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SCREENING SOLUTIONS TO CLASSICAL YANGMILLS THEORY * 
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ABSTRACT 

We present two new solutions to the classical Yang-Mills field equations 

in the presence of a localized external source. These solutions totally screen 

the charge of the source. They have lower energy than the corresponding 

Coulomb solution. 
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Non-Abelian gauge theories offer the greatest promise to describe the 

elemefitary forces in nature. We here investigate the solutions to the classical 

Yang-Mills equations in the presence of a static external source in Minkowski 

space: 

(DPFP”)a = j”” (x) = 6 ’ Oqa(x) 

Fa = aAa 
PV PV 

- aVA; + gc abcAbAc 
P v 

(1. a) 

(1. b) 

where qa(x)qa(x) is time-independent. By a local gauge transformation, one can 

always line up the source into commuting directions of color space, e. g. 
a 

q (x)--- 6 a3v q (x) q (x) = sa3qG) for SU(2) which for simplicity we will study 

first. The ansatz’ A; = da3AP then reduces Eqs. (1) to the Maxwell equations 

of electrodynamics. We call the corresponding solution the Coulomb solution 

for the source qa(x). 

However, various results in the literature have already shown that classical 

unbroken Yang-Mills theories in Minkowski space are qualitatively different from 

electrodynamics, e. g. the Wu-Yang monopole and Coleman’s non-Abelian plane 

wave3 which are both non-trivial solutions to Eqs. (1) with q’(x) = 0. Moreover, 

Mandula4 has shown that the Coulomb solution corresponding to a static source 

distributed over a thin spherical shell is unstable if gQ > 3/2, where 

$ = ld3x J/m Mandula also showed that the instability modes produce 

an inward flow of charge that tends to screen the external source. Since the 

energy is positive definite, Eqs. (1) must admit static solutions of lower energy 

than the Coulomb one. Below we exhibit two new types of solutions to Eqs. (1) 

with localized and integrable static sources. The first type has the long-range 

behaviour of a magnetic dipole field, and has lower energy than the Coulomb 
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solution once gQ is large enough. The second type has no long-range field 

strengt&s at all, and its energy can be made arbitrarily small. 

1. The magnetic dipole solution: 

The ansatz: 

Ao’ = Ao” = Ai = A3 = 0 

3 
AO = ~(P ,x3) , Ai1 = ~i3j p I A@, x3) (2) 

where p assures that all the Eqs. (1) are automatically satisfied 

provided: 

-V2@ + g2A2$ = q (3.a) 

+V2A - +A+ g2G2A = 0. 
P 

(34 

The Coulomb solution corresponds to setting A = 0. Outside of this ansatz, the 

full non-linearity of the equations comes into play and there are no analytical 

methods available. It is nevertheless possible to show that there exists a whole 

class (a continuous infinity) of charge distributions qG) which are localized and 

integrable (i. e. Q < 00) and which admit besides the Coulomb potential a new 

type of solution with A # 0 and $ # 0 and finite total energy. To this end, let us 

consider any field A( p , x3) which satisfies the following two conditions: 

1. A( p ,x3) goes to zero as r = qxm- 0. 

2. Away from the origin, A( p , x3) approaches exponentially -fast 

the solution 4yl = p/r30f ~?.a -A2,d = 0. 
P 

For that given A( p ,x3), let us successively solve Eq. (3.b) for $7;;) and cal- 

culate qg) from $g), Ag) and Eq. (3.a). For the charge distribution qG) 

thus found, $‘i;;) and Ag) will be an exact solution of the field equations. The 



second condition on AG ) assures that both $G) and q’i;; ) vanish exponentially 

fast avrray from the origin. The first and second condition together assure 

finiteness of the energy. Let us give a particular example: 
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A0,x3) = ca ” th(;j3 

JiE r2 
W,x3) = - 

a3g ch2 r 3 0 a 

(4) 

are solutions of Eqs. (3) for a rather complicated but non-singular charge dis- 

tribution qg) spread over a region of width a, and of total charge: 

Q = $d3xg2A2$ = c2g I1 (5) 

where I1 = !.p fdx tl12x3 - for our particular example. 
chx3 

The particular 
0 

charge distribution we obtain depends of course on the particular choice we made 

for the way A( p ,x3) approaches p/r3 in the transition region between r < < a 

r > > a. The point is that to the continuous infinity of ways in which A( p ,x3) can 

approach p/r3 corresponds a continuous infinity of localized charge distributions 

which admit solutions of the new type. Presumably the thin spherical shell 

studied by Mandula is among these charge distributions. 

The new solution has the long-range behaviour of a magnetic dipole field. 

Indeed, using a vector notation for the spatial components, we have for r >> a: 

(6) 
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where; = ca% In Eqs. (2) and (6) the orientation of the magnetic dipole has 

been arbitrarily chosen to be along the ? direction of space and the $’ direction 

of isospin space (it could have been any linear combination of the ‘?and$?isospin 

directions). The other field strengths are either zero or short range. The 

physical situation is as follows. The Yang-Mills fields x1 and $ create a charge 

distribution -g2 (x 1)2 @ -whose total charge exactly cancels Q. The electric field 

strengths thus become short range. On the other hand, the Yang-Mills fields 

create a current loop distribution: 

tl 
J = ,“cp”;i’ = g2q2A $ ($x2) 

whose total magnetic moment is precisely z = c a% 

The energy of the magnetic dipole solution has the following form: 

I$,-=~* = / d3x $ [,&#, ,2 + g2$2@)2 +@xl,‘] 

= $ d3x [$ I$$ I2 + g2$2(x1)2] 

= Tj-j12+c213)= q.j12+$$) 

(7) 

(8) 

where I2 and I3 (like 11) are calculable numbers which depend on the shape of 

the charge distribution but not on its norm (Q) nor its spatial extension (a). 

Since the energy of the Coulomb solution has the general form: 

we find that the magnetic dipole solution has lower energy than the Coulomb 

solution when 
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.- - Qg ’ 214 
L@+@q. (10) 

2. The total screening solution: 

The magnetic dipole solution thus appears to be precisely the new type of 

solution whose existence had been implied by Mandula’s work. However, we 

will now show, by merely exploiting our knowledge of the Coulomb solution and 

gauge invariance, that any extended charge distribution admits solutions of 

energy as low as one wishes. Indeed, while in Abelian gauge theories the sign 

of a charge is unambiguously defined, this is not so in non-Abelian gauge theories 

where the direction in isospin space of a charge distribution can be locally re- 

versed by a gauge transformation. The only gauge invariant quantity that 

characterizes a source is q2(x) = q”(x) qa(x) for SU(2). 5 Thus for any given 

extended source q2(x), we can ehoose a gauge where half of the-source is lined 

up in the positive ‘$’ direction of isospin space and the other half in the negative 

‘?direction. We can then make the ansatz A; = 6 a3AP which will yield a 

Coulomb solution corresponding to an electric dipole. By rotating back into the 

gauge where q” is completely lined up in the positive?direction, we find a 

solution whose energy is that of a dipole field although q” is in the monopole 

configuration It is clear that from dipole we can go to quadrupole and so on, 

lowering the energy indefinitely in the process. Let us illustrate this by giving 

a particular example, in which all fields will be free of discontinuities. Equations 

(1) are solved by: 
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.- A;= 0 Aa = Eiat 
4 

Eia= & 47r 3 r3 1 2nn Sa2(cos 2rnh(r)-1) - 6a3sin27rnh(r) 1 
6a2 sin2nnh(r) + 6a3cos 2nnh(r) 1 (11) 

where t = time, n is an integer and h(r) is an arbitrary function that goes to one 

asr-+Oandgoestozeroasr-mx,, sayh(r)=e -3 (r/a)2 . Rotated back into the 

gauge where q” is completely lined up in the positive *direction of isospin space, 

the solution has the form: 

A$= 0 Ala i 
= E’ia t - da1 1 

g ait2Tnhtr)) 

X. 
E’ia = 211 

4n r3 2nn 6a2(l-cos 2nnh(r)) - aa3sin2nnh(r) I, 
cl ,a = (12) 

The electric field is completely screened because the charge distribution 

-g’ ii abcA,b E@ carried by the Yang-Mills fields exactly cancels the external 

source. There is no magnetic field. The energy of this total screening solution: 

H to ‘* = !$+ ($-f i 15 sin2nnh(xa) 

is finite provided 1 - h(r) N r &+E , with E > 0, as r - 0 in which case Ht. ‘* 

goes to zero an n - co, 6 

(13) 

In conclusion, we have shown by exploiting our knowledge of the Coulomb 

solution and gauge invariance that the Yang-Mills field equations in the presence 

of a static extended external source admit solutions which completely screen the 
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external source and which have energy as low as one wishes. But we have also 

shown that there is yet more structure to the Yang-Mills equations in the pre- 

sence of external sources: they also admit solutions of the magnetic dipole type 

whose energy becomes lower than that of the Coulomb solution when gQ is larger 

than some critical value. These solutions cannot be transformed to a Coulomb 

solution by any gauge transformation since Bi” # 0 and E abc b c Ei Ej # 0. The 

generalization of the above results to larger gauge groups is trivial only if the 

source lies completely within a SU(2) subgroup. This and other questions related 

to this work will be expanded upon in a later publication, 
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