-
sum error record to the TRIPLEX so that the record
can be retried.

The DOS absolute loader format modules may also
be reformatted by the EPROM program into the Intel
Hex ASCII format8 and saved in an OS sequential file.
In addition a one byte checksum of the contents of
each EPROM is saved at the end of the EPROM's so that
the contents of the EPROM's may be verified when they
are in use. This file may then be used by any of
several EPROM burners which are attached to the TRIP-
LEX, and Intel 2708 EPRO.M's burnt with its contents.
EPROM can also be used to provide a hex or an octal
dump of the core image that is created from a load
module.

XREF AND OTHER UTILITY PROGRAMS

In a program containing many tens (and possibly
hundreds) of separate modules referencing each other,
it is very important to be able to understand the in-
terrelationships between the modules. XREF is a
program to aid in this understanding. It takes a
PDS library of XLINKll object modules, analyses each
module, and provides an alphabetized table including
for each module: its name, CSECT names and lengths,
entry points, global symbol declarations and referen-
ces, the time and date the module was last updated,
and the user identification for the job that last up-
dated the module. Next grid-like printouts are pro-
duced containing along one axis the global
declarations (one table for.procedures and entries,
one for global data segments, and one for absolute
data locations), and along the other axis the global
references. Entries are made in the grid wherever a
global procedure references a global declaration.
Lists are also produced of any references which are
not resolved from within the PDS library and any
global definitions which are not referenced.

Up to date listings of programs are essential
in most programming projects. LIBLIST is a program
to read a PDS of source modules and list their con-
tents together with an expansion of any text invoked
by trigger macros. An index of lines containing
selected text such as: .TITLE, .ENTRY, .GLOBAL, and
trigger macros (see next section) is also produced;
it is indexed by the module name the line occurs in,
and the line number. Also included is the last date

I

the source module was updated. LIBLIST can also
produce formatted listings of a PDS of XLINKll object
modules.

Another utility (RTllTAPE) enables us to dump
RT-11 and RXS-11 ASCII labeled tapes onto OS files
on the TRIPLEX. This facility has been extremely
useful in transporting programs to SLAC from other
installations using DEC equipment. For example, our

-sources-of the2T-11 system and MAINDEC diagnostics
were all transferred from tape and now are saved in
PDS's on the TRIPLEX.

EXECUTE FILES

Execute files are a sequence of WYLBUR commands
that can be initiated and executed by typing a
single WYLBUR command. They provide a simple way of
putting together source code and JCL to create batch
jobs to perform various tasks; e.g. update an object
module (XLIBll), compile a complete source PDS and
put the resultant object modules into an object mod-
ule PDS (COMPILE), create a job to form a date
stamped absolute load module (RUNll), list the con-
tents of a source PDS (LIBLIST), or run the cross
reference program on an object module library (XREF).
The program we use on the TRIPLEX to transfer the
reformatted absolute load module to the LSI-11 du-
ring the downloading phase is also an execute file
(LOADER).

The execute files interface the user to the
TRIPLEX facilities and speed up the program develop-
ment since they eliminate much of the error prone
typing of JCL.

The basic program development procedure we
utilize entails:

* using WYLBUR to modify our MACRO-11 and/or PL-11
source code and to save it in an OS PDS

. -* executing XLIBll to assemble MACRO-11 and/or to
compile PL-11 and to save the resulting object
modules in an OS PDS specifically created to hold
the object modules

* executing RUN11 which creates a batch job to link
together the object modules into an absolute load
module suitable for downloading into an LSI-11

* downloading the LSI-11 via the LOADER execute
file and the EPROM terminal handler and download-
ing program

* obtaining source listings via the LIBLIST execute
file

* obtaining cross reference tables via the XREF
execute file

The execute files (COMPILE, XLIBll, and RUNll)
have also enabled us to utilize a facility we refer
to as a trigger macro. A trigger macro is a comment
statement to the PL-11 compiler, however, to the
execute files it is a command to copy in a piece of
text from another OS data set. The form of the
statement is:

"© FROM $name"
where 'name' is the name of the test file to be
copied in just after the "© FROM $name" state-
ment. Trigger macros enable us to maintain just one
copy of a piece of code which may be used in several
different places. Thus when changes are made to
that text, one generally only has to recompile the
routines which reference that particular trigger
macro. Since the output from a LIBLIST contains a
list of trigger macros referenced and where they are
referenced, it is easy to find out which routines
mst be recompiled.

LSI-11 CONFIGURATION

The LSI-11's (see figure 3) are configured with
a terminal, 2 serial line interfaces, a programmable

clock, 24K 16 bit words of RAM memory, 4K 16 bit
words of EPROM, and a CAMAC interface. One of the
LSI-11's alsohas aDSDdua1 floppy drive and supports RT-
11. Thelower20Kwordsofmemory (0-117776octal)is
RAM, the next 4K (120000-133~76 octal) is the EPROM
area, and the upper 4K (140000-157776 octal) is RAM
which is generally used for buffers and the system
stack. The stand alone systems are loaded general-
ly in the memory from 1000 to 117776 octal. They
use a portion of the upper 4K (i53776 down to140000
octal) as their stack area and work space, and the
rest of the upper 4K (154000 to 157776 octal) is
reserved for clock counters, global flags, buffers,
and EPROM program variables. This configuration of
memory has several advantages:

Since the EPROM contents are the same on all LSI-
11's and do not cover the interrupt vectors, any
stand alone system can run on any of the LSI-11's.
This means that we always have readily available
backup hardware.
All stand alone systems are carefully designed so
that they can be restarted witnout reinitializing
everything. The EPROM's contaiL a routine (ROLL)
to dump the contents of the program area (O-
117776 octal) onto a floppy disk and restore that
area from the floppy. Thus we can easily try a
new version of a system out, and if it does not
work, we can back up to the old version and con-
tinue on from where we left ofi.
Our most frequent hardware problem has been
caused by chips working loose on the EMM 16K RAM
board. The EPROM's also contain a simple nonde-
structive memory test. Given a memory problem
there is usually no way in which we can bring up
RT-11 to run the diagnostics, and even trying
would destroy the loaded program. By executing
the EPROM memory test we can leave the contents
of memory as it is, anti then after we rule out a
memory problem, we can still have the program
available to use in our search for the problem.
Also in general, if there is some kind of hard-
ware problem, RT-11 simply will not work. By
having the more detailed diagnostics on the TRIP-
LEX, we can down line load them via the loader in
the EPROM's and try them out that way.
Having the stack area above the EPROM's is very

-5-

advantageous when one is developing a system. If
for some reason there is an error which would
cause the stack to overflow, the stack simply runs
into the EPROM area which causes a trap to loca-
tion 4 or 10 and the program halts without de-
stroying the program load. This gives one a much
better chance to track down the problem and suc-
cessfully restart a program after a crash.

* Since the terminal emulator in the EPROM is fully
interrupt driv&, it is available for use in com-
municating with the TRIPLEX even though a stand
alone system may be executing. Systems requiring
keyboard or TRIPLEX communication control need
only assume control for the portion of the device
drivers actually needed. In most r;ystems this has
been just the keyboard receiver.

DISCUSSION

Parts of the facilities described have been suc-
cessfully used by 7 separate groups at SLAC and out-
side user groups from Yale and Florida State
University. In the last one and one half years the
authors have used the package in the development of
three systems involving about 30,000 lines of PL-11
code and 3000 lines of assembler code. Briefly, the
three systems are:

* CLOTH0 which is a simple system that aids in the
monitoring and calibrating of a polarized elec-
tron generator.

* LACHESIS which is a closed loop feedback system
that reads and analyses beam position and energy
monitors in the SLAC switchyard 'A' line. Based
on this analysis it then adjusts the corresponding
steering magnet currents and a klystron to hold
the beam positions constant to a few tens of
microns, and the energy constant to a few hun-

. dredths of a percent. This system has been in
successful use for 9 months.

* ATROPOS which is a pulse height analysis system
that contains facilities for reading, analysing
and displaying data. In addition, ATROPOS can
simultaneously log data to a job (ACQUIRE) run-
ning on the TRIPLEX and this TRIPLEX job can
concurrently analyse the data and display its
results either on the LSI-11 terminal or on the
output facilities available on the TRIPLEX (the
lineprinter and/or plotter). This system has
been used by three different groups at SLAC for
periods of several months in the development and
testing of the components used in high energy
particle detection equipment. We have also used
it for developing and testing a hardware method
of generating random bits.

The main disadvantages of the software develop-
ment package currently are:

* The lack of hardware supporting a "transparent"
mode of transmission to and from the TRIPLEX
means that sending arbitrary binary data requires
some software encoding and decoding.

* The limited transmission rates lead to long trans-
mission delays. For example, when CLOTH0 was
originally connected to the TRIPLEX via a 300 baud
modem on a telephone line, the down line loading
took 32 minutes for 19K bytes. Fortunately most
of our applications are located at sites which
have twisted pair cables connecting them directly
to ports on the TRIPLEX. Thus the normal line
speed is 2400 baud at which rate CLOTH0 can load
in 4 minutes via an IBM 3705 port. More recently

with the installation of a PDP-llf34 terminal
concentrator front end to the TRIPLEX, we have
been able to successfully connect to the TRIPLEX
at 9600 baud and down line load CLOTH0 in 1 min-
ute 30 seconds. The transmission line speed and
software decoding/encoding also limits the ATRO-
POS data logging rate to typically 60 bytes per
second of logical data at 2400 baud.

* The performance of the TRIPLEX terminal support
processors (MYLTENIWYLBURIORVYL) under sustained
full speed communication with computers instead of
people may degrade their performance, particularly
if several LSI-11's are logging data continuously
at maximum rates.

Some of the transmission problems may be allevi-
ated In about a year when plans call for the TRIPLEX
to support a DECNET protocol via a PDP-11/60 front
end.

In exchange for these disadvantages, the soft-
ware package supports in a unified fashion multiple
languages (MACRO-11, PL-11, FORTRAN, and work is cur-
rently in progress to integrate PASCAL, BCPL, and
FORTH into the package). It also:

* has access to the sophisticated I/O devices of the
TRIPLEX

* supports multiple users for many stages of the
system development

* provides powerful TRIPLEX features such as WYLBUR,
automatic archival, backup, and data set manage-
ment

* is immediately available for use after powering up
the LSI-11 since it uses EPROM's

* allows cheap hardware reproduction (including a
CAMAC crate controller and interface, terminal,
serial interfaces for the TRIPLEX line and termi-
nal, LSI-11 power supplies, 24K RAM, 4K EPROM's
and board, programmable clock, etc.) for less than
$7000

ACKNOWLEDGEMENTS

We wish to acknowledge the help received in the
development of this package from the following peo-
ple: Sylvia Sund for her work on ACQUIRE and the
EPROM program ROLL; Kenneth Eymann for his efforts to
make the cross reference program XREF work on XLINKll
object module libraries; John Steffani for his exten-
sive modifications of XASMll and XLINKll; Tim Streat-
er of CERN, Geneva, Switzerland, for making available
manuals and providing distribution tapes of the PL-11
compiler; Bruce Hitson and Brigitte Bricaud for their
work in integrating RT-11 FORTRAN into this package;
Joe Zingheim for building and maintaining the LSI-
11's and for useful discussions; and Professor
Richard Taylor for providing support and encourage-
ment. WorksupportedbytheDepartmentof Energy.

REFERENCES

(1) WYLBUR/370, The Stanford Timesharing Reference
Manual, Third Edit!lon (Nov. 1975).

(2) Robert Russell, PL-11: A Programming Language for
the DEC PDP-11 Computer, Edited by T.C. Streater,
CERN 74-24 (1974).

(3) RT-11 System Reference Manual, Digital Equipment
Corporation, Maynard, Mass., (1976), Order No.
DEC-ll-ORUGA-C-D, DNl, DN2.

(4) S. Steppe1 and H.E. Syrett, XASMll/XLINKll, A
PDP-11 Cross Assembler/Linker User's Manual,
CGTM. No. 160 (1974).

(5) Diskette Memory System, General Product Descrip-

-6-

tion, Data Systems Design,Inc., Santa Clara, IBM System/370, PLAGO Project, Polytechnic Insti-
California. tute of New York, 333 Jay St., New York, NY 11201

(6) Assembler Language, IBM Systems Reference Libra- (8) CGTM 190., On Connecting Computers to WYLBUR,
ry, order number GC28-6514-8. Leonard Shustek, September 1977, Computation Re-

(7) DEC PDP-ll/ZO Assembler and Simulator for the search Group, SLAC, Stanford, CA.

h

-7-

