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ABSTRACT 

Using the framework of the SLAC lattice approach it is shown that a 

symmetric block spinning between link and site terms in the Hamiltonian of 

the one-dimensional quantum Ising Model provides exact known results for 

both critical coupling constant and thermal exponent. The ground state 

energy density calculated in this way exhibits in the critical point a 

divergence in its second derivative. 
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It is well known that the Ising Model (I.M.) in a transverse magnetic 

field at zero temperature and d dimensions is equivalent to the classical 

I.M. in d+l dimensions, the transverse field in the former playing the role 

of the disordering field, the temperature in the latter. This was shown 

for d=l by Pfeuty' and Suzuki2. The generalization to an arbitrary d was 

conjectured by many authors 394 and it is justified using the transfer matrix 

technique. 5 

For d=l the Hamiltonian of the system is 

H = X [- 5 az(i) - Acrx(i)ax(i+l)] 
i 

= f [- 5 l(i) + c(: lo) (i> - Aox(i)ox(i+l)] (1) 

where o and o are the usual Pauli matrices. From the exact solution' 
X z 

is known that a second order phase transition occurs for K=2. The behavior 

of the order parameter or magnetization in this model is given by <a> 
X 

= [l-($)231/8 for Kc2 (ferromagnetic phase) and <ox>=0 for K>2 (para- 

magnetic phase). The explicit dependence of the magnetization function 

shows the value of the fi exponent (.125), identical to the case of the 

two-dimensional I.M. All the other critical exponents are also the same. 

The two-dimensional I.M. and equivalent one-dimensional quantum problem 

have the remarkable property of self-duality. 6 For a one-dimensional 

lattice the sites of its dual correspond to the links of the original, 

and the first system can be redescribed by a new system with degrees of 

freedom attached to the dual lattice. In our case, the Hamiltonian (1) 
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is self-dual because it is invariant on passing from the original variables 

to their duals.' This is an important result because it sets a mapping 

between highland low K energy eigenstates and indicates the critical point 

K=2 as the fixed point of that correspondence. 

Here we will describe a way of doing blockspinning in this model by 

a progressive thinning of degrees of freedom so that the site-link symmetry 

of (1) is maintained at every stage. This will render some exact known 

results, which is quite remarkable bearing in mind that we are using an 

intrinsically approximate method. Specifically we propose a modification 

of the SLAC blockspinning in its application to the one dimension quantum 

1.M.'. This is a variational renormalization group (R.G.) method 10,ll 

in which the lattice is dissected into small blocks, each containing a 

few spins, which are coupled to one another by the link terms in the 

Hamiltonian. The Hamiltonian for the resulting few-degree of freedom 

problem within each block is diagonalized and the degrees of freedom 

thinned by keeping an appropriate set of low lying states. A new effective 

Hamiltonian is then constructed by computing the matrix elements of the 

original Hamiltonian in the space of states spanned by eigenvectors having 

the lowest energy eigenvalues in each block. The process is then repeated 

._ for the new effective Hamiltonian, whose coupling parameters change at 

each step. The procedure is iterated until reaching a regime that can 

be solved trivially or by perturbation theory. The important thing to 

emphasize here is that in this method the block Hamiltonian is formed 

in general by n sites and n-l links. Our modification consists simply 

in omitting one of the sites in order to have a perfect balance between 
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both kinds of energy terms. That is, our idea is to bring to the blocks 

the link-site symmetry of the model. For n=2 both methods are pictorially 

shown Tn Figs. la and lb. 

To illustrate the new way let us find the R.G. equations using the 

minimum block size. So let us proceed to diagonalize one of the block 

Hamiltonians that appear in Fig. lb. 

B = E : 1" (2) - Ao,(l>o,(2> ( ) (2) 

Its representation in the space subtended by I++>, I++>, IS+> and I++> 

is decoupled in two 2X2 matrices because B is invariant under a rotation 

about the z axis of n, hence the state I++> only mixes with I++> and I++[ 

only with I++>. Furthermore the two matrices we get are identical 

<+J/IBI++> <WIBj++> 

1 [ 
<++lBj++> <+J-IBI++> E 

1 [- 
-A 

= = 

<++jBICS> <++lBj++> <++IBlfJ-> <++lBj++> -A o 

The eigenvalues 12 of this matrix are 

(4) 

corresponding to the eigenvectors. 

1 I&> = - b 

0 &Gii-iTl 

(5) 

The truncation is done on retaining the two lowest degenerate eigenstates 

and dropping the other two. In this way we obtain a new effective Hamiltonian 

by computing all matrix elements of H in the truncated basis generated by 

the block states. 
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IEl> = 

We therefore obtain the coefficient of as the difference 

(6) 

c(l-b2) 

l+b2 

While the coefficient of ax(j)cx(j+l) comes from calculating the represen- 

tation of say Aox(2,j)ox(l,j+l) in the truncated basis, i.e. 

A+A' 2b 
= Az1z2 = A l+b2 (8) 

where 

Z q cE'~[ 
1- 

a,(l) El> = 1 

(9) 

Z 2 E <E 'Ijox(2)(E2> = 2b 
l+b2 

Summarizing the procedure, we have 

- 5 l(i) + s(g i) (i) - *ox(i)O,(i+l)]- 

+ 1~ s} (E y)(j) - [A %]ox(j)ax(j+l)] 

SO that the R.G. equation for K will be 

K2 K+K' =+=- 
2 (11) 

(10) 
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which has as fixed points the two trivial K=O and K=a and the nontrivial 

K*=2 coincident with the exact known result for the critical constant of 
-c. 

the model. 

The properties of the R.G. transformation near the critical point 

are determined by the derivative XT 

dK' 
'T _= dK 

-I 
K=K* 

which is known as "thermal eigenvalue." For (11) XT=2. The "thqrmal 

exponent" yT is related to the previous eigenvalue but it is independent 

of the block size we choose: 

'hhT> 
'T ' Len(n) ' (13) 

n being the number of spins per block used in the method (in this case n=2). 

From this we obtain yT=l which is also the exact known result of the model. 

The "magnetic eigenvalue" XH is defined as the response to a perturbation 

of the form 

hkx(i> (14) 
i 

due to the existence of a longitudinal magnetic field 14 , of the fixed point 

Hamiltonian H(K*). We determine this number in our scheme by representing 

this perturbation in the space of the truncated basis and dividing by 

A' 
( 1 n 

in order to have the coefficient of 
[ 

Cox(j)ox(j+l) always normalized 
j I 

to -1: 

h+h' = h(zl+z2) (15) 

AH 
z1+z2 =- 
z1z2 

(16) 
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Analogously with the thermal case, the "magnetic exponent" is defined as 

h$.$ 
'H ' b(n) (17) 

As it is well known from the R.G. theory the "physical exponents" 

(a,B,y,G,etc) can be calculated using YT and YH.15 However we are going 

to calculate here the magnetization exponent 8 directly and also the ground 

state energy density using the iterative way described in detail in 9 

The magnetization function is found after a not large (10 renormalization 

iterations is typically enough to reach a stable value) number q bf steps 

in 

M= ' 
"s T(z1+z2) q I 1 (18) 

fi is found by fitting the numerical points obtained in the iteration of 

(18) with the function l- $ 
[ ( 

2B 

)I 
at points K very near to KJt. In Fig. 2 

we show comparatively the magnetization calculated using the symmetric 

and the nonsymmetric blockspinning, and the exact result. 

To get the ground state energy density it is necessary to calculate 

the function 

’ (19) 

for a q large enough to obtain stationary results (q=15 is usually good). 

We see that this formula collects the successive coefficients of the 

matrix divided by the volume of the block in each step. The final results 

of the energy density in the critical area are presented in Table 1 and 

compared with the results of the nonsymmetric blockspinning. Both methods 

are compared graphically with the exact result in Fig. 3. It is not 
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surprising that the lower result is obtained using the nonsymmetric block- 

spinning because in that method the quantity of energy stored in each step 
-c. 

is 

E-l-zw (20) 

which is lower than ours 

t- / sb2 $+A2+- 
l+b2 

(21) 

However the nonsymmetric blockspinning has a serious disadvantage on missing 

completely the divergence of the second derivative of the energy density, 

which is a property of the model, 16 and which does appear with our method . 

See Fig. 4. 

The repetition of the previous analysis for a bigger block (n=3,4...) 

must render better results. In fact, this is the case as can be seen in 
_ 

Table 2. Our method maintains the exact values for K* and yT improving 

progressively yH and B. The energy density is also improved. It is an 

interesting fact that if the site is excluded in an inner position of the 

block the results are clearly better for yH and B. 

For completeness we shall put the original nonsymmetric and the new 

symmetric blockspinning in a general scheme. To do that let us define a 

variable two spins block Hamiltonian T as 

T E K[x 6 7) (l)+y t y)(2)] -ox(1)ox(2) (22) 

depending on two variables x and y. As usual in this method, to do a R.G. 

transformation, the two lowest eigenstates of T are retained and a new 

Hamiltonian H' is obtained on representing H in the truncated block basis. 
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Proceeding along this way, the fixed point Hamiltonian H* characterized 

by a K such that K'=K will vary for every (x,y) choice in (22), being 

symmet;ic under the xtfy exchange. 

In this scheme the original SLAC blockspinning corresponds to work 

in the (1,l) point and our method to use (1,0) or (0,l) as variational 

renormalization point. 

In Fig. 5 what we call "isocritical trajectories" are displayed for 

a few representative cases. All the points of the XY plane that are in 

the same trajectory provide the same critical coupling constant in the 

renormalization process. 

Amusingly the trajectory corresponding to K*=2 has a borderlike behavior 

because it is asymptotic with y=x. It is mathematical shape is specifically 

y= fi and y= fi. It separates the one branch trajectories (those . 

with K*>2) from the two branch trajectories (those with K*<2). In this * - 

case x=y-+co in (22) leads to K*=2 simply because 2 is the coordination 

number of the lattice we are describing. 

In general for quantum I.M. in any dimension in any sort of lattice, 

if we do the blockspinning 'a la SLAC' using a block where all the spins 

are symmetrical (all of them in an outer position) and we choose as varia- 

tional point the corresponding x=y=z=...-)co, the result for KJ; is always 

the coordination number of that lattice, as can be trivially checked. 

The contemplation of Fig. 5 illustrates what would be a-"supervaria- 

tional" method somehow parallel to the one we comment in 16. In it the 

renormalization point would be free to run along the exact critical 

trajectory, y= &7Z for instance, so that the final energy density be 

minimum at the end of the iterative path. This procedure would render 
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the lowest possible energy density (for a two spins block) without spoiling 

the correct critical constant. 

WT conclude that for a self-dual model like the quantum l-dimension 

I.M. our method has some clear advantages over the previous nonsymmetric 

one. In a subsequent paper we will study the two-dimension quantum I.M. 

and will compare both approaches. That will be very interesting because 

working for a not self-dual model, both methods will compete in a more 

fair ground. 

It seems also very promising to study another more ambitious self- 

dual model like the 22 gauge in 3+1 dimensions, 16 where a self-dual block- 

spinning could in principle render exact results as the ones presented 

here. 
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TABLE 1 

Ground State Energy Density 

.5 -1.0031 -1.0005 
.6 -1.0059 -1.0009 
.7 -1.0101 -1.0017 
.8 -1.0156 -1.0028 
.9 -1.0227 -1.0043 

1.0 -1.0315 -1.0064 
1.1 -1.0420 -1.0092 
1.2 -1.0544 -1.0126 
1.3 -1.0686 -1.0170 
1.4 -1.0848 -1.0224 
1.5 -1.1029 -1.0290 
1.6 -1.1230 -1.0370 
1.7 -1.1451 -1.0468 
1.8 -1.1693 -1.0588 
1.9 -1.1956 -1.0737 
2.0 -1.2240 -1.0938 
2.1 -1.2545 -1.1282 
2.2 -1.2872 -1.1673 
2.3 -1.3220 -1.2089 
2.4 -1.3590 -1.2520 
2.5 -1.3982 -1.2963 
2.6 -1.4395 -1.3415 
2.7 -1.4822 -1.3873 
2.8 -1.5258 -1.4338 
2.9 -1.5700 -1.4807 
3.0 -1.6148 -1.5280 
3.1 -1.6601 -1.5756 
3.2 -1.7058 -1.6235 
3.3 -1.7519 -1.6717 
3.4 -1.7982 -1.7200 
3.5 -1.8448 -1.7685 
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P 

TABLE 2 

- Summary of Results for the Critical Constant and Exponents 

Exact Result 
K” yT yH P 

2 1 1.8750 .125 

2.55 .67 1.27 .39 

2.31 .76 1.37 *-34 

2.21 .80 1.43 .30 

2 1 1.27 . 23 

2 1 1.28 .21 

2 1 1.43 .20 

2 1 1.29 .20 

2 1 1.45 . 19 
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FIGURE CAPTIONS 

1. (a) Nonsymmetric blockspinning 

(b?Symmetric blockspinning 

. stands for the spin degree of freedom of the lattice 

0 for the energy site term in the (1) Hamiltonian 

- for the energy link term in (1). 

2. Magnetization 

0000 Nonsymmetric block spinning 

l *** Symmetric blockspinning 

- Exact result 

3. Ground state energy density 

0000 Nonsymmetric blockspinning 

***a Symmetric blockspinning 

- Exact result 

4. Second derivative of the ground state energy density 

0000 Nonsymmetric blockspinning 

ee*B Symmetric block spinning 

5. "Isocritical maplt in the space of variational parameters (see 

explanation in text). 
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