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ABSTRACT 

We solve for the phase diagram (phase transition) of the nearest-neighbor 

coupling SU(n) nonlinear scalar action. We do a one-loop calculation for the 

effective coupling constant, and find that the system undergoes a phase transition 

for d>2. For d=2, the theory is asymptotically free. 
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1. INTRODUCTION 

We use the methods of the lattice gauge theory; to study the lattice version 

of theaonlinear scalar action. We are primarily interested in its critical prop- 

erties. We have shown2 that there is an exact mapping from the scalar action to 

a version of the lattice gauge theory. The way this is done is to form a vector 

field by considering d(=dimension) uncoupled scalar fields as components of the 

vector field. A gauge transformation is then defined for the vector field, and 

the gauge-invariant action is defined by integrating the gauge-transformed vector 

field over all possible gauge-transformations. Note the gauge-invariant action 

is invariant by construction. The phase transition properties of the nonlinear 

scalar action would also be possessed by their mapping into the lattice gauge 

theory. A phase transition in this theory implies a phase transition separating 

the confining phase from the asymptotically free phase in the corresponding 

gauge theory. The theory studied here is also involved in defining the transfer 

matrix for the lattice gauge theory. 1 

In statistical mechanics the SU(2) lattice nonlinear scalar action is called 

the O(4) symmetric Heisenberg model. The O(n) Heisenberg model in weak coupling 

was solved by Polyakov3, and he showed that the theory possessed a phase tran- - 

sition for d>2. His results provide a check for the results of this calculation. 

Consider a d-dimensional Nd periodic Euclidean lattice. Let Un be an SU(n) 

matrix at the lattice site n. We define the lattice nonlinear scalar action by 

A = -L c Tr (UnUi+p + Un+,Uz) 
g2 I-4J 

(1-l) 

= -% c Tr(GC1Un6~U~) + constant (1.1’) 
g w 

where dc,fn = f - f n+p n , /J the unit basis vectors of the lattice. 

The quantum theory is defined by integrating e 
A 

over all possible values 

for the Un matrices. Then, the Feynman path integral is defined by 
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z = IT J dU eALU1 = <eA> 
n n (l-2) 

(where dUn is the invariant measure). 

We will be interested in the theory for g2 = 0. We will make an expansion 

2 ing . This allows us to make certain approximations; to do so, we introduce 

following notation. Let ix”> be the generators of the SU(n) lie algebra; then4 

the 

Xa$ = & cab + $ (daba+ i caba)f 
(1.3) 

Tr (XaXb) = 6ab / 2 

where c abc abc , d are respectively the completely anti-symmetric/symmetric 

tensors. We will need the following formula4 

(1.3’) 

+ daba! dcda! -ic aba! dcdo -id abo ccda! 

Also 

Un = expC iB,” X”} (l-4) 

where { Bc} is the (compact) scalar quantum field. 

For g2 N 0, we can expand the action into a power series of the { Bf} 

variables. The measure dun= ~(6,) i dB,” where p(B)=exp(- & B2) + O(B3), 

gives us 

Z = nE m,” I-l(Bn)e / 
A [Bl (1.5) 

The action supplies a (massless) Gaussian measure for the (Bl) -variables, which 

allows us to ?gnore” the compactness of the B: variable and gives 

(1.6) 
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(where we are ignoring a single variable above which is not bounded by the pure 

gradient coupling). We call (1.6) the weak coupling approximation for the nonlinear 

theory? The weak coupling calculation for the critical coupling g,” is self-consistent 

only if g,” << 1. 
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11. EVALUATING THE VERTEX FUNCTION 

From Eqs. (1.1) and (1.4) and from the results of Ref. 4, we have, for 

A= 

(6&)2(6VBn)2 + (6 + O(B6) (2’ ‘) 

=Ao+Al+A 
2 

(2.1’) 

where 

a - b = aCrbCZ , (a x b)” = caPY aPbY, (a%)o = d”“apby (2.2) 

The term A2 in (2.1) is not interesting in this calculation. Firstly, because 

power counting shows that A2 cannot affect the critical behavior of the Al vertex 

(at least to one-loop order). Secondly, due to the number of derivatives it carries, 

it cannot contribute to the quadratic mass divergence. Hence, we will entirely 

ignore the A 2 term in further discussions. 
1 

We are interested in Feynman perturbation theory, and hence we fourier 

transform the variables. Let 

B,“= 1, 
ik n 

Nd ’ 
e p p Bacc eiknBa 

k k k 
P 

S&q) = NdU 6 -ikn 01 
/J k q . Note Bka! n 

CL, P 
=xe Bn 

Let 
iq. 

rP(qi, qj) = elqiP - e lP 

d,=c l-e 
I 

iqpl 2 
1 

P 

(2.3) 
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Then, with appropriate symmetrization, we have 

- 
A= - 4 5 dqBfqB; 

2g 

+ 1 . L cijcrckQcr c Cu+Pptq19 q2) rptq3, q,Jdq Bj Bk Be 
24g2 4 

P-4) 

9,---Q i 1 92 93 94 

The four-point vertex in (2.4) is symmetric on the first two and last two indices. 

