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ABSTRACT 

A new relativistic n-body scattering formalism is introduced, which explicitly 

satisfies the cluster property, and reproduces the analytic structure of the lowest 

order Feynman graphs. Applied to a three-particle system, this formalism defines 

an alternative form of the relativistic Faddeev equation; specific formulas are 

presented for the case of an s-wave separable interaction. A generalization of 

this equation is proposed for the purposes of three-particle data analysis, and is 
2 shown to provide an exactly unitary description in a form suitable for x -minimali- 

zation techniques. This exact description further suggests an approximate formalism, 

which effectively generalizes the isobar model (including realistic thresholds and 

some three-body cut structure). 

When applied to a four-body system in lowest order, the formalism defines 

a model for diffractive production of three-body states such as 37~, Knn, Nrn, 

etc. Combined with subsequent rescattering of the three-particle system, this 

treatment confirms the recent result of Aitchison and Bowler concerning very strong 

production-resonance interference; this is shown to be related to the difference in 

the off-shell structure of the corresponding amplitudes. In the particular context 

.- 

of diffractive three-body production, this translates to significant differences in 

calculated cross sections when the subenergy dependence of the isobar amplitudes 

are neglected. It is further shown that off-shell (vertex) corrections to the Deck 

amplitude can produce both strong subenergy dependence and dramatic changes 

in the cross sections (as a function of three-body mass). These effects are 

illustrated via an analysis of the l+O’ state of K7rn produced in the reaction 

K+p+ K+n+r-p at 13 GeV/c. In particular, a Q, state of K*r is found at 1.2 GeV 

(compared to 1.4 GeV in previous analyses), whereas a Q, state (coupling pre- 

dominantly to oK) is found at 1.3 GeV (in agreement with past analyses). Impli- 

cations of this result for A1 production in various reactions are discussed. 
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I. INTRODUCTION 

Despite a long history of effort, experimental candidates for the “missing” 

l+ mesons have yet to be definitively established. Thus, data bearing on the 

enigmatic A1 remain contradictory, and evidence for the Q mesons is far from 

decisive. In particular, experiments of the diffractive type have been cited both 

in support1 and to refute the existence of the Al. 2 Under these circumstances it 

seems clear that neither the production mechanism nor the subsequent rescattering 

effects are well understood. Although criticism in the past has focused on the 

latter, 3 a study of these analyses suggests that the form of the production model 

largely presages subsequent conclusions concerning the resonance(s). It thus 

seems important to study production (and production-resonance interference) in 

some detail, and to employ more general models in fitting data. In fact, should 

some experiment succeed in unequivocally establishing the Al, such studies will 

be crucial in reconciling its existence with a mass of apparently negative evidence. 
4 

A comprehensive theory of production would be a considerable undertaking, 

and would include both “direcV’ resonance production (e, g. , coupling of the 

resonance to the Pomeron) and vector meson exchange in addition to the psuedo- 

scalar exchanges embodied in the familiar Deck model. 5 However, while such . 

effects may be significant, and even mandatory in order to explain certain features 

of the data, 6 we shall not consider them in this article. Instead, we shall adopt 

a simpler hypothesis, and assume that production is dominated by a generalized 

version of the Deck model. Since the naive Deck amplitude successfully accounts 

for many features which are characteristic of the diffractive data, this seems a 

reasonable place to start, and the resulting class of models is relatively well 

defined. In addition, this approach is well suited for a complementary study of 

interference effects induced by resonant and nonresonant rescattering in the three- 

particle final state. 
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Given a production model, one must correctly sum all subsequent inter- 

actions (rescatterings) which involve only the three-particle system (e.g. , 3n 

or Kn7r). In principle this involves the full 3-to-3 scattering amplitude T3(M3), 

where M3 is the invariant mass of the three-particle final state. The operator 

T3 is in general rather complicated, depending not only on M3, but also on the 

invariant pairwise masses M 
Pr 

(in addition to the Euler angles describing the 

orientation of the plane defined by motion in the three-body C. M. ). In particular, 

T3 will have poles (on the second sheet) in M3 corresponding to three-body 

resonances, as well as right-hand cuts in M3 and the M 
PY 

corresponding to the 

thresholds for three-particle and particle-isobar scattering. Thus, even if one 

ignores the (still more complicated) left-hand cuts, T3 possesses a very rich 

singularity structure in the near physical domain, and may exhibit some rather 

unusual features when viewed from the standpoint of the more familiar two-body 

operator. In particular, as this author has pointed out in the past, one may 

easily generate T3 amplitudes which possess a resonance pole without an associated 

phase motion (for physical M,), 7 or Breit-Wigner-like phase motion without 

having a pole. * Since there may also be strong interference effects between the 

resonance and production amplitudes, 9 one cannot in general infer the existence 

(or non-existence) of a three-body resonance from the presence (or absence) of 

strong phase motion and/or 7’bumpst7 in the cross section. Instead, one should 

fit the data using a representation of the amplitude which is sufficiently general 

to incorporate all of the important effects, and yet simple enough to explicitly 

verify the presence or absence of a resonance pole. 

In practice the emphasis has been on “simplel’ rather than “general”, and 

T3 has almost always been taken in the form T3 = Zo-tLY(M2m)fo(M3), where 

a.fPfr take on the values 1,2,3, and we adopt the convention that to(M2 
id 

is the 



(on-shell) two-particle scattering amplitude for particles p and?. To the extent 

that isobars dominate the three-body system this has generally been regarded as 

good physics, and in fact, if fo is taken instead to be flY(M3, Mpr), the decompo- 

sition is perfectly general. As justification for neglecting the M 
PY (Sub energy) 

dependence, one would presumably argue that the peaking of tu(MiY) at the isobar 

maSS t”PY 
= JKQI) effectively forces M 

PY 
to that value; however, this requires 

fol to be a smooth function of M 
Pr’ 

In actuality, as noted by Aaron and Amado, 3 

f, is forced to have a cut in the variable M 
PY 

by the very general requirements 

of three-particle unitarity (to be satisfied by T 3 ), and hence this precondition is 

false. In practical terms, this means that the neglect of subenergy dependence 

can never be exact, and should be avoided unless the isobar width is very narrow 

(on a scale defined by the distance between .+ and the M 
PY 

branch point). 

Unfortunately, in order to include subenergy dependence in the isobar 

amplitudes fa in a fashion consistent with unitariiy, one must in general construct 

them by solving (at the minimum) a one-dimensional integral equation. A proto- 

type for the latter exists in the literature; namely, dynamical three-body equations 

of the Faddeev type (although relativistic), under the assumption of separable 

(off-shell) operators ta! which describe the pairwise scattering. 10 However, the 

free parameters which enter these equations occur in such a complicated way as 

to preclude their use in data analysis; i.e. , one cannot afford to re-solve an 

integral equation numerically with each variation in the parameters by a x 2 fitting 

routine. Although a rather trivial modification can be introduced (in the form of 

a fictitious “bare” resonance) to permit such a procedure, one then risks predjudicing 

the conclusions reached in the analysis by the limitations of the model. 11 These 

considerations prompted this author to introduce a very general alternative to the 

Faddeev-like equations, which retains the exactly unitary, one-dimensional 
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character, while avoiding the separability assumption. 12 In contrast to the 

Faddeev equation, the kernel is linearized into a definite (fixed) singular term 

(necessary for unitarity) and a variable smooth term containing the fitting param- 

eters; in this form it may be manipulated in such a way as to permit rapid numerical 

solution. Although the resultant equations have been successfully applied to a 

great variety of problems, 13 they have not achieved commensurate popularity; 

this disparity apparently reflects the strong preference for potential-like descrip- 

tions of the dynamics, as opposed to the generalized boundary conditions upon 

which the alternative equations are based. 

Given this situation, a new alternative has been developed, and is introduced 

in this article. While again requiring the solution of a one-dimensional equation 

(as any exact unitarization scheme must), it retains the computational advantages 

of the former technique (as noted above) in all particulars. Furthermore, it is 

constructed as a generalization of the separable Faddeev equation (to which it 

reduces in lowest order), and hence it maintains contact with the t-matrix descrip- 

tion. For this reason it lends itself far more readily to physical interpretation 

than did the former technique, and it is manifestly less complex mathematically. 

However, it should be emphasized that it does not equal the former in generality; - 

it defines a relatively restricted class of three-body amplitudes. Nevertheless, 

it is very likely adequate for the type of applications considered here, and is 

certainly far more general than the isobar approach discussed above. With respect 

to the latter, its principal flaw is the relative complexity implicit in solving an 

integral (as opposed to an algebraic) equation, especially since numerical solu- 

tions have a tendency to obscure the actual physics. For this reason we also 

introduce an approximation suggested by the exact three-body treatment, but 

which can be handled algebraically. This has the character of a correction to the 
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simple isobar model, to which it reduces in the zero width limit. Taken together, 

these various approaches constitute a rather complete set of tools for handling 

the final state interaction problem. 

By this point it should be obvious that a definitive analysis of diffractive 

resonance production is a highly nontrivial business, involving a number of 

independent topics which are far more general in scope. In this article our 

intention is to embed these topics within a more comprehensive theoretical frame- 

work. By so doing we shall not only place the production and resonance terms on 

the same footing, but will also define a consistent set of rules for calculating non- 

diffractive processes as well (e.g. , rp -+ AlA and K.p-+ AlA). Subsequent articles 

will refine and explore various aspects of the theory. This being the case, an 

effort has been made to subdivide the individual sections as an aid to the reader. 

We now proceed to briefly summarize the contents of these subsections. 

The backbone of our approach is stated in Section II. A, in which we develop 

the formal aspects of relativistic scattering theory (RST) for an n-body system. 

It is worth noting that the free propagator- (Go) we employ differs from the 

Blankenbecler-Sugar prescription, 14 and hence is distinct from the form used in 

all relativistic Faddeev calculations to date. We believe that our reasons for 

preferring this choice are compelling, but the distinction is unimportant in the 

particular case of diffractive production. In Section II. B we apply the formalism 

to derive a result recently noted by Aitchison and Bowler;’ namely, that one 

should anticipate large interference effects between the production and resonant 

contributions to the full amplitude. The result is trivial in this context, being a 

direct consequence of unitarity. We conclude this part with Section II. C, in 

which we derive our model for diffractive production. 
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The next section is devoted to a detailed description of the production model. 

Thus, Section III. A deals with the form of the Deck singularity in our RST treat- 

ment, and Section III. B is concerned with the two-body vertex factor associated 

with the scattering of each “dissociated” particle off the target (e.g. , with 7rp 

scattering in Al production, and up and Kp scattering in Q production). From 

the standpoint of our formalism, one could in principle treat the dissociation in 

two distinct ways; i.e., one could view the pion as dissociating into a *‘true” 

three-pion state, with pairs of pions then interacting to form the p; or, one could 

visualize a direct transition to a n-p state (the p being quasi-elementary), in 

which the p subsequently decays to two pions. The latter is clearly more in the 

spirit of the isobar model (and, perhaps more importantly, the quark model), 

and an interesting feature of our treatment is that the former is totally unacceptable 

in reproducing the desired energy-dependence of the (diffractive) cross section. 

Below we shall refer to these as the “simple” and “sequential” models; they are 

discussed in Section III. C and Section III. D, respectively. In Section IV we 

describe the partial-wave decomposition of our model; the treatment is essentially 

identical with that reported by Ascoli, Jones, Weinstein and Wyld for nN + (3r)N. 13 

One of our principal motivations in adopting the RST approach was to gain 

some insight regarding the off-shell structure of the two- and three-particle 

vertices. In Section V we introduce some simple pararnetrizations, and report 

a series of numerical results for the reaction K+p 4 (K+a+ ?r-)p in the dominant 

l+O+ partial-wave. In particular, we investigate both the subenergy dependence 

of the production amplitude (which in general is considerable), and the corresponding 

variation of da/dM3dt with M3 (at tmin ). Variations associated with the two-body 

vertex are described in Section V. A; those corresponding to the three-body vertex 

(sequential model) are given in Section V. B. 
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Section VI is devoted to our various techniques for constructing a properly 

unitary amplitude to describe the three-body rescattering. In Section V1.A we 

introduce our exact three-body treatment; our approximate, pseudo-isobar, 

treatment is described in Section VI. B, and is illustrated by some numerical 

examples corresponding to the pK and K*T channels. We next apply the latter 

technique to the l+O+ state of K+n+ T-, and report a preliminary fit to the SLAC 

data in Section VII. Although this work is not yet definitive in the sense of satis- 

factorily explaining all features of the data (other partial-waves, the t-dependence, 

and the K- data must also be treated), it provides a striking illustration of the 

possibilities inherent in more general production models. In particular, the 

mass of the (predominantly K*T) Qa state comes out to be 1.15 GeV, as opposed 

to the 1.4 GeV result of previous analyses, whereas the Qb (pK) state at 1.3 GeV 

is in complete agreement with those analyses. Finally, in Section VIII, we sum- 

marize and discuss our conclusions. In particular, we note that a reasonably 

general computer code has been developed along the lines discussed in this article, 

and will be made available to anyone interested in pursuing this approach. 
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II. RELATIVISTIC SCATTERING THEORY 

A. Formal Framework 

The goal of relativistic scattering theory is to define a consistent, rela- 

tivistically invariant, description with regard to the scattering of mass-shell 

particles. This means that three-momentum, but not energy, is conserved at 

each vertex; it is an off-shell theory in the spirit of nonrelativistic potential theory. 

If one believes that a “proper” description should be based on a field theory; i. e. , 

on an expansion in Feynman graphs in which the particles are off-mass-shell and 

4-momentum is conserved, then such an approach must clearly be viewed as an 

approximation. Although such an objection may be less cogent in an era when 

hadrons are known to have a discrete “size” associated with an internal (quark) 

substructure, it is not our purpose to argue the point here. We shall instead 

justify the use of RST on the premise that it is more important to correctly describe 

the (very complex) right-hand cut structure associated with three- (or more) 

particle systems than to impose other constraints, such as crossing. Equivalently, 

we shall assume that effective off-shell operators can be defined within the 

context of this formalism, in such a way that one may correctly describe the 

amplitudes of interest in some domain inclusive of the (s-channel) physical region.. 

As we shall see, it is possible to make a choice which correctly preserves the 

form of the nearest left-hand singularities; in general, however, one must forgo 

such luxuries. In fact, there really is no viable alternative for systems of three 

or more particles. 

The key question in constructing such a theory is the choice of a proper 

relativistic propagator, Go. In general, if E=Z,! E a! is the sum of the individual 

c.m. energies, and JJS is the invariant on-shell energy (corresponding to the 

physical initial or final states), then Goa (E- &ie) -1 , where the proportionality 
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factor goes to unity as E +& (and is identically equal to unity in the nonrela- 

tivis tic limit) . Any such Go will generate an acceptable theory from the stand- 

point of unitarity; one may exercise the resulting freedom of choice to satisfy 

other constraints. Almost invariably, the choice adopted in the literature is 

based on the Blankenbecler-Sugar (BS) prescription for a two-particle system. 14 

For an n-body system, this corresponds to GO=2E(E2-s-ie) -1 , and is lfderivedll 

by the requirement that Go should have only the minimal singularity structure in 

s; i.e., the simple pole required for unitarity. However, given our motivations 

for using RST, and its inherent limitations, the properties of Go in the unphysical 

region are purely academic, and one might better employ one’s choice to achieve 

other ends. In fact, there are serious defects in the standard prescription, and 

this has led us to propose the alternative discussed below. 

Ignoring spin, for simplicity, we characterize an n-body system in terms 

of the n 4-momenta k CY’ where 

(2.1) 

and ma! is the mass of particle (Y. We thus choose a basis Ik 12 k . . . k,>, normalized 

such that 

<kiki.. * k’Jklk2. . . k,> = ,iil qf$$J-$J . 

The corresponding completeness relation is 

1= II f 
&cl! 

o=l E Iklk2.. . kn><klk2.. . k,’ . 
o! 

(2.2) 

On this space we define Go as a diagonal operator, 
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<kikh.. . PI k;lGolklk2.. .k,> = ojZl E$$;-i;,)Go(P,Po), 

(2.4) 

Go(P, PO) = l/PO . (P-PO-ie) , 

where P=ZQko, and PO is the total on-shell 4-momentum in the initial (final) 

state. The linearity of G,(P, PO) in P is crucial for our purposes; the corre- 

sponding BS choice has GO=(PBYPi-ie) -1 0 

Our motivation for this choice becomes evident when one considers the 

interactions of an m-body subsystem (m< n) . Suppose first that the m particles 

are isolated, and interact according to some generalized potential Vm as illustrated 

in Fig. la. Since three-momentum is conserved, we would express V, as an 

operator on our basis such that 

<kikia.. km IV,1 klk2.. .k,’ = EomS(iim- Pm)Vm(k;k;.’ . . km1 klk2. . . km) , 

(2.5) 
Em= (s,+P~,+ , 

where Pm=.Zcy=l m E o, and ‘lTSrn is the invariant energy of the m-body system. We 

w define the m-body t-matrix operator Tm to be the sum of the series implied by 

Fig. la, which we represent by the operator relation 

Tfrn) zz I.7 
m m - VmGOVm + VmGOVmGOVm - . . . 

(2.6) 

=vm - VrnGoT(m@ ; 

here T($ has a similar structure to Eq. (2.5), and Tz’, Go, Vm all depend 

implicitly on sm. As a consequence of our definitions, we note that Go only occurs 

in the combination 

E&@m-$k)GO(Pm, Pk) = 8(Pm-P~)/(Em-E~-ie) , (2.7) 
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where P” m = (Ek, em) is th e ini ‘a k 1 ( on-shell) 4-momentum of the m-body system. 

The relation stated in Eq. (2.6) serves to define the m-body amplitude Tm (3 

(k;lk$. . . km I klk2. . . km; sm). 

We next consider the situation when n-m additional particles are present 

but do not interact; this is depicted in Fig. lb. In this case we define Vm as an 

operator on the n-body space such that 

<kikb.. . k’J Vml klk2. . . kn> = E;G(pn-P&jm+, E aS$‘$a) * 

(2.8) 
*V (k’k’ m 12 . ..kmlk,k,...k,) , 

with a similar expression for Tm tn) in which the Vm amplitude is replaced by 

Tm@) (kik$. . . kg klk2 . . .km;sm). The series implied by Fig. lb can then be 

expressed as the operator expression given in Eq. (2.6), except that Tm(m) is 

(n) replaced by Tm . Now Go only occurs in the combination 

EI S(Pn’Pc$Go(Pn, Pi) = iS(P,i?“)/(En-Ei-ie) . (2.9) 

When one factors out the (n-m) delta-functions corresponding to the spectator 

particles, one finds that the amplitude Tm (n) again satisfies the implied integral 

equation stated in the second line of Eq. (2.6) ; the only difference is that Go now 

involves En-E: instead of Em-E:, and sm depends both on sn and the spectator 

momenta. Explicitly, 

S m 3 (P”m2 = (P;-PnSm)2 , 

P = n-m c nko . 
a=m+l 

In particular, if we compute sm in the n-body c. m. , we obtain 

S m =sn+P t ,-2&-E;‘;’ . 

(2.10) 

(2.11) 
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We have therefore, in principle, defined two distinct amplitudes, Tm ON 

and T @). m However, since the spectator energies do not change, we clearly 

have En-E1 = Em-EL, and hence Tm (m),T tn) ~ T m m. Thus, it makes no 

difference whether we sum up the m-body interactions in the m-body or the n-body 

space, we have only to recall that sm is to be calculated from Eq. (2. lo), or 

Eq. (2. ll), as it appears in the amplitude T,o(ikg.. . kml klk2.. . km;sm). This 

consistency requirement is sometimes called the cluster property, and it is 

satisfied automatically in the nonrelativistic theory for the same reason as the 

above; namely, the propagator involves only the difference En-E:. However, 

if one employs instead the BS choice for G 0’ one obtains E2 Eo2 and hence n- n ’ 

Tm(@ # Tm(m). This aspect is usually suppressed in, e.g. , the literature on 

relativistic three-body equations, 10 since one normally deals directly with the 

amplitudes Tm, and does not attempt to derive them from a fundamental inter- 

action (Vm). Nevertheless, such formalisms do not correspond to a consistent 

RST, and the Tm operators they employ are actually rather odd constructs. 

The Go operator introduced in Eq. (2.4) is unique in the sense of being the 

simplest solution to the cluster problem (i. e. , one could clearly add pieces 

depending on (P-Po)2, non-singular terms, etc. ). If one considers Go in the 

c.m., the price one pays is a dependence on&, instead of s, and hence Go has 

a left-hand cut for s<.O; in practical terms this does not seem a sufficient reason 

to discard it. Furthermore, while the foregoing might be regarded as a purist’s 

quibble, there is a more compelling reason to make this choice. To see this let 

us consider how the Feynman‘graph given in Fig. 2a is reproduced in the RST 

language (again ignoring spin). 

The Feynman amplitude corresponding to Fig. 2a is 
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AF = gzec gbFed I 
(2.12) 

t = @,-kJ2 = (kb-kd)2 . 

In contrast, the RST formalism involves both Fig. 2b and Fig. 2c, since the 

development is based on sequential scattering, and hence assumes a particular 

time-ordering of events. Moreover, each vertex in the RST treatment is to be 

associated with a scattering amplitude (in general off-shell); in particular, the 

upper vertex (aec) in Fig. 2b is regarded as a special case of Fig. 2d, in which 

the particles a1 and e1 are ‘bound” to produce particle c. The latter applies 

only in a very formal sense; i. e. , if t ae is the invariant a-e elastic amplitude, 

then 

taetsaej - g ie ;C / (‘aemrnE) (2.13) 

ass + m2 ae C’ 
and the corresponding on-shell vertex factor at (aec) is gae&/2. 

, 
This rule corresponds precisely to the manner in which one defines the amplitude 

for scattering from a bound state (e.g., particles a and e could be nucleons, and 

c the deuteron), but does not necessarily suppose a physical picture of c as an 

actual a-e bound state. At this point we note that our normalization convention 

for an invariant two-particle amplitude tae is such that (in a partial-wave 

decomposition) 

rkae Imtae = - - 

4T 
ltae12 , (2.14) 

where k is the (two-body) c. m. momentum; thus t is dimensionless. 
ae ae 

Applying the above rules to calculate Fig. 2b plus Fig. 2c, and dropping 

the overall 2E S(P -Is o) factor (see, e. g. , Eq. 2.5))) the RST amplitude corre- 

sponds schematically to -taeGotde-tleGotce’ 
and is given by 
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1 gae;c ae a e f tk k )g 
A RST = - ?? 

de;b f (kk) de d e 
EetEe+Ed-Eb) 

(2.15) 

_ L gbe;d fbe@bkejgce;a fce(kcke) 
2 EetEe+E c-‘a) 

. 

Here the f’s are vertex form factors which go to unity in the on-shell limit, and 

ke = (E e, Ee) is computed in terms of Ea, l$ ,xc, Ed via the conservation of 

3-momentum (its sign, but not magnitude, is different in the two terms). In 

particular, e e = [rni + (f$-Edj2] ‘. To compare ARST with AF, we evaluate 

A RST with the initial and final states on-shell, implying that ea+e b = E cC~ d. 

We then observe that if 

g = 
ae;c g ce;a 

= gF 
aec ’ 

F 
gde;b = gbe;d = gbed ’ 

we may rewrite ARST in the form 

ARST 
R 

=AF+ARST , 

where 
F F 

R gaecgbed 
ARST= 2ee 

lwfae fde ‘%efce + 
Ee+E d-Eb Ee+E -E 

1 
, 

c a 

and we have used the fact that 

E2 e - (cb - cd)2 = rnf - t O 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

For form factors which are analytic in the neighborhood of the on-shell point, one 
R 

can easily show that ARST is regular in the vicinity of t=mE ; i. e. , 

faetkake) - 1 + fke c 4, + k,,z - -E] 
(2.20) 

= 1 + f;e(ee+ea+ec)(Ee+Ed-eb) 9 
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so that the vanishing denominators are cancelled exactly. Thus, for residues 

which satisfy the (standard) relations of Eq. (2.16), ARST has precisely the 

simple pole at t=mf prescribed by the Feynman rules. In consequence, the RST 

treatment simply defines an extrapolation away from the pole in terms of the 

vertex form factors. 

In contrast, the BS choice for Go defines a different ARST with some 

undesirable properties. Consider, for example, the case of elastic scattering, 

with ma=mc and mb=md. Evaluating Fig. 2b in the c. m.’ (implying 

and ed=eb), the BS prescription corresponds to the replacement 

^, - 
1 X(E C+Eb+Ee) Ee+ds ab 1 

= t 
(E c+Eb+Ee) 2-( E a+Eb)2 

/ 

; (2.21) 
E e2 

that eC=ea 

in this case the contribution from Fig. 2c is exactly equal. If we focus just on 

the singular term (setting the f’s equal to unity), the result is that 

ABS ‘e+“ab 
RST - AF ’ t 

‘e 2 
/ 

+%i.i 
(2.22; 

E e = (m,2,+ . 

Therefore, the residue of the exchange pole is not only energy-dependent, but also 

has a square-root branchpoint (due to ee) exactly at t=mz ; i. e. , the singularity 

is not a simple pole. If rn2e is small, this could be of practical importance in an 

actual calculation; for example, if one treats NN scattering as an explicit NNn 

problem (in order to correctly describe the effect of pion production above 300 MeV), 

the corresponding diagram represents OPE, and the t-singularity is very close 

to the physical region. In fact, the spurious square-root singularity would 

probably cause some difficulty in describing the higher partial-waves~ (dominated 

by OPE). Nevertheless, such a calculation has recently been reported in the 

literature. 16 
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Given the completeness relation in Eq. 2.3), the definition of Go in Eq. (2.4), 

and the definition of an m-body operator on the n-body space in Eq. (2.8), we are 

now in a position to calculate very simply any process which can be represented 

as a sequence of subsystem rescatterings. In the next two subsections we 

consider simple applications to the production problem; three-particle dynamical 

equations are discussed in Section VI. B. 

B. Production-Resonance Interference 

In practice, three-particle systems are produced in the laboratory via an 

inelastic reaction initiated by the beam and target particles. Thus, in all cases 

where the three-body system is first produced and undergoes a resonant 

interaction, there will be a production term as well as a resonance term contrib- 

uting to the amplitude. The exception to this situation corresponds to direct 

production of the resonance, with a subsequent decay to the three-body system. 

In the former case, the tendency has often been to treat the production term 

independently from the resonance; i. e. , as an incoherent background. However, 

it has recently been noted that this is likely to be a very poor procedure in the 

case of diffractive- production; one should in fact expect rather strong production- 

resonance interference. 9 This result, which is actually rather more general, 

emerges in a particularly transparent manner in the RSI’ language, as we shall 

demonstrate below. In addition, the interference effect is extremely relevant 

to the results we shall later discuss concerning the Km system. 

Assume, for simplicity, a two-particle system (described by kl, k2) which 

is produced via some mechanism (Tp). as sketched in Fig. 3a; note that kf is the 

total 4-momentum of all other particles in the final state. Once produced, 

particles 1 and 2 may scatter as illustrated in Fig. 3b; this is described via the 

elastic amplitude t12. In the 12 c.m. frame, we take El=-lC2=l?, l?lf=-Ii21=l? , 

and write the corresponding amplitude as t12(IC’E’;s12), where 
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si2 = tp1+p2-kf) 
2 

, 

(2.23) 

W 12e *1S12 = c1+c2 . 

In the same frame, we represent the production amplitude by Tp$), suppressing 

the dependence on all other variables in our notation. According to our rules, 

the sum of Figs. 3a, 3b corresponds to the operator A = (l-t G )T 12 0 p’ In terms 

of amplitudes, 

A(E) = Tp(l;) - 
/ 

dE’ t12(i;,hs12) 
-i--r E1E2 Ei+E~-W~2-ie Tp@) . 

In order to focus on a particular partial-wave, we expand 

TptE) = c YQmthTpQm(k) , 
Qm 

t12(&h12) = 5; YhCf3Y&@,{, tW’;s12) 
Bm 

(2.34) 

(2.35) 

= P&%)t;2(k, k’;s12), 

and obtain 
m 

A*(k) = Tim(k) - 
/ 

dk’k’ 2 t;2clc, k’;s12) 
t c11c2 1 E’+E’ 2-w12-ie TpCn’) . (2.36) 

0 
Under the assumption that the (12) subsystem has a resonance in the 

neighborhood of k=ko , we take 

t;2(k, k’;s12) = gQ(kkQ(k’)/Dp(S12) 3 

(2.37) 
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where g 
I 

(k) is the resonance form factor. If kr is the value of k for which 

ReD1(s12)=0 (S,=90°), then gi (k,) is essentially the width (note that in general 

gl(k)ork’). Thus, since its value at k=k, effectively determines the overall 

normalization, or scale, of g:(k) (for a given shape), we see that r&k) + 0, 

kr + k. in the zero width limit. The ratio 

I 
t12 tk, k’;s12) gQcx’) 
I = gQ tk) 

(2.38) 
t12 4, k;S12) 

is sometimes called the half-off-shell extension function, and is a measure of 

the shape-dependence of the form factor. In particular, a simple s-wave model 

might be go(k) = co (k2 + p 2)V1, where /A is a mass characteristic of particle 

exchanges in the (12) interaction. From such considerations one infers that the 

ratio in Eq. (2.38) differs from unity by terms of the order of (kl 2-k2)/p 2. 

In order to perform the integration in Eq. (2.36), we define a quantity 

GpQ m(kl, k) by the relation 

+ GpQm(k’,k) ; (2.39) 

hence G !hl 
P 

vanishes for kl=k, and is a measure of the difference between the 

half-off-shell extensions of Tp and t12. Using 

1 

E’YE’-W 1 2 12-ie 
= pv E t+$ + 

i7Teiei 

2+12 Y2k’ 
6(k’-k) , (2.40) 

1 

we obtain 

AQmtW = [k2-k&W~pQm(k)] 
DQ@& ’ 

(2.41) 

Eph(k) = PV / co 1 
&tkt2 gQ tWG QmtW) 

0 l 1e2 E ‘+E 1-w ’ 1 2 12 
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(the PV is actually unnecessary since GpQm(k,k)=O). 

The desired result now follows trivially from the expression for Ah&) 

in Eq. (2.41). Thus, if kr=ko (which is certainly true for a narrow resonance), 

and the off-shell behavior of Tp and t12 is similar (G Qm 
P 

N 0)) the full amplitude 

vanishes near k=k,! This implies that, contrary to one’s naive expectations, the 

signature of a resonance under such circumstances may well be a 9 in the 

cross section (or a shifted peak if the cross section is rising or falling rapidly). 
17 

The obvious conclusion is that one must be extremely cautious in associating a 

“bump” with the actual position of a resonance, or with inferring its nonexistence - 

from the absence of a peak; the latter point may be highly relevant in regard to 

states like the AI, which appears curiously absent in certain production modes. 

Thus, it should be reasonably clear that the above argument does not depend 

critically on the two-particle character of the resonating subsystem. In fact, 

the crucial cancellation of ImDQ(s.,2) in deriving the multiplicative bracket in 

Eq. (2.41) is a very general consequence of two-particle unitarity, as guaranteed 

by the explicit representation of Eq. (2.37). To see this, we note that the 

unitarity relation takes the form At = -t+AGot- in our operator notation, and 

hence (assuming A Tp=O) 

AA = -t;2AGOA- , (2.42) 

which implies that A=t12AR, where AR does not have the right-hand cut (e. g. , 

is real). Thus, if the right-hand cut structure of t12 is contained entirely in 
-l- the denominator D12, we may write A=D12 A, where “A is real. If we repeat 

this argument for a larger resonating subsystem, with amplitude Tm, the formal 

proof is identical and we obtain A=Dz “A (assuming a generalized denominator 

function Dm, whose zero corresponds to the resonance pole of the subsystem). 

In general, therefore, one should anticipate considerable interference, unless 

“direct” production is known to dominate the reaction. 
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C. Diffractive Production Model 

As noted above, one may in principle consider two distinct models of 

diffractive production. The ,,sequentialtf model is illustrated in Fig. 4a, and 

corresponds to a dissociation of the incoming particle (ki) directly into a 

two-particle state, one of which subsequently decays into the observed pair of 

particles (kp, ky). In contrast, the ‘*simple,, model involves dissociation into a 

true three-body state, with a subsequent interaction of particles p and y pro- 

ducing the (py) isobar; this is shown in Figs. 4c, 4d, respectively. The former 

is certainly more in the spirit of the isobar model (and, presumably, the quark 

model), and in fact is consistent with the way in which diffractive production has 

always been calculated in the literature. 18 However, one might naively assume 

that it is merely an approximate method for treating the true l-to-3 vertex. 

This would be true if the to interaction occurred before, rather than after, the 

t2 interaction, as in Fig. 4b. Interestingly, in terms of our formalism, this 

cannot be the case, at least in the sense of leading to the isobar. Thus, the 

isobar pole occurs as a zero in the denominator function Da! (so) of the (off-shell) 

amplitude ta . In Fig. 4b, we would calculate 

sh, = (PO-pi-k’J2 = (ki-k’J2 , 

or (2.43) 

“h = rnf + mt 2 
o! - 2mieL 

in the rest frame of particle i. 
2 

Hence sh 5 (mi-m;) , and this normally restricts 

it from being anywhere near the isobar (mass)2; e.g. , consider mi=mh=rnr with 

respect to the r --4 37~ vertex, in comparison with 7r + pn-. To those familiar with 

low energy problems this should come as no surprise; for example, if one takes 

Fig. 4b as the lowest order contribution to pHe3 scattering, the Py pair cannot 

emerge as the deuteron. 
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As a consequence, Fig. 4d is the lowest order (RST) diagram which 

contains the @y isobar in the simple model. Of necessity, Fig. 4c must also 

be present, which turns out to be crucial in distinguishing the two models. 

Thus, if one compares Figs. 4c,4d,! to Figs. 3a, 3b, one can immediately apply 

the result of the last subsection, and infer the existence of a large cancellation 

for so= lV$. Therefore, in contrast to the sequential model, which one expects 

to peak for + k )2 N 4, the simple model will tend to supp (k 
P Y 

ressed. In 

practice, this tendency leads to an unacceptable behav ior of the diffractive 

cross section do-,,dM3dt ; i. e. , it continues to rise sharply as M3 increases, 

instead of peaking just above the isobar threshold. Qualitatively, this is very 

easy to understand, since the amplitude takes its largest values (for fixed M3) 

when sa! > <, and more of that region is kinematically accessible as M3 

increases. Explicit numerical calculations, using the generalized l-to-3 vertex 

function discussed in Section III. C, merely confirm this, and have led us to 

reject the simple model as the mechanism for diffractive production. Physically, 

this result is rather interesting, since it lends additional credence to the quark 

model viewpoint; e. g. , one must treat the p as an elementary object, and not as 

a resonance in 7r-r scattering. 

We conclude this section by applying our RST rules to calculate Fig. 4a 

and (for completeness) Fig. 4c; to employ the simple model one would compute 

Fig. 4d in exactly the manner described in the previous subsection (TP corresponds 

to Fig. 4~). In fact, by not specifying the explicit structure of T3 (considered 

below), both diagrams can be expressed as 

Tp(korkB ky pf I kipi) = - 
t2(k*Pf’ k:Pi;s2)T3, ~~kpky’ ki ;s3) 

e’$Mpy+ e:, - ei) (2.44) 
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I 

in the By c. m. frame, where 

MPY =EP+EY 
= [(kP+ ky)2]’ , 

(2.45) 

Here we have allowed for the possibility that rnh f ma; thus Tp will describe 

processes such as ICp ---) (37r)A, as well as the diffractive reaction rp+ (371.)p, 

depending on what masses and vertex functions are employed. We note that our 

convention for the presumed 1’fast7t particles is that pi = (Ei, $), pf=(Ef, cf), 

corresponding to the masses M i, Mf (in general, Mi# Mf). A complete discussion 

of the vertex factors t 2, T3 is given in the next section; kinematics and the 

partial-wave decomposition of Tp are presented in Section IV. 
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III. DETAILS OF THE PRODUCTION AMPLITUDE 

A. Deck Singularity 

The general form of our production model is stated in Eq. (2.44). At the 

simplest level, when T3 is taken to be constant, and t2 is set equal to the 

appropriate on-shell 2-, 2 scattering amplitude (e. g. , t2-+ i s2 “tot in the 

diffractive case), the model differs from the familiar Deck amplitude only by 

virtue of the denominator. Thus, we recall from Sec. II. A that two RST 

diagrams are in general necessary to reproduce the corresponding Feynman 

diagram. In this case, we would require the graphshown in Fig. 5 in order to 

recover the Deck denominator (mL2- t3)/2 , where 

t3=(kP+k -ki)2 
Y 

(3. I) 

is the momentum-transfer at the three-body vertex. However, this second 

process is typically suppressed in the kinematic region of interest; i. e. , for 

large cross sections we must have the elastic diffractive amplitude t2 at the 

vertex involving the large momenta pi, pf . This is equivalent to the state- 

ment that the t3 pole at mh2 is far away, since the singularity (in this case) 

arises from Fig. 5, and not Fig. 4a (e. g., if m* = mi, the denominator in Eq. . o! 
(2.44) reduces to EL Mpr). In effect, we have broken the Feynman amplitude 

into two pieces, and concentrated on that piece which dominates when 

extrapolated to the diffractive region. Noting that 

t3-mf = iv! 
PY 

- 2Mpyei+ rn: - mf 

= (Mpy-~i)2 - l A2 
(3.2) 

= ‘Mpy + E; - ei) (Mpy -E; - ei) , 
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the comparison can be expressed as 

TRST TF 
P / P 

N- (Mpy-e;-ei) E; 
/ , (3.3) 

which is valid in the special case when T3 = constant. Thus, eve.n without the 

introduction of structure at the three-body vertex, our approach leads to 

subenergy dependence (i. e., on M p ?) relative to the usual Deck model. This 

distinction becomes unimportant once structure in T3 is permitted, however, 

since the ratio in Eq. (3.3) can then essentially be altered at will. 

In concluding this subsection, we note that our choice of Go is purely 

academic, insofar as the diffractive amplitude Tp~ is concerned. Thus, had we 

chosen the BS propagator in evaluating Fig. 4a, Eq. (2.44) would have been 

modified by the replacement 
1 2 ‘Mp + Ed + Ei) 1 

- ‘“PY 
+ E;+ Eif2ii) 

(3.4) 

Mpr+ CA - 5 MPy+cA-Ei 

In practice, however, the multiplicative factor is very close to unity. To see 

this we introduce the quantities 

s = (pi+ ki)2 , 

t = (Pf -Pi)2 ’ 

(3.5) 

In the diffractive limit ( s-co ), the cross section is dominated by t =tmin, and 

one finds that e: , ei are finite (M 
p/ 

fixed), whereas EiO: Ys (this can be 

verified directly from the formulas in Sec. IV). The extra factor thus 

approaches 2Ei / 2Ei, and hence has no appreciable effect in the relevant 

kinematic region. 
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B. Two-Body Vertex 

As it stands, the expression for Tp~ given in Eq. (2.44) is a completely 

general representation of the process shown in Fig. 4a. In order to apply it to 

distinct physical situations, one must choose the masses and vertex functions 

t2 , T3 accordingly. In general, of course, t2 and T3 will depend on spin and 

isospin (or charge) variables in addition to the relevant 4-momenta. For the 

purposes of this article, however, we shall specialize to the case of diffractive 

production, and choose a form for t2 consistent with high energy elastic 

scattering (myo = ma, , Mi = Mf). With our normalization convention, the 

optical theorem is stated as 

(3-G) Otot = - 16n3 

@5-- 
Imt2ts2, 0) , 

where t2 (s2, t) is the on-shell amplitude, and K-~ is the c. m. mome.ntum 

corresponding to the energy&, Here t is given by Eq. (3.5)) and the value 

of s 2 relevant to Fig. 4a is 

s2 = (PO - kP -ky)2 (3.7) 

M! = s+ Pr-2MPY(ei+Ei) 

in the ,L?y c. m. This on-shell value, s2 , is to be distinguished from the off- 

shell values 

S af=tk2+pf)2 , 

saDi = (k; + pQ2 . 
(3.8) 

Of course, if ko and pf are the final detected values (i. e. , there are no 

interactions subsequent to that of Fig. 4a), then s2 = s CYf’ 
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In accord with Eq. (3.6)) we choose 

t2(s2, t) = -is2 Crtot exp W/2) , (3.9) 

32n3 

using ic2- Js2/2 ; the slope parameter b is to be taken from the high energy 

behavior doeQ /dt=sl (0) exp (bt). This expression implies that b and otot are 

constant, which is strictly true only in the limit s2-. 03. In practice, however, 

s2 is finite, and takes on values considerably smaller than s; i. e., the factor 

(E i + Ei) is proportional to s , and the proportionality coefficient varies 

significantly over the angular range required in a partial-wave projection of T . 
P 

For example, in Kp-.(Kn7r)p at pL = 13 GeV/c , s = 25 (GeV/c)2 , 
.’ 

whereas s2 

can be as small as several (GeV/c)2. Therefore, since atot and b vary 

appreciably over this range of s2 , it seems advisable to build some energy- 

dependence into these parameters. For this purpose, a simple parametrization 

(3.10) 

was employed in the numerical work described below; here p2 L is the (two- 

k particle) lab momentum corresponding to the invariant energy s2. Values for 

K*p and n-+p scattering in accord with experimental data in the range 3-10 

GeV/c are given in Table I 19 . We note that our expression for t2 (s2, t) is, 

strictly speaking, the spin non-flip amplitude, and we have set the spin-flip 

compone.nts equal to zero. Numerically, this is quite reasonable in the present 

application, but one should in general employ I$” (s,,t), where p, (T label 

helicity states 0 

The Deck amplitude corresponding to Fig. 4a is invariably calculated by 

simply using t 2 2 (s , t) for the t2 vertex function, ignoring the fact that particle 
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a9 is far off its mass-shell. In our RST formalism, the corresponding 

statement is that the t2 scattering amplitude we employ is off the energy-shell 

ts2zsa9i ) . We must thus introduce an appropriate off-shell extension of 

t2 (s,,t) in the sense of Eq. (2.38). Under most circumstances, a possible 

advantage of the RST approach is that one may be guided by the analogy of 

potential scattering (or by approximate relativistic treatments such as the two- 

particle BS equation). Thus, in a given partial-wave Q , one might try 

Q Q 
t2 (‘2) -fQ tS~f ) '2) t2 ('2) fQ (sati, ‘2) , (3.11) 

where fQ (si, 2 s ) is analogous to the ratio in Eq. (2.38); fQ(s2, s2) = 1. 

Unfortunately, the diffractive amplitude is an exceptional case, and one simply 

cannot associate it with a credible potential-like mechanism. Furthermore, it 

is very unnatural to decompose it i.nto partial-waves; one requires an infinite 

number of Q-states to reproduce the characteristic small-angle behavior. 

Under these circumstances, we have chosen to introduce a purely ad hoc -- 

prescription, and to employ it merely as an illustration of the off-shell effects 

one might anticipate, We thus take 

t2 Ck,Pfl k~ Pi; s2) = f2 (s~f , s2)t2(s2’ t, f2tsa!9i, “2) , 
(3.12) 

f&L s2) = i3~csg)/g2(82) ’ 

and consider a variety of simple choices for the function g2 (s2) ; e. g. , 

g2 = ( s2 + m2 ) -’ , where m is some mass. These choices, and the corre- 

sponding effects on the subenergy-dependence of T 
P’ 

and the M3 - dependence of 

do/dM3 dt, are discussed below in Sec. V. A. 

While it is most convenient to label the diffractive amplitude t2 by the 

charges of the particles of (or 05) , we shall want Tp amplitudes correspond- 

ing to a specified total isospin I for the three-particle (c$y) state, and a 
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specified pair isospin Ia! for the decaying isobar (p y), in discussing the 

subsequent rescatteriug. We will thus associate the isospins ik, and 

corresponding third components pk, with the scattering particles as illustrated 

in Fig. 6. If we denote the operator t2 corresponding to Eq. (3.12) by t,(p,), the 

required isospin-labeled operator is 20 

t,WJ =; CtIaiaI;~m-~~,cla) * 
a (3.13) 

* C(1 it i oorn ;/J,-I-1; , l$p2(PJ , 

where /J D Q! is calculated in terms of p2 and the isospins associated with the 

exter.nal lines; i. e; , pv = p cl! 02 
+ p p-‘P;, ’ 

C. Three-Body Vertex (Simple Model) 

As noted above, the “simple” model for T3 , in which the incoming 

particle is viewed as dissociating directly into a three-body state (a! ‘fly) , is 

incompatible with the empirical behavior of the diffractive cross section. 

However, in the course of verifying this fact numerically, we were forced to 

construct a model for the l-to-3 vertex which might be of some interest in 

other applications. This subsection has been included in that spirit, but is not 

a prerequisite for the remainder of this article. 

We are thus concerned with the amplitude T (k’ k k 1 k. ; s3 ) , where 
3 aPY 1 

s3 =(Po--pi)2 = rnf . (3.14) 

This amplitude describes the vertex shown in Fig. ?‘a, which, in principle, is 

related by crossing to the 2-to-2 scattering process of Fig. 7b; i.e. , 

T3 (k&ky ki; s3) ---L t. 2 
la V-p y t kpky -khki ; MPy ) I ’ (3.15) 

Here we have used the arrow to emphasize that this constraint is really only of 

use on-shell (4-momentum conserved), and in the sense of an analytic 
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co.ntinuati0.n. In practice this means that one might as well vary T3 freely, 

unless one considers the very special case T3 = t. 
1cY v- py = constant (we shall 

return to this point in the next subsection). 

Assuming this, the problem we wish to address is how to construct a T3 

amplitude which has the following characteristics: (a) its decomposition in 

terms of the (py) pair angular-momentum Qo is trivial; (b) it has the required 

symmetry properties when two or more of the CY ‘fly are identical particles. In 

particular, we shall assume that i is a pseudo-scalar (PS) meson dissociating 

into three PS mesons; thus L = 0, where L =f + To is the total angular-momen- 

tum of the three-body system, ha! being the angular momentum of particle CY’- in 

the Py c.m. frame. In general, T3 is then a function of the three subenergies 

tsIs2’3)) SQt E (kp+ ky)2, crlPy cyclic permutations of 123; the idea is to choose 

a form compatible with the above constraints. In the special case Qo= 0 (e. g. , 

7~ --+ E (n7rb) this is trivial, since we may simply take T3 to be a function of m3, where 

g = (k; +kp+ky)2 

= C3 (s*-rn:) , 
6=1 

(3.16) 

and m6 is the mass of particle 6. Since M3 is symmetric under any permu- 

tation, we have, for example, 

Tt’ ( n-&r) = ec .(i$) [ $(‘)(123) + $(‘+231) + $(‘)(312)] , (3.17) 

where e(O) (123) = C (llO;/~~p~ ), p& being the third component of isospin for 

particle 6. Here we have used the label “e ” to suggest the decomposition into 

the s-wave dipion state; there is, however, no reference to dipion isobars in 

this description (we shall similarly use K , p, K* below). Correspondingly, 
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Tr’ (K-+Knn) = $, (a3 ) $(“)(123) 

I- -l 

(3.18) 

+ +J T (G3 1 
1 

q2 (231) - q3 (312) 
1 

, 

with 

$2P31) = CUBB;b4,P,) c(tlkc13+p,,p2) , 

(3.19) 
+3 (312) = c (*19;15~~) c (+~&-Q+P~ , p3 ) . 

Here we have adopted the convention that the non-identical particle (if any) is 

particle 1; since C#I (‘)(123)- $(‘)(123) under the permutation P23 , and 

+2’-+3~ +3+ +,, Tf)(K-Kan) is properly symmetric under the interchange 

arbitrary, and of the pion labels. The functions $(G3), of course, are entirely 

are essentially wave functions for the three-body “bound” state; 

expects them to approach zero as i+W. 

i.e. , one 

However, the case .eQ! = Aa! = 1 (e. g. , n-o(nn)n) is more complicated, and 

the solution may be of some interest, Here we would like to take out the 

explicit factor k3;. p; , where za is the mome.ntum of particle p in the, Pr 

c.m., and i$ is the momentum of particle (y. (in that frame). Ulllfortunately , we 

cannot simply write T3 = (c@. c)+(%,) and still satisfy the symmetry proper- 

ties. We thus proceed along the following lines, first introducing the functions 

f@ (S1”2S3 1 = 4 soi (” l P;’ 

= sa(sp- sy’ +tm 
; 

2 - 
-m,)( 4 -rnz) , 

a&f y cyclic. One may easily verify that 

(3.20) 

p 
Pra ’ 

f =-& 

(3.21) 

p,,f, = - f D 
Y 
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We may then construct 

T(l) 
(3.22) 

3 t-- 37r) = qpr (iii3) [ f,&123) +f,&231) +f3&312)] , 

where 

P23~(1)( 123) = - Cp(l)( 123) , (3.23) 

p 23 $(‘+231) = -&312) . 

We note that by evaluating s1s2s3 , e. g. , in the ay c. m. in terms of 2 . F 
P P’ 

one may express fa, as a guadratic in c-i;- l F ). Thus, as a necessary conse- 
P P 

(1) quence of symmetry, T3 co.ntains both s- and d- wave components in the 

variable cos ea = c (y$’ as well as the assumed p-wave. The algebra for 

isolating these components is straightforward, and hence Eq. (3.22) solves the 

problem. The corresponding solution for K-Knr is 

Tf)(K,Ks?r) = $J~(G,) flGl (123) 
(3.24) 

+$K”r @3 ) f2$2 t231) +f3+3 t312) ’ 

with 
(3.25) 

$l(123)~C(l11;~2+~3) C(C&~P~+P~ 9~1) l 

D. Three-Body Vertex (Sequential Model) 

In the sequential model T3 corresponds to the diagram shown in Fig. 8a. 

Thus, we look for T3 in the form 

T3 (k;kpkyjki; s3) = ‘:Pr 2 C3fr,, ( kpykZ,) 
ni! 

PY- “a! 

(3.26) 

where kpY=kp+ky , %ytol is the mass of the isobar, c3 is some constant, and 
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f r~, is a vertex form factor such that fro, = 1 if k2 
PY 

= m2 and (k 
a- PY 

+k’J2 = 
r) 

s3 = rn; (see Eq. (3.14)). In order to determine c 3, we aote that T3 is 

related by crossing to the amplitude for Fig. 8b; i.e. , on-shell, 

T3 (-k’ k k Q! p ylki; ~3) =tbLpy tkik~Ik~ky; Mp2y) 

(3.27) 

Here a., is the spin of the isobar, and we have introduced To as the value of 

Tp in the py c. m. frame (opy cyclic); thus c3 is just gFiQp times the 

Legendre polynomial. In practice, however, we wish to explicitly extract the 

phase space factors Noting that the on-shell amplitudes have 

the ratio 

(3.28) 

whereas 

$y--Py (I$y ) - t2QQl +l) Pao (i’ol l i’i) e (I$y) ’ 
(3.29) 

47r 

we are led to the form 

T3(kv k k a! p y ki; ‘3) = 
(2Qr, + 1) 

4n 
pQ 

CY 

* gF. -+t-p$p ,(ig). 
g@Y. 

rcz 

Here we have employed the notation t”,” (M2 
PY- 

) for the elastic By scattering 

amplitude (crp y cyclic) in partial-wave 1, ; clearly t”,” (M2 - %.I 
PY 

) a 1 p, 1 . We 

have also introduced the quantity 

= (k,+ k; )2 = +mz + rn$ + 29~2~ E h (3.31) 
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in the py c. m., and added an off-shell vertex factor f” ,+ov such that Tro, (mf)=l. 

To the extent that the gF couplings are specified, yro, is the oaly unknown in 

our expression for T3, since P ’ Q! 1s empirically determined (e.g. , in terms of 

the phase shift $ ). We note that for applications to n-( 34 the factor p 
CY 

is always unity; whereas in K-.KYT~, the graph where a! o is the K 

leads to the ratio gFKK,gFrr (in the numerical work below we adopt the SU(3) 

value of l/2 for this ratio). 

Although the result given in Eq. (3.30) is a very reasonable parametri- 

zation of the l-to-3 vertex, it should be clear that only the limit of Eq. (3.27) 

in the unphysical region is uniquely defined; e. g. , one might append a factor 

such as NIpY 
/ 

‘“a 
which would affect our numerical results, but leave that limit 

invariant. As a consequence, one must recognize that the absolute normali- 

zation of our model is necessarily approximate, and anticipate the introduction 

of some scaling factors in fitting actual data. Equivalently, the on-shell 
. . condltlon frcr v = 1 does not uniquely specify the normalization except in the very 

special case F raII~ 1. The parametrization of that function, and the corre- 

sponding effects with respect to the amplitude subenergy dependence and the 

M3 -dependence of the cross section, are discussed in Sec. V. B. 
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IV. PARTIAL-WAVE DECOMPOSITION AND KINEMATICS 

In this section we deal with the specifics of calculating Tp in a partial- 

wave projection, and present the formulas for computing da/dM3 dt in terms 

of the partial-wave amplitudes (PWA). Our development parallels very closely 

that of Ascoli, Jones, Weinstein and Wyld, who dealt specifically with 

n-p-c (7r+n+-)p. 15 We shall, however, consider the process of Fig. 4a in more 

generality, allowing arbitrary masses and isospins for all of the particles 

involved. The application of the resultant formulas to distinct cases is then 

largely a matter of inserting appropriate expressions for the functions t2 and 

T3 discussed above. 

In practice we shall wish to write Tp as the sum (over Q! ) of the individual 

exchange graphs represe.nted by the amplitude of Eq. (2.44); we shall thus add 

an index (CL) to that expression, and introduce the expansion 

where LMBcrha! are the total angular momentum, its projection along k; , the 

isobar spin, and the angular momentum of particle cx in the /?y (isobar) c. m. 

frame, respectively. Here r@ is the value of c in the py c. m. (spy cyclic), . 
P ,. 

kcr is the direction of ro in the three-body (copy) c. m., and 

We note that ro has the same direction ki (but not magnitude) in the ,6y c. m. , 

LM and that yb A has the alternate expression 

yiJi LM (j& , lg =,- ,;[(ze+l)(zh+l)] ’ E:c(QhL;pO) * 
c1 (4.3) 
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where cos e” = b o! o! e”( O(g,( T), andwo represents the Euler angles 

which define the rotation R Q! of the “01” coordinate system, shown in Fig. 9b, 

into the “fixed” coordinate system, shown in Fig. 9a. Ln particular, it is 

useful to employ a standard reference configuratioa for the three-body final 

state, which we take to be Fig. 9b with o =l. The assignment of the integers 

(123) to the three-particle system is clearly arbitrary; in K7r7r we shall take 

particle 1 to be the K. In general, we take ( 8o, $ti ) to be the spherical 

coordinates of k, in the fixed coordinate system; then aQ= ( $a , C& 4 0) , and 

Dbp tua I= exp t- iM4 ) dhp (8cr) . o! (4.4) 

LM As defined in Eq. (4.2), the functions u?/Q A are orthonormal on the angular 

space p,, go, and hence 
(4.5) 

tia, ‘a 1 TF(kokpkyPf/kipi) l 

In order to perform the integration we must determine the dependence of To P 

on the angles. To do so it appears easiest to evaluate certain quantities in the 

Py c.m., whereas others are simplest in the three-body c. m. We shall thus 

adopt the convention that energies, etc. ia the three-body c. m. are distin- 

guished by a bar overhead; e.g. , To is the eaergy of particle CY in the c. m. 

frame. In particular 

Ef = (S -$-M;)/2M3 , 

(4.6) zi-Ef=(G+t-my)/2M3 , 

lq- cl= [(Ei -Ff)2 -t] 9 . 

We shall also require 2, l pf = cos @of (all angles except gaare evaluated in 

the three-body c. m. ) This is evaluated via the expressions 
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cos 9 CYf = cOsea ~~se~+sine~ sinefcos$o , 

cos ef = 
2Ef (EfX) + <-$ -t 

2($ A$,: [(Ei-EfJ2-t] ii ’ 

(4.7) 

where we have used 5 = q-Fi to evaluate cos ef = Gf. 2. . 1 The energy of 

particle LY in the two frames is given by 

(4.8) 

In terms of the above, it is straightforward to derive the following 

expressions for the by frame quantities (e. g. , by considering invariants such 

as ka! l (pi -pf) in both frames), 

- - -2 2;-2 
MbYEf = Of,- ea)Ef +cos eaftc,-ma) Wf -My , 

1 
Mp y (Ei -Ef) = (M3-$ (Ei -Ef)-cOsea (Z~-m~)’ 1 ’ , 

(4.9) 

ei =MPy+eO+Ef-Ei , 

2 4 
mF+rnk) . 

Similarly, the pair energies required for the t2 factor are 

s2 M? 
=s+ fly 

-2aMpy(Ei+Ei) ’ 

2 2 S cy’i =s+m’ a -mi+2(e’ -ei)E. , cd 1 
(4.10) 

2 S af 
=s+m2 

a 
- M3-2Mi3YEf l 

Finally, we will also need 

~+<Pi)=(Mpy 
(4.11) 

+ cCr) (Ef-Ei) + M3 (zi- Ef) . 
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Recalling Eq. (3.30), we observe that the direction only occurs in 

(4.12) 

Combining Eqs. (2.44)) (3.12)) (3.30), and the above, we obtain the result 

F 
T; (LMQo&) = griolP [(2Qa +l) (2h,+& 

F 
grPy 

2lr (4.13) 

*g C (Q&L;pO)j’cose,d~o(6~) dL,,/3JF;(MQ,e, 1 , 

where 
-1 

E; (Mpy+~;-~i) (4.14) 

7r 
* 
/ 

d~~COS(M~~) f2(“af’ ‘2) ‘2(‘2 ,t) f2(solvi, ‘2) l 

0 

In Eq. (4.13) we have used cos gia = ii. ” ; this is computed from the 

relati0.n 

2 - - 
cos 5 = lo! Ea! -mt+W& + EQ!) (Ef-Ei)+M3 (Ei -Ef) , 

2 1 
(Ei 2 & -rnT)’ (ci -ma) (4.15) 

where we have used Eqs. (2.45) and (4.11). We note that -T < “e. < 0 ; this can - lo!-- 

be seenfromthefactthat\%tiI= /eel) in the nonrelativistic (NR) limit, whereas 



- 40 - 

ea is the &gle’” makes with respect to ci in the three-body c. m., and “e. la! 
is the angle l$ makes with respect to co (as the z axis) in the fly c. m. As a 

consequeace, using standard properties of the rotation functions, oae deduces 

that 

fj C(eaAaL;PO)d~ot $cr)dbptea) 

NxC(Qoha!L;O,M) dhd”M’eo) . 

(4.16) 

From this one may infer the usual dominance of the L = 1, M = 0 ( 1 + 0 +) state 

for M3 near threshold ( at t = t min, the dependence of F; on qa! , 8o is very 

weak). We also note that the 1+ 1+ state arises predominantly from h, = 1, 

Q, =0 (irregardless of t) ; e.g., from rde7r or K+-EK. 

The above equations provide the necessary information to calculate the 

PWA TF (LMQoho ), which is a function of M 
PY’ 

s and t. Below we shall 

require the corresponding amplitude in an isospin basis; we denote this by 

TF (ILMQohLYI ), and compute it by interpreting to Qa! (Iv$ y) as the appropriate 

isospin (To) elastic amplitude, and by replacing f2t2f2 in Eq. (4.14) by t2 

(I, I, ) , as defined in Eq. (3.13). The standard Deck amplitude can be 

recovered by setting f2 (sh , s2) =To, (gi)=l, and by replacing eh (Mpy+ 

E &- ci) by rnp-t. We next consider the relation between the PWAvs (a! = 1,2, 

3) and the differential cross section. We first introduce the channel helicity 

amplitudes (J = L for our spinless three-body system) 

fIJM 
crM’I (“3’ M;yy 

9 
s, t)’ r, C(Q A J-M'()) * o!(Y’ o! Q A CYO! (4.17) 

* d$,o (go) ho (IJMQohoIo!) , 

where r = T cL 
Q! P 

+ rescattering terms (i. e. , the full PWA). The isospin wave 
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functions qcr are defined by 

* Cti~iyIa;~py) , 
(4.18) 

with crfiy cyclic, and the isospin conventions of Fig. 6. Employing the three 

subeaergies sU= lk? 
PY’ 

we next form a total helicity amplitude 

IJM 
FM’ (M3, sl, s, t) 

(4.19) 

+I: $2 (%‘;p,p2p3) d&tMll te ) ‘IJ?l 
12, M” 12 2M I2 W,, s2, s, t) . 

Here cos 8 
QP 

=k^ .k^ 
Q! P’ 

and we have put the (-) in the a.=3 term so that e12, 

813 both lie between 0 and 7r. These angles may be computed in terms of 

s1 , s2, s3 via the relations 

E O!= l”; +,i - Sa)/2M3 , 
(4.20) 

c0sepy=2E E -s0+ml+m2 . 

2(E2 
1 

-m2)‘(e 
1 

p p y-m~P 

The angle go required in Eq. (4.17) is determined (in the range 0 to T) by 

cos 6 = s --s +tm2 -m2H 3 Iv? 
o! 

-2) / scr 
, (4.21) 

2 i --ma) 

where we have used Eq. (3.20). Finally, the total invariant amplitude T is 

given by 

T = x TTJM 
IJM ‘1’2’3 ’ 
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TIJM 
p1p2’.C3(klk2k3PfjkiPi) =i!($$) 

’ D&*Mt ( wl) F’;fvZ* 

(4.22) 
*t “1~2~3 iPlP2P3 ist) . 

One may verify this formula for the CY = 1 part of F’$vI by comparing Eq. (4.1) 

with Eqs. (4.17) t (4.19), (4.21) and (4.22) , using the alternate expression for 

LM 
yQa in Eq. (4.3); the a! # 1 contributions then follow as a simple consequence 

of rotating from the “CY” coordinate system of Fig. 9b to the reference 

configuration (I! = 1. 

In general, the invariant amplitudes 

normalized such that the cross section o 

! Tim , 1 
HP, . P2)2- P”1 P; I” 

calculated in our FST formalism are 

is given by 

I I3 (4.23) 

where Pf =Zkj, and the incoming two particles have 4-momenta pl, p2 (PO= 

P1+P2)’ In the present case the phase space is 

(4.24) 

Inserting the expressioa for T in Eq. (4.22) into the above, we obtain 

do - = (2n)5 

dM,dt 8 (MiPL)2 M3 
r, -’ 

JMM’ I I 
2 

FMMv 9 

FJ = Z FE? ts1s2s3 ;P~P~/J~:s~) . MMv I 

(4.25) 

We conclude this section with several observations regarding the above 

formulae. We first note that one may separate the amplitudes further accord- 

ing to parity (P) by dividing the sum over La!, A, in Eq. (4.17) into Qa+Arr=even vs. 
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Qo + AD = odd; the corresponding symmetries guarantee that P is conserved; 

i. e. , there is no interference term in Eq. (4.25). Secondly, if one takes into 

account the target helicity states, all amplitudes acquire appropriate indices 

p, o as noted in Sec. III. B, and 

J;Mv 1 ‘;Mv ( 2 - 2s:1 . 
T 

Also, if there are nI identical particles in the final state, dc acquires the 

additional factor (nI!)-l. Finally, if all three particles are identical our 

* PWA’s ~o satisfy TV= r2 = r3, whereas, if particles 2 and 3 are identical, 

73= (-jNT2 f where N depends on the channel quantum aumbers. Specifically, 

N=II+ IQ+ Ql+ Q3+ il+ i3+ S , (4.27) 

where S is the total strangeness of the three-body system, 13Q3 i3 correspond 

to the particular quantum numbers cornmon to CY =2 and (Y =3, and the sum 

I1 + Q1 + il is the same for any Q! = 1 channel state. 
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V. NUMERICAL STUDIES OF THE PRODUCTION AMPLITUDE 

A. Two-body Vertex Factor 

In Section III. B we introduced a simple off-shell extension of the two-particle 

elastic amplitude in the special case of diffractive scattering (small t, large s2); 

this extension corresponds to the vertex function f2(sh, s2) which appears in 

Eq. (4.14). In order to gauge the effects of such a factor, we now consider a 

specific example. Thus, by applying the formulas of the preceding section to 

the reaction K+p --+ (Kc n+ r-)p, one may readily obtain numerical results for a 

variety of simple choices for f2. In what follows we discuss a representative 

sampling of such results for the dominant l?O+ partial-wave at pL= 13 GeV/c, 

t= -. 02 (Gev/c)2. 

In order to perform an explicit calculation one must choose a particular 

representation for each of the on-shell amplitudes tF(M Pr 2, and t2(s2, t). The 

choice of the latter (for Kp and m elastic scattering) is discussed in Section III. B; 

for the former we consider the two p-wave (Qa! =l) channels corresponding to 

pK and K*r, and define 

.- 
where K~ is the magnitude of the Py c. m. momentum, and K~ r, y Q! are adjusted 

, 
to reproduce the isobar mass and width (these parameters clearly depend on the 

state QQ, as well). Numerically, one has (K~ r , ,y ,) = (. 359, .0857) and (. 289, 

.0356) for the p and K* states, -respectively (in GeV/c units); these correspond 

toeAfr= .770, rr=. 160andM,= .892, Fr=. 050. According to our conven- 
Qo! 

tions, the corresponding invariant scattering amplitude is given by to (Miy) = 
Q 

(Mpy MNa! Q! /D> , and this is the form one should employ in treating the 



- 45 - 

rescattering corrections. However, it is more in the spirit of the sequential (or 

standard isobar) model to replace the multiplicative factor M 
PY 

by Aa (the 

isobar mass), and we shall thus take ( K~ = I&i) 

in computing <(LMQcuha) via Eqs. (4.13), (4.14); i.e., the dependence on 

MPY 
appears only in the isobar “propagatortT, Dr. Our motivation for choosing 

the latter [e.g., instead of simply M2 py - @%f - ira/2)2] is that we shall later 

require a form suitable for analytic continuation below the pair (M 
P-Y ) thresho1d- 

Although one could clearly employ more sophisticated representations in place 

of Eq. (5. l), the precise form should not be a critical factor in the present 

application. 

With regard to f2, we consider the simple parametrization 

f2& s2) = 
s2 + l.L22’ nb 

( ) s; -‘- 1.L22 
, 

i 
(5.3) 

where ng is an integer, and p2 is some mass defining the scale of the off-shell 

variation. In a low energy problem, one might estimate p2 to be of the order 

of several pion masses, in which case p2 2 would be totally negligible in comparison 

with s2 or s; under the conditions of interest (s2, S~CC s). In fact, p2 would have 

to be several GeV in order to have even a slight effect on the value of f2. For 

the purpose of our very qualitative investigation, we thus assume that ~ 

2 
52’“i >> l-53 , and hence our class of models is defined purely by the value of 

ng (for definiteness, we take p2=2m71). Following the usual conventions, we 

define an “isobar” amplitude y; via the relation 
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where Qa! = lEaI in the three-body c. m. (Q, is the c. m. spectator momentum). 

The behavior of ypo! as a function of the subenergy M Py (for fixed M3:l. 5 GeV) is 

shown in Figs. lOa, 10b for the choices ng= -l,O, 1; the curves are normalized 

arbitrarily to the value 1.0 at .77 GeV for pK, and 1.0 at .89 GeV for K*n (to 

focus on the r2 sensitivity, the calculation was performed with Trar = 1). 

Although the specific choice n = -1 produces an amplitude yp*whose subenergy 
g 

dependence is very weak, it is clear that the variation can easily be on the order 

of 50% or more (of the value at MPr =Aa) for permissable definitions of f2. In 

fact, the usual (Deck) choice corresponds to ng=O, and one would normally consider 

form factors with ng> 0 as more reasonable (corresponding to f2 + 0 with increasing 

si, fixed s2). Thus, even without the M 
PY 

branchpoint noted by Aaron and Amado 

(which appears in the rescattering terms), it is quite possible for the isobar ampli- 

tude to exhibit a considerable subenergy dependence. On the other hand, similar 

calculations at other values of M3 yield plots which are virtually identical to those 

shown (to the order of 10% or so), and hence the dependence is not as complicated 

as it might be; i.e., ?o! . T 
P 

N A(Mm,) B(M3). Moreover, it appears that a linear 

approximation A(M 
Pr 

) N A0 + A M 
1 PY 

might well account for 90% of the effects. 

To a lesser extent, this also appears true of the rrcrl variations considered below. 

Inasmuch as the computation of *;p” requires a double numerical integration 

(over 0 a! and $a), it becomes rather time-consuming to evaluate the cross section 

by repetitively evaluating ‘po at each requisite combination of sl, s2 in Eq. (4.25). 

This can be avoided by expanding ‘;p” in a complete orthonormal set on the 

physically allowed interval of. M p y (determined by M3); thus 



(5.5) 

The numerical results above (and those below) suggest that the sum might well be 

truncated at n=2 or 3; all of the calculations reported in this article were performed 

with n=4, using the explicit choice 

2k-1 
M3-ml-m2-m3 1 ’ pk-ltxa) , 

(5.6) 
2M 

x = 
y+mc,-m -m -M3 

P Y 
a! M3-ml-m2-m3 ’ 

where Pk is the Legendre polynomial (xa! is in the range -1 to t-1). Employing 

this technique, the differential cross sections corresponding to the above f2 

parametrization (ng= -l,O, 1) are shown in Figs. lla, lib . Although clearly 

negligible in the pK channel, the vertex effects are rather substantial for K*r 

(on the order of 20%). However, it turns out that even the latter are small compared 

to the variations with Fro t , and hence it seems most reasonable to simply choose 

ng=O, and to concentrate on the effects of the three-body vertex. Unless other- 

wise stated, we shall adopt this course in what follows. 

B. Three-Body Vertex Factor 

Off-shell effects from the three-body vertex are specified in terms of the 

function Frcr, (~33., w rc h’ h is essentially a form factor for the dissociation of the 

incoming particle into a quasi-two-body system (the isobar plus particle at). 

From Eq. (3.31)) we see that it is effectively a function of E h (the energy of 

ok’ in the isobar rest frame), and it thus appears simplest to parametrize it in 

the form 
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This guarantees the crossing constraint r ,,,(mi2)=1 (typically C;< 0). It should 

be noted, however, that this constraint is very weak in terms of specifying the 

absolute normalization of the resulting cross section. For example, one might 

modify any given Fro, by the multiplicative factor (E h + eo)/(i& + E o). Since 

i& is a negative constant, one may clearly choose E o= q and hence create 

an arbitrarily large enhancement in the overall normalization. Thus, once one 

permits ,Tcr, # constant, the absolute normalization cannot be predicted with 

confidence, and must be taken as a free parameter. Although this introduces a 

certain latitude in calculating a particular diagram, the same vertex function 

and its associated normalization factor will also occur in a great variety of other 

processes, and hence the unknown factor will ultimately be constrained, 

For our numerical examples, we again consider a simple parmetrization 

g,,ttq = t’h2 +pfcr,)-“f , (5.8) 

where nf is an integer. In this case the mass parameter prQt can play a role, 

and it is useful to make some estimates as to its magnitude. In practical terms, 

.eh will range from m h to a value perhaps several times that via the kinematical 

relations in Section IV, and hence, to first order, it is reasonable to consider 

the corresponding nonrelativistic problem. Thus, for a two-particle system 

(Aa, mh)lin its c.m. , the partial-wave amplitude is a function tQ(Q,Qt;E2) of the 

energy E2, and the off-shell momenta Q,Q’. For fixed E2,Qt, tQ is an analytic 

function of Q, with a singularity structure implied by the associated potential, 

V&Q, Q’) . In particular, if the latter is a simple Yukawa potential corresponding 
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to the exchange of a particle of mass me, the singularities of tJ lie outside the 

strip I ImQ I < me. 21 Although the singularities are actually cuts and rather 

complicated, for values Q on the real axis the qualitative aspects can be repre- 

- 2-l sented by the simple form to a (Q2+ me ) , where ze N m . e Transforming 

to the rest frame of Jdcc, one has 

(5.9) 

Thus, in order to reproduce the same singularity structure, we deduce that 

2mL! -2 pc,, _N l+ r ( ) m -mf 2 
e a! ’ o! 

(5.10) 

Using geEmE = .6, this leads to p 
PK 

= -76 a.ndpK*/ . 67 GeV. On the other 

hand, one might view the situation as a true three-body problem. In this case 

Q would represent the momentum of o’ in the three-body c. m., and iiie would 

correspond to the lightest (important) exhange between any of the three pairs; 

(7r 7r) and (K 7r). Transforming to the pair c. m. , the corresponding relation is 

(5 * 11) 

v-l=mW1+(mp+mY)-l . a! 

Taking me N 2m.,, = .28, this gives p 
PK 

N .58 and pK** = .32 GeV. 

In the numerical work, it turns out that the specific value of pro, (in the 

range suggested by the above) is far less interesting than the integer nf which 

determines the suppression at large E b,. For purposes of illustration, we thus 

present results based on the specific choice p 
PK 

= .6 and pK*n = .3 GeV. Taking 

n =0 for the two-body vertex, the calculated subenergy dependence for nf = 0, 1,2 
g 

is shown in Figs. 12a, 12b (varying pra, tends to interpolate between these curves; 
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e.g., pra, + 30 is clearly equivalent to n f -4 0). The variations displayed again 

indicate that a substantial dependence on subenergy should be anticipated. Similar 

calculations at other energies also reveal the relative independence of the shape 

as a function of M3; again, 7” a 
P 

= A(Mpy)B(M3). On the other hand, A(Mpy) can 

only be crudely represented as a linear function; it appears that a quadratic would 

be required. 

The related cross section plots are given in Figs. 13a, 13b. Here the effect 

of varying n f is far more dramatic. Thus, increasing nf transforms a rising 

cross section into one which flattens out and begins to decline at large M3; further 

increases in nf narrow the corresponding peak, moving it to lower M3, and cause 

. the high-mass tail of the spectrum to fall more rapidly. It is obvious that the 

resulting behavior might well be interpreted as a “resonance” if seen in an exper- 

imental situation. Here, of course, the physics of the model is quite different; 

the curves simply reflect the diffractive “edge” of the dissociating particle. In 

practice, one would attempt to distinguish. the two interpretations (in a given 

experiment) by extracting the phase behavior of the associated isobar amplitude 

;a (e.g., relative to some other, presumably featureless, amplitude). In this 

case the phase motion corresponding to Figs. 13a, 13b is absolutely flat, since 
- ck! . -..’ ~~ lust carries the phase (-i) of t2(s2, t). If a resonance (defined, for our 

purposes, as a pole on the appropriate sheet of the S-matrix) always corresponded 

uniquely to classical Breit-Wigner phase motion, making such a distinction would 

therefore be easy. However, for systems of three (or more) particles this is 

certainly not the case, and the task becomes considerably more delicate, 793 

1 We therefore conclude that vertex corrections can play a crucial role in 

the M3 dependence, and cannot arbitrarily be neglected in interpreting experimental 

results. This point is well illustrated by the KJT~ analysis (in the Q region) 
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described below. The other.aspect to be considered concerns the possible 

consequences of non-negligible subenergy dependence. This question is more 

subtle, and the answer depends to a large extent on the precise situation involved. 

For example, the individual ?sobar’l cross sections discussed above may be 

recomputed using C.Mo in place of M 
Pr 

in calculating 7 wp” via Eq. (5.5); this 

procedure effectively uses that expansion to define an analytic continuation when 

MPr 
= ,nla, is not kinematically accessible (for small M3). The resulting curves 

differ only fractionally from those shown (perhaps 10% variation or less), except 

at small M3, where the difference can be a factor of 2 or 3 (but the cross section 

itself is quite small). This is easy to understand from Figs. 12a, 12b, since the 

decline in a” with M 
Pr 

< J$ only tends to enhance the peaking produced by the 

factor IDol -2 (in da). Although the effect in the cross sections does increase 

when the widths of the p, K* are increased (being roughly proportional), the sub- 

energy corrections seem unlikely to be of importance unless the widths become 

very broad indeed (say .j->400 MeV) . 

On the other hand, the consequences are more substantial when one considers 

interference effects. Thus, by keeping both pK and K*r components in Eq. (4.19), 

one may compute the difference o(pK+K*?r) - o@K) - o(K*r), and compare the 

results for the exact formula vs. M 
PY 

3 do. In this case the overlap differs by 

20% at M3 = 1.3 GeV, and by 30% at M3 = 1.2 GeV (again, for broader isobars, 

this behavior will be enhanced). In experimental data analysis (into isobar channels) 

this effect might conceivably lead to some misidentification regarding the content 

of individual channels. However, the most important effect might well be seen in 

the details of production-resonance interference,. In that case the M 
PY 

-dependence 

of the production and resonant terms plays the role of the off-shell extrapolation 

discussed in Section II. B. In particular, we recall from Eq. (2.39) that the 
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difference between the production mechanism and resonance in that respect 

determines whether the net outcome is a dip or a bump (and all that lies between); 

we shall return to this point in Section VII. Finally, in the Discussion (Section 

VIII) we present a practical recipe for incorporating such effects in data analysis. 

VI. UNITARY DESCRIPTION OF THREE-BODY RESCATTERING 

A. Exact Three-Body Treatment 

As noted in the Introduction, a properly unitary treatment of the three- 

body rescattering necessarily involves the solution of an integral equation. In 

order to understand this physically, we represent the production process sche- 

matically by Fig. 14a, and production-plus-rescattering by Fig. 14b. In both 

cases, the label a! indicates that the pair py are the last to interact; i.e., Fig. 14b 

corresponds to the amplitude that one would experimentally define as the “isobar 

amplitude. ” The operator T3 represents the full 3-to-3 scattering amplitude, 

and may clearly be decomposed in the form T3 = Zo a! T 
, ()@Q 0’ 

according to which 

pair interacts first or last. The nature of ‘cr(l! is expressed by the implicit 
0 

integral equation in Fig. 14~; if one iterates this expression one simply obtains 

the full multiple scattering series in diagrammatic form. In writing Fig. 14b, 

we have explicitly assumed that particle f does not interact subsequent to the 

production mechanism. This may be justified in terms of our RST formalism by 

noting that the large energy s (carried by line f in the three-body c. m. ) would 

otherwise appear in intermediate states (via Go), and give rise to corresponding 
-1 factors of s . Such diagrams are thus suppressed relative to Fig. 14b, in which 

Ef(s) simply cancels as long as f does not interact (see Section II.A). 
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The origin of the three-body integral equation is thus clear; it arises as 

the means of summing the full infinite series of sequential pair interactions 

(represented by off-shell scattering amplitudes to). It is perhaps less obvious 

that the equation cannot be substantially simplified (e.g. , reduced to quadrature) 

without destroying unitarity; to see this one must recognize the complexity of the 

associated singularity structure. 22 In our operator notation, the equation of 

Fig. 14c may be expressed as 

7 = 6 t- t GT 
o!o! 0 Qo! a! c o! opcro ’ (6-l) 

0 
Pfa 

In order to express this in terms of amplitudes, we introduce the notation 

%! = ~&h-n~ - I;r /my) , 
(6-V 

pi1 =m j’+ $’ , 

where the vectors Eo, l? , l? are taken to be in the three-body c. m. 
P Y 

We may 

then choose Eo, co as independent variables, and note that 

J&I a2 g3 SGI+E2+$) = Jaa Ga (6.3) 

for any choice of (I! (o=l, 2,3). It is convenient to express our operators on the 

c.m. basis ll?$o>; e.g., 

- 

where to$o$ol EoFo;so) E t (k’k’ lk. k ;s ) is the invariant Pr scattering 
01 Pr P-r Q! 

amplitude , and 

S Q! = (Pi - ko)2 

= Mi + rnz - 2M3 eQ! . 

(6.4) 
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The completeness relation now becomes 

l= 
/ 

q$, 

‘le2’3 
Ii;,;;,’ <“‘,&J . (6.5) 

In practice, one employs the three alternative bases (Q=l, 2,3) simultaneously, 

since ta! is far more simply expressed in terms of Em, cQ than k , p’ . 
P P 

One thus 

requires the transformation brackets 

<I? 5’ I E i; > = E1E2E36 
a o! PP 

+ , 

F-6) 
-1 where V, =(m +m 

P r) 
-1 + m’l 

o! ’ and the upper (lower) signs correspond to o!pY 

cyclic (anticyclic). Employing our RST rules, Eq. (6.1) can now be expressed 

as 

(6.7) 

where 

F-8) 

Although only a single (vector) integration is involved in Eq. (6.7)) it is 

nevertheless an integral equation on the full Eozp, space, since the argument of 

7pcxo depends on Eh (via cV pck H owever, under the special assumption that tQ! 
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is separable in each partial-wave, it can ultimately be reduced to a one-dimen- 

sionable integral equation (in an angular-momentum decomposition). For our 

present purposes we shall confine our discussion to the simplest possible case, 

corresponding to a purely s-wave two-particle amplitude. 
23 We thus take 

“h = (kb + k;)2 = (eb+ e’J2 - E;” , 

e;=b;+koTgk$2]’ , (6.9) 

$ = ~;+(p+t+P)2]+ ; ’ 

sa! is defined similarly with E 1 + E 
P p,$-) ‘r computed with go -+ so. Defining 

a reduced amplitude Foe via the relation 
0 

TQa! ;M3 = 
0 

(6.10) 

substitution into Eq. (6.7) yields the equation 

1 
- 4n 

fir. go& kpp (J 
cP cy c;+c;+; -M3-ie 

fp& ;M3 
0 

DPtsP) ’ 
(6.11) 
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with e’ cl!’ %’ 
eY given by Eq. (6.8). If we now consider the partial-wave 

decomposition of Eq. (4.1)) we have assumed I o=O, a 
QO 

=0, and hence ho= 1 
aO 

=L; 

thus 

(6.12) 

Here we recall that the direction sa! specified in Eq. (4.1) refers to the p7 c.m. 

value of l? 
P 

(or, equivalently, the direction of cQ as defined in Eq. (6.2) but 

evaluated in the Pr c.m.); whereas gal, etc. are independent of that variable. 

We then obtain 

g,qJ 

D&J TL @!a0 ;M3) go0 (Qo) ’ 

(6.13) 

AL where 701(1! satisfies the one-dimensional equation 
0 

FL 
K$ k;,kp;M3 c ) 

Pa 

Dp (sp) 
; (6.14) 

Here the dependence on z ap” 01 1;’ .I$ enters entirely through E 
Y’ 

and hence the 

zw 
integration can be performed analytically for simple choices of go, g 

P 
. 

To those familiar with the literature on relativistic Faddeev equations, the 

result expressed in Eq. (6.14) is unusual only in two aspects. The most obvious 

distinction is a simple consequence of the propagator (Go) choice discussed in 
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Section 1I.A; i. e. , setting E=E~+E PCey , we have (E-M3) -’ instead of 2E/E2-Mi). 

In addition, however, the kp integration has been cut off at a finite value K 
P’ 

instead of running to infinity as in the BS-type equations. In order to understand 

the origin of this cut-off, we first note that the two-particle amplitude satisfies 

the equation t2=V2-V2GOt2 (see Eq. (2.6)), and hence our choice in Eq. (6.9) 

implies that V,=go(s,‘)g,(s,)/4~, and 

J 

03 

Do(so) = 1 + 
g; t"; y ) dpp2 

0 
ePEy’Mpy-FQ-ie ’ 

(6.15) 

where p is the (Py ) c. m. momentum, M 
PY = EP+EY * 

We thus observe that 

Do(so) has a left-hand cut for so 5 0 as a consequence of the linear dependence 

on To. This is no problem at the two-particle level, since so< 0 is typically 

far from the physical region. On the other hand, so1 is a variable in the three- 

particle problem, and we see from Eq. (6.4) that it varies to -03 if we let 

ko+ ~0. Correspondingly, the kernel of Eq. (6.14) would develop an associated 

imaginary part, and the solution? would not possess the desired properties; 

i.e., an imaginary part generated by the right-hand cut structure. To prevent 

this we must require so >, 0, which is equivalent to k < K with a- a’ 

Ka = (Mi - rn~)/Z&I, . (6.16) 

Superficially, this might appear rather odd, especially since k 
P 

+ 03 in the non- 

relativistic Faddeev equation. In fact, however, this behavior is entirely con- 

sistent with the physics of the problem. To see this, we appeal once again to 

the cluster property, which requires that a two-particle subsystem, in the presence 

of n-2 non-interacting additional particles, is precisely the same as a completely 

isolated two-particle system. In other words, if we view the two-body system 

in its c. m. frame, the other particles may have any momenta whatsoever (0 ,m ) 
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without changing any characteristic of the subsystem (except the relation of the 

pair energy to the total n-body energy; see, e.g. , Eq. (2.11) and the subsequent 

discussion). In particular, if we calculate so in the ,6y c.m. frame, we have 

(6.17) 

where f;Q is the magnitude of Eo in that frame. Thus, as Eo varies from 0 to 

03, &?o varies from M3-m,, down to 0; i.e., it has precisely the variation implied 

by the cut-off discussed above. With this understanding, the finite upper limit 

KP appears as a simple consequence of formulating the dynamical problem in 

the three-body c. m. In practical terms this is very convenient, because it 

insures that Eq. (6.14) is of the Fredholm type (unless the form factors go are 

chosen to be pathological). 

As it stands, Eq. (6.14) corresponds to the purely academic situation of 

3-to-3 scattering, whereas our goal is to add rescattering corrections to a 

postulated production mechanism. This, however, merely requires that we 

replace the driving term by the corresponding projection of the production 

amplitude . Thus (in the special case Jo=O), we want T,", 
0 

to become Tp@ (Lm&o) 

to lowest order, which is equivalent to dropping the integral term in Eq. (6.14). 

The necessary substitution is therefore 

(6.18) 

D W2 ) 
$‘.atk,;M3) = + I 

gCi(“pY) 
7.;(Lmcrhcu) 2 

and the full PWA is given by 
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TLytL~&) = 
gJ”;y) AL 

Ta! @,;M3) - (6.19) 

*L Here Ta! 
AL is the solution of Eq. (6.14) using the driving term T 

P;o 
; the latter is 

to be computed from Eq. (6.18) by expressing the right-hand side as a function 

of Mpyand M3, and then using the relation 

=Mi+mi- 2M3E,, (6.20) 

to replace M2 
1 

PY 
by ko = ($ -rnz)’ as the independent variable. 

Given any real-valued functions go, the structure of Eq. (6.14) guarantees 

that the corresponding channel amplitudes TV will be properly related by unitarity. 

Specifically, if we denote the production-plus-rescattering operator by 7a3P, and 

33 the 3-to-3 operator by 7ap , the unitarity relation can be expressed as 

Ar$=_,,c 
J 

&l&2&3 

P,P’ ele2’3 
“(E1+E2+i;,, * 

(6.21) 

* 7 $ I I;,I;,I;,>S (el+ e2+ l 3-M3) <l-$f;2~31 T; , 

where AT is the discontinuity of T across the three-particle scattering cut (if we 

factor out the overall phase factor arising from the production term, ~T=%~IIT). 

We note that the overlap terms P#P ? are neglected in the isobar approximation. 

The rescattering corrections so defined, however, correspond to a very 

specific dynamics; i.e., to a very special pairwise interaction (separable) expressed 

in terms of a particular form factor, g,(s,). The latter, moreover, cannot be 

chosen purely at random, since it must generate the two-particle denominator 

function Do(so) via Eq. (6.15). The question then arises as to whether such a 

unitarization scheme is sufficiently flexible to adequately represent the expected 

dynamical effects. In particular, a resonance can only arise as a (complex) zero 
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in the Fredholm determinant 11-z I corresponding to the kernel E=K/D of Eq. 

(6.14). This will happen only if the gQ! are precisely right, which is rather 

unlikely to be the case. Thus, although one can gain some flexibility in modifying 

ga! by replacing the “1” in Eq. (6.15) by a real function c(so) (without disturbing 
. . ., _\1 

unitarity), the possibilities are clearly limited. Moreover, the quark model 

suggests that pairwise forces may actually be irrelevant in generating the resonance; 

such a dynamics would best be represented by an effective three-body force. As 

an aside, however, we note that there can be a very extensive trade-off between 

a true three-body force and so-called off-shell effects arising from the pair 

interactions, 24 providing that one is not restricted to a very specialized class 

tw., separable). As an example, this author has performed a number of calcu- 

lations based on a relativistic boundary condition model (i. e. , a very singular 

“potential”), 13 which produces a much stronger effective three-body interaction 

than corresponding separable models. Nevertheless, the unitarizing equation 

derived above must be generalized in some respect if it is to provide the basis 

for a workable s.cheme of data analysis. 

For this purpose we propose a very simple modification of Eq. (6.14). 

Thus, we observe that the replacement KL + KL + A L 
aP @P aP ’ 

where A 

kp; M32) is a real-valued (nonsingular) function, leaves the unitarity properties 

intact. This replacement, therefore, generates a large class of unitary rescat- 

tering corrections, since A L 
aP 

may ce choserrwith complete freedom. Physically, 

the minimal (AL 
QP 

= 0) equation corresponds to particle exchange between isobars 

(e.g. , to r exchange between pn and E r configurations of the 3n system); this 

presumably accounts for the important long-range dynamics. The addition of 

AL 
QP 

can then be viewed as an effective representation of the short-range effects 

(e. g . , quark dynamics). Furthermore, the nonsingular nature of this term, as 
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opposed to KL apth h w ic contains the Go pole singularity), permits us to manipulate 

Eq. (6.14) into a form which is suitable for data analysis. Thus, even if one 

could achieve sufficient generality by simply modifying go, it would be necessary 

to re-solve Eq. (6. 14) numerically each time the parameters of go were altered. 

In practical terms, this is incompatible with a x2 fitting procedure. However, 

in the modified equation we hold the go fixed, and take advantage of the smooth 

nature of A kp to expand it in some convenient complete set: 

the function AL L;n 
QP 

is symmetric, and hence the coefficients satisfy A 
Pa 

= ALin 
QP ’ 

L The functions $,, may be chosen at our convenience, but should incorporate the 

threshold properties (mkh L, andfall off as kk-+-; e.g., 

zjinlch) = khL(kh2 + rnn2rLm1 
, (6.23) 

when the mn are some increasing sequence of masses (m o, 29-n 0’ . ..). Ifwethen 

truncate the expansion at n<N, the resulting generalization of Eq. (6.14) can be 

easily manipulated into a set of M linear algebraic equations, 25 where M=N times 

the number of channels (a! index). These algebraic equations (which require one . 

to solve and store certain moments. of the minimal (A=O) integral equation), deter- 

mine the generalized amnlitudes T 
3p 

o! in terms of the A L;n 
QP 

coefficients. Hence, 

by taking the latter as the fitting parameters, the problem reduces to a finite 

matrix calculation; this can be handled numerically with sufficient speed so as 

to permit its direct inclusion in a x 2. routine. When combined with the techniques 

for handling the subenergy dependence described in the next subsection, the result 

is easily competitive with the techniques presently employed (in terms of practicality), 

while also guaranteeing an exact solution of the unitarity problem. Stated somewhat 
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differently, the latter implies that the effect of three-body cut structure, as well 

as isobar cut structure, is properly incorporated in the model amplitude. As 

noted in the Introduction, this may well be essential in obtaining meaningful 

conclusions in many situations of experimental interest. 

B. Approximate Three-Body Treatment 

Although the approach described above constitutes an exