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ABSTRACT 

Explicit formulas are given for the high-energy total cross section and 

angular distribution (asymmetry) in ee - pp, cq in models of the Salam- 

J. C. Ward and Weinberg type in the tree approximation. As expected, the 

pure weak terms ca.nnot be neglected as the center of momentum energy ap- 

proaches the mass of the neutral heavy vector boson Z. 
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It is of some interest to know the explicit c. m. energy dependence of the 

vario2s cross sections in e+e- annihilation as predicted by models of the Salam- 
. 

J. C. Ward and Weinberg’ (S-W-W) type, with little prejudice as to the funda- 

me.ntal hadronic sector, i. e. , as to the quark sector qi i t . Thus we shall re- 

cord d (T 
( 
e+e- - - qi qi) ‘d ’ with the lone assumption that the qiqs come in (right) 

left-handed (singlets) doublets with non-zero mass and with electric charges Q. 1 

and Qi - 1 for the upper and lower members of a doublet, respectively. (As 

usual, the left-handed parts of ZJ 
IJ 

and 1-1 form a doublet. ) The kinematics is 

summarized in Fig. 1. As usual, the center of momentum scattering angle ec m 0 0 
is the angle between the center of momentum e- 3-momentum and the center of 

momentum produced fermion (as opposed to anti-fermion) 3-momentum, as il- 

lustrated in the figure, i. e. , d fi is associated with the direction of the produced 

fermion relative to the incoming e- direction. We shall imagine S = (p- + P+)~ 

to be large enough that all masses me, m , m 
P qi 

may be ignored, where m a 

is the mass of a. 

Let oQ be the invariant cross section a(e* e- - T-f) for the fermion f of 

charge Q whose left-handed part forms the upper member (IT = *l/2 member, _ 

where I w is weak isospin) of a doublet and Q-1 u be the analogous quantity for 

the lower member (I: = -l/2 member). Then, by the standard methods we 

have from Fig. 1 (Bw is WeinbergPs aagle and should not be confused with Oc m D 0 

in the following formulae) 
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. Q2a2 
- + 

4s + 
2Qsin20w) 2 i 1 

64 sin4BWcos4@w(S-gZ)2 

+ 
Qa2(; - 2 sin2#,)(t - 2Qsm2Bw) 

8 ~in~~~cos~B~(S-M;) I 

-I cx2S(-8+ 2Q sin2Sw)(& - 2 sin2Bw) &a2 

32 ~in~i?~cos~B~(S-M;)~ 16 sin20wcos2t9w(S-~z) 
I 

d$-1 -= 
da 

1 

cos 8 
corn,’ 

a2 
[ 
(h + 2(Q-l)sin2 Ow)2 + k 1 S 

64 ~in~~~cos~O~(S-M;)~ 
- 2si.n2Bw)2 + $ 1 

(Q-W 21 (z - 2 sin2B,)(t+2(Q-1) si.11~0~)~ 

8 sin2BWcos2BW(S-Mi) I 

(l+ cos2ec m D 0) 

(1) 

~~(-5 -2(Q-1) sin20w)($-2sin20w)S 
+ (Q-l)or2 

32 sin’e wc0s4e w(s_M22)2 16 sinat9wc0s2ew(s- 

Here, cx = e2/4n, where e is the electron (as opposed to the positron) charge and 

G/4 is the Z-fermion-anti-fermion axial vector coupling strength, so that 

GsinOWcos Ow = e o (3) 

The mass of Z may be understood to have a negative imaginary part, in which 

case 

(S-M;)-2 - I S-M; I -2 (4) 

and 
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1 P--a 
S-M; 

Re 1 
S-M; 

(5) 

Since we expect 1 (Im Mk)/Mi 1 N 01 , we shall usually ignore ImMl . (Bgl$ 

remember (4) and (5) in what follows!) 

Of some interest is the limit of Steinberger et al. ,2 -- 

sin2 Ow + l/4 . 

In this case we have 

I Q2CY2 a2 [(Q-l)’ + l] S 
d!2 -XT-+ 36(S-M;)2 I 

Qa2cos P 
-k c.m. 

3(S-M;) ’ 

(Qiz2cu2 + a2[Q2 -t l]S 

36 (S-M;)2 

_ (Q-l)a2cos0c m . . . n 
3(S-M;) 

(6) 

(8) 

More specifically, since the left-handed parts of v 
P 

and /A form a doublet 

in the S-W-W model with Q = 0, we have 
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do@) 
(e+e- -+ p+p-) z da 

= daQ-l 
da I Q=O 

2 sin20w)’ + l/ 

64sin40 cos46 (s M2J2 w w-z 

a2(l/2 - 2sin2eW) 2 
+ 

8sin2fIwcos20w(S-Mi) 1 
(1 + cos2ec m ) . . 

-a2(~- 
- I 

2 2 sin29!w)2 S 
+ 

32 sin4scos4G (S-Mt)2 

cY2 
4 

16sin2~.Wcos2fw(S-M~) I 
cos 9, m 

. ’ 

so that 

47rcC2 + - 2 sin20$2 + l/4 2S 
=--g-+ 

12sin40wcos4f)w(S-M;)2 

29012(1/2-2sin20$2 
+ 

3sin2~cos28 W(S-M;) ’ 

Similarly, 
7ra 

f - 2Qsin2+&2+ l/ 

12sin4!+.pS4 Ow 

(9) 

(10) 

x ~l/2-2sin2~J2 + l/4] S hQa2(~ - 2sin2e&(i - 2Qsin20wl 

(S-M;)2 

+ 

3sin28Wcos2eW(S-M~) (11) 
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cQ-1 = 4a(Q-1)2a2 + 
3s 

2 1 + 2(Q-l)sin20w) +- 4l[ 
($ 2sm2ew)2+ $ 1 s 

12sin40wcos40w(S- Mi)2 

27r(Q-l)a2(; 
2 1 - 2sin ew) (2 + 2(Q-1)sin 2 OW) 

3sin2eWcos20W (S-M;) 
. 

Thus, for S+Mi , 
C ate+e- -+ Si4i) 

R= qi 

c$e+e’ -i p+p-) 

-a ((i - 2Qisin20W)2 + l/4) +( (i+- 2(Qi-l)sin20W)2+ l/4) 

quark ( (1/2-2sin20W)2 + l/4) 
doublets 

ND(l-2 sin20w) + 4R 
ZZ 

( l/2-2sin20w + 4 sin40W) 

-T sin 0, --+ l/4 
2ND + RQED ’ 

where 

ND is the number of quark doublets 

and 

RQED = c (Q~+ (Qi-‘)2) =C Qp . 
quark 
doublets 

quarks 

(13) 

To repeat, we ignore ImME . (But, see the discussion immediately following (17).) 
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Finally, defining the asymmetry aQ by 

daQ 

c.m. 

UQ - UQ 
aQ= + - 

UQ+ UQ -I- - 
we have 

1 
aQ = I (? - 2Qsin20w) (i - 2sin20w) S 

+ Q 
16sin40wcos40W(S-M~)2 8 sin2swcos2ew(S-Mi) 

I 4Q2 
I---- 3s + 

($ - 2Qsin2ew)2+1/4] [(i - 2sin26w)2 + 1/4]S 

12sin40Wcos4ew(S-M~)2 

2Q (; 2sin 2 Ow) 1 (2 2Qsin 2 - - + Ow ) 
r) r) r) 

3sin”Owcos”Ow (S-M;) 

3 (+ -2Qsin20w) (+ - 2sin20W) 

z 1 
E 
z-2Qsin20W) 2 +;?: z- ’ (l 2sin20w)2+i I[ 

(15) 

(16) 
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1 .2 1 
tz + 2tQ4sln ew)t2 - - 2sin20W) S 

16cos4eWsir14eW(S-M~)2 

+ 2(Q-l)sin20w) -2sin20W) 2 1 + h 
+ 

12sin40Wcos40w(S-M~)2 

2(Q-l)(+ - 2sin20w)(+ + 2(Q-l)sin20W) 

3sin20Wcos26w(S-M$) 

3 (Q-l)sin2eWcos2ew 
-- 

[(S-M@] 

+ 2(Q-l)sin26w)2+ -2sin20w)2+ + 
. (17) 

(In the last line of (19 and of (17), (4) and (5) give ((S-Mi)/S)d( (ELReMi)/S). ) 

In (13), (16), and (17) for S -ME, we have used the fact that, even though 

(ImMi)/Mi - 01, with sin20W z .26, +$ - 2sin2ew - -. 02 and sin20Wcos2eW - F6 

so that, for IQ1 I 1, for S -rME , in $ + ~2 

(a) 4 Q2 4 
5 S”3s 

(b) 
2 

2sin20w) + 
1 - T 1 S 16 - l/ 

22 12sin40wcos4eW S-Mz 
I I 

12(3/16)2012S 

4 = 
27a2 S ’ 
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W Re 
2Q (i - 2sin2BW)(~ - 2Qsin28W) 

- 3sin2BWcos28W(S-Mz) 

-+O 

S + ReM2 z ’ (18) 

i. e. , (b) dominates near resonance. (The same argument works for 

@Q-l + cT Q-1 
+ . ) Note that, for S -ReM,$ , where E2 = S, 

1 1 = 
S-ReMi - iImM2 Z E2 -ReMi - iImME 

s 1 1 

E+w (E - he&@- iImMi/(E + &eMg) 

+- I’/2 A (ImMg)/(E + J----- ReMZ) N (ImMi)/2 ReMZ 

+ (ReMZ)P G - ImMi , (19) 

where P is the familiar Breit-Wigner width of Z. 

About R, aQ, a&-‘, etc. , it should be noticed that the pure weak term 

CC S/ 1 S-ME I2 cannot be neglected as one approaches S = ReMg . The results 

above appear to be in general agreement with the more model independent results 

of Ref. 3, for example. 
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FIGURE CAPTION 

1. Bee approximation for e+e--, /L’P- and e+e- -+ iq in models of the 

Salam-J. C. Ward and Weinberg type. As usual, 

P- * t1 = s/4 - &Lif J$Z~$COS ec.m.-+ (S/4) (I-~0s ecmmj, 

where m f = m ~, mqiin (a), (b) respectively, and S = (pm+ P+)~. Higgs 

scalar exchange is taken to be negligible. 
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