It has to be further symmetrized to be completely symmetric on all four indices. 

Define the symmetric vertex function 

$jkQ 
4iqjqkqQ 

+ (i-k) + (i-Q) 

giving 

Al=+ 2 J 6tCq.v 
ijkQ Bi Bj’ Bk BQ 

24g q19.*94 
i ’ qIq2q3q4 ql ‘2 ‘2 ‘4 

(4 Mass Renormalization 

Define 

Dafi =L- ’ <Ba! BP eA>/Z 
q Nd g2 -q q 

= Fig. 1 , 

where the last diagram in Fig. 1 comes from the measure. Hence 

where 

6 QP 2 I c folPii rq=g 2 p q, -% P,, -P I 
$ _ zg2 (+I$ 

(2.5) 

(2.6) 

(2-V 

(2.8) 1 

(2.10) 

:. 6m = 7r q=o=g n 2” $22 
[ 

$-& 
P d 

=o 
P 1 



-7- 

Hence, there is no mass renormalization and 71 4 
N q2 for small q. This implies 

that the theory preserves its symmetry of being a pure gradient coupling theory. 

A’ mass-divergence would have altered the calculation for the vertex function. 

The symmetry which forbids a mass counterterm is the invariance of the 

action under Un -+ UnV, VE SU(n) [which is violated by the mass term mtTr(Un+Ui)] , 

Ca) Coupling Constant Renormalization 

Define the effective (four-point) vertex function by 

i IJKL ~1 <B1 
"IqJqKqL g6 

BJ BK BL eA>/Z 
-qI -qJ -qK -qL 

= Fig. 2(a) + Fig. 2(b) + Fig. 2(c) 

E 
++qJ+qK+qL) 

(2.11) 

(2.12) 

(2.13) 

We have defined I’ such that as g ---, 0, J? in leading order - l/g2. The symmetri- 

zation (for the one-loop graphs) on the external legs plays an important role in 

combining the graphs. The last graph I’ (2) with a tadpole graph given by Fig. 2(c) : 
6 comes from the O(B ) terms in the action. This graph gives a momentum inde- 

pendent contribution and enters in the calculation with the opposite sign than that 

of the one-loop graphs I’ (1) ; it plays an essential role in causing the phase transition 

since it makes g,” positive. Note 

r(O) - 1 $JKL 
24g2 qIqJqKqL 

(2.14) 

(2.15) I’(‘) = Fig. 2(b) 
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(1) On calculating r , we find that it is a linear combination (with appropriate 

permutations) of the following: c IJorcKLa IJadKLa 
, c , cfJadKLa andd . 

IJ gKL 

-We keep terms of the first generic type. The remaining tensors mix with the 

symmetric piece of the action (the term A2 in Eq. (2.21)). The vertex defined 

by c 
IJacKLa contains the phase transition. Keeping only these terms we have 

(up to a symmetrization on IJKL), after a lot of algebra 

where 

(2.16) 

+F 
t 

+ the other SU(n) tensors 

r (9, -q-P)rv *(q, -q-p) 
~~v”‘=~ ’ d d 

q P+q 
(2.17) 

and 

&2~ f, 
3qdq’ rptqKy q”b$tqLT drv tqL’ -Cl’ )rv (S,, -@6(qI+qJ+q+q’ ) -(J--K) I 

q9 qr (2.18) 

Firstly, note that “r=O when all the external legs are set to zero. Secondly, note 

that “r is not simply a renormalization of the bare vertex function as is the other 

term in r(l). It will not enter our calculations and we drop it. 

We analyze the function gpv (p); it contains information on how the effective 

coupling constant behaves at momentum of O(p). The long distance property is 

contained in p = 0. Doing an expansion about p=O, we find, for d > 2 dimensions 

where 

and, for 2~ d< 4 

gpv (P) = dclv (J-~P~-~) + o(pd) (2.19) 

I iq 
J=tle ‘-‘e 

-iq 2 
cL 

I/ 
di 

5 a= yg’ r(2-d/2)r2(d/2-1) 

(4’7r)dBr (d-2) 

(2.20) 

(2.21) 
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(a! is well-defined for all d >2). Therefore,for p 21 0, making the approximations 

mentioned gives 

41 
r(l) = 'IJacKLa %(J-apdm2)r (4 g )r (q q 

2(12)2 /J I’ J p K’ L 
) 

+ 2 permutations 
(2.22) 

The last remaining graph is the tadpole diagram. This comes from the 

O(Bi) terms of the action. All terms of O(Bt) do not contribute; only those 

contribute which, under one contraction, can give rise to a vertex of the form 

(BnxB ) n+P 
2. Hence, from the action Tr(U U+ 

n n+p + U ,U+) we keep only the terms n+p n 
of the type O(B ,” B i4+P), O(B?f+,) and O(BiBz+p). The terms of the type 

O(B 5B n n+/..?’ o(BnBSn+ ,u ) and O(Bf) do not contribute (in lowest order) to the vertex 
T 

function. Hence 

A = 4 ~Tr(UnU~+p + Un+fi Ui) 
g V-J 

where 

+ other terms of O(B6) 

Let (suppressing the non-abelian indices) 

cIJacKLa! 
v(q@J’qK’qL) = 12 rptqI’ qJb$($ qK) 

Then 

WI+. ’ . +4Jy (2) 

d r d : 
4. * * 9L 

=L <B1...BL A3e AO 
g6 % 9L 

>Z 
/ 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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Therefore 

rt2) _ i2n - -y$7 (51 - + ,vtgI, * - - (IL) 

where - 

We have computed all the required Feynman diagrams. Collecting the terms 

which are pertinent to the phase transition, we have from (2. ll), (2.14), (2.22) 

and (2.27) 

where 

$JKL = 1 . 1 
qI...qL 12 2 

2g tqK+qL) 
* v(qI.. AL3 

+ 2 permutations 

1 -= + -+I-+- Jf)-F@pdm2 

2g2(p) 2g 

(2.30) 

(2.31) 

Anticipating later results, let 
1 -= 

29: 
(2.32) 

Note that the sign of g,” determines whether the system can go critical or not. 

For g,” >/ 0, there is a phase transition; for g,” < 0, there is no phase transition. 

In the Appendix, we show that g,” > 0. Hence, to O(g2), we have (p = +l!) 

g2tP) = 82 
2 d-2 

1 - w2k,2 + g PP 
(2.33) 

Note it is important to consider the original equation for g2(p) as an equation for 

l/g2 (p) as in (2. 31); otherwise the equations are altered. The result above is 

the SU(n) analog of the result obtained (using different methods) by Polyakov’ 

for the O(n) symmetric Heisenberg model. 
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III. RENORMALIZATION GROUP AND PHASE TRANSITION 

Using the results of Wilson5 and Polyakov3, we analyze the equation for 

g(p). To make the analysis more transparent, we first reinterpret the results 

of the vertex function calculation in the modern renormalization group language. 

Consider an infinite size lattice. We rewrite Eq. (2.4) doing a resealing by g 

of the fields, i.e. 

A+ A+ 
/ dqB-qBq + h dqB-qBq + h (3.1) 
q q I- 0 qi,...qq 

~~qivt~l, * * .s4Pq * * ‘Bq 
1 4 

where we have ignored the non-Abelian indices. where we have ignored the non-Abelian indices. For N+oo , C-.i$ _/+* hd 
q q -7r (27r) 

Consider the vertex function F Consider the vertex function F 
klk2k3k4 klk2k3k4 

given by our calculation, restricting, given by our calculation, restricting, 

however. all the external momenta to take values in the interval -2-‘r,< kt < +2-‘~ however. all the external momenta to take values in the interval -2-‘r,< ki < +2-‘~ 
‘- 

(the 2 in 2 -Q is arbitrary). Let 

We then consider l?klk2k3k4 to be effective vertex of 

would describe the physics for momentum of O(26). 

the effective action that 

We define, using Eq. (2.29) 

A 1 
eff=-Z J 4x B-kBk 

k 
P-2) 

1 
+24 s 

kl,... k4 
6tf$)g2Cx3+k4F tkl - - -k4)Bk - - - Bk , 1 4 

Before we go further, we point out that Aeff can be considered as having been 

obtained by a renormalization group transformation from the original action. 

The original theory has the higher momentum modes (degrees of freedom) running 

from 2-Qn to r in addition to the lower momentum modes. We can break up the 

variables (Bs) into Bk when Iq I,< 2-‘7r and BP when lql = Ip/ > 2-‘~,,. We then 
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integrate out all the high momentum variables {BP} giving the new action A eff’ 

That is, following Kogut and Wilson, 6 the renormalization group transformation 

is give3 by 

Aeff [-Bkl e (3.3) 

A eff can be thought of as follows. On the original lattice, combine a 

Id 
d-dimensional “block” of variables numbering 2 into a single new variable. 

The new system has 2Q lattice spacing between the (new) variables and its 

behavior is given by Aeff . 

To reach a non-trivial fixed point, we have to rescale the momenta and 

field variables of the action Aeff [Bk] , and bring it into the form of the original 

action. We define the following change of scale 

k = 2-Qq , Bk=rB Q q 3 L = 2-Qd.( 

6(k) = 2Qd 6(q) 

We apply the resealing to functions 4, and v(kl . . . k4) by expanding to leading 
, 

order in k, resealing to q, and rewriting the function. This gives 

% 
!E2 -5. ; v(k,.‘. .k4) N 2 -2Q 

vtql. * * 94) (3.5) 
q 

We choose [Q such that the coefficient of the quadratic term in Aeff [Bq] is 

independent of Q. This fixes <Q to be 

cQ = #td+2@ (3.6) 

This then gives (E = d-2) 
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A 1 
eff = - ‘z / 

dB B +A 
q -q q 24 / 

s(ZqiJ2 

4 4 
-‘~sZ(,-n(q3+q4)v(ql..PqlBql...Bq4 

q1,“.q4 
(3.7) 

Therefore, we find the effective coupling for Aeff, which describes physics of 

momenta 0(2-Q), is given by 

gQ2(P) = 2 
46 2 a 

g (2 P) (3.3) 

In the continuum field theory, the bare coupling would be the dimensional 

coupling constant go2 = g2A -(d-2) , where A is some momentum scale. The 

effective coupling constant is dimensionless, and in the continuum theory is given 

by the dimensionless function p d-2 2 go (p), where g:(p) is the dimensional vertex 

function. On the lattice gQ2(p) is the analog of the dimensionless coupling constant 

of the continuum theory. 

From (2.32), we have 

isQ2@) = 
2 2-QE 

l-ng2/gt + g2p 2-‘epe 
(3.9) 

The critical action is given by the fixed point action, for which the system is the 

same for all scales of momenta, i.e. 

-- 
gQ *(p) = g*(p) for all Q (3.10) 

The system also reaches a fixed point action as Q -+a~ For ng2 < g 
C’ 

we 

have 

lim 
Qjao gQ2(d - 2-QE --kg*=0 (3.11) 

That is, the theory goes to the trivial massless free-field fixed point. For 
2 2 

w =gc, we have the system at the phase transition, since for all Q we have - 
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gQ2@) = $ p,‘_, - = g*(P) (3.12) 

The effective coupling is invariant to the renormalization group hence giving the 

fixed point coupling g*(p). This is a non-trivial fixed-point which is given by a 

four-field interaction. Note that the fixed point action A* is highly non-local. 

The interacting piece of A*, in position space, has the form, for In-ml >> 1 

* 1 
AI N- 

P c 
1 

nrnE.1 v 
(BnxB A) 

n+p (n-m)2 (Bm ’ Bm+v) 

c Tr(XoU U+ A U+U.. A) ’ 
n n+h n ni+ Tr(XoU U+ m m+v uLUm+v) + OlB5) 

nwv (n-m) 2 

Note, from (2.21) j3 - l/e as E --3 0. This non-local action has no transfer matrix/ 

Hamiltonian. For ng2 >> g,“, a direct calculation using the compact degrees of 

freedom shows that the theory, under renormalization, goes to the completely 

random (disordered) phase. That is, 

; ‘I 2Q 
2 - 

/_ 1 

0 7 
, g2 >> 1 (3.13) 

gQ 
and lim 2 

Q-+m gQ -+g*=@L The g*= 03 fixed point is the completely disordered phase. 

Hence, we have the following tentative renormalization flow diagram given by 

Fig. 3. The shaded area is not directly accessible to our calculation. The 

arrows on the lines show the direction in which g Q changes as the Q increases, 

that is, as it approaches large distances characterized by 2Q. Ford=2+e, 

it can be shown that gc N E ; hence the theory is asymptotically free for e=O. 

The E -+ 0 limit has to be taken carefully. All the lattice constants diverge 

as l/e. For a well-defined limit, the coefficient of the l/e term must be exactly 

zero. Note since g,” N 1.08 for d=4, the calculation is self-consistent at best 

up to d=4. 
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IV. DISCUSSION 

We have deduced the fact that there is a phase transition in the theory for 

g’n=e. To see this, define the propagator 

Dn = <Tr(UOU~)eA>/Z (4.1) 

For g2>>1, we have (for InI >. l), 

andforg2-0, we have 

Dn- e 

(4.2) 

(4.3) 

The phase for ng2 < g,” is the ordered phase, having infinite distance correlation. 

The phase for ng2>> g,” is the disordered phase characterized by finite distance 

correlation. As shown in Fig. 3, our calculation cannot accurately establish that 

there are no other phases between the disordered and ordered phase. For the 

following discussion, however, we assume that there are only two phases. 

We find that the g*=O, 00 fixed points are stable, and that the g*=gc fixed point 

is twice unstable. 

From the renormalization flow diagram (Fig. 4) we see that, due to the : 

existence of the fixed point g*=gc, we can obtain two distinct renormalized continuum 

field theories in the following way (see Wilson5). We can construct5 one continuum 

theory by approaching gc from below. This gives a theory whose dimensional 

lim coupling at infinite momentum is given by A --* m gt=gt A-e. As one goes to larger 

distance, the strength of the coupling decreases (as is the case for QED in perturbation 
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theory). The other continuum theory is obtained by approaching g,” from above. 

Then, in that theory, the zero distance interaction is also given by g:, but the 

strengs of the coupling increases indefinitely for large distances and is, for large 

distances, like the quark confinement phase. These two continuum theories are 

schematically shown in Fig. 4. The theory by itself cannot decide which phase to 

choose for the physical renormalized system. In a sense, these two phases which 

give opposite long distance behaviour complement each other since they are simply 

two different phases of the same underlying field. It may be possible to map one 

phase into the other using a dual transformation on the field variables. 

A remaining question is whether the renormalized theory has the full 

Euclidean symmetry so that the analytic continuation to real time is relativistic. 

I have not studied this problem. The results for SU(n) obtained contain no informa- 

tion about the U(1) theory (xy model), since the Abelian theory doesn’t contain the 

vertex studied. However, it is known from statistical mechanics that the xy-model 

has a phase transition for d > 2. 

ACKNOWLEDGMENTS 

I am thankful to Bill Caswell and Y. J. Ng for early discussions. I have 

also benefitted from discussions with Predrag Cvitanovic, Michael Peshkin, 

Ken Wilson and Leonard Susskind. Work supported by the Department of Energy. 



1 

-17- 

REFERENCES 

1. K. G. Wilson, Phys. Rev. E, 2455 (1974). B. E. Baaquie, Phys. Rev. 

2, 2612 (1977). 

2. B. E. Baaquie, in preparation. 

3. A. M. Polyakov, Phys. Lett. Vol. g, No. 1, (1975). 

4. P. Cvitanovic, Phys. Rev. x, 1536 (1976). 

5. K. G. Wilson, Rev. Mod. Phys. Vol. 3, No. 4 (1975). 

6. J. B. Kogut and K. G. Wilson, Phys. Rep. E, 2 (1974). 



-18- 

APPENDIX 

From Eq. (2.32) we have 

We show g,” > 0. Recall 

J = x lei%-eeiqpi 2/d2 
q 4 

(A. 1) 

(A. 2) 

(A. 3) 

Let 

(A. 4) K=$ 
l-cosqV cosqv 

d2 
w v) 

q 

Note I, J, K>O. 

From 2 (dl/di) = 1, we have the identify 
q 

J = 41 - 4(d-l)J - ; (A. 5) 

Therefore, from (A. 1) and (A. 5) 
1 - =I+S(d-l)K+& >O 

8,” 
(A- 6) 

For E 2: 0, gzz E since I, J, K - $ . An accurate calculation for d=4 shows, using 

(A. 6) that 

i+ 1.086 , d=4 (A. 7) 

The weak coupling approximation is valid if g,” is small. The weak coupling approximation, 

optimistically, is valid up to d=4. Note that in the continuum theory, by dimensional 

analysis, all the finite lattice constants ,would diverge like A 
d-2 , and would make 

the perturbation theory look divergent. 
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FIGURE CAPTIONS 

1. Feynman diagrams for the propagators 

2. (a) Lowest order Feynman diagram for the vertex function. 
- 
(b) The one-loop contribution, with the appropriate symmetrization, to the 

vertex function. 

(c) The tadpole diagram contribution to the vertex function. 

3. The renormalization group flow diagram for the nonlinear model. The 

shaded part indicates the domain not directly accessible to our calculation. 

4. The two continuum renormalized trajectories obtained from the (lattice) 

cutoff theory. 
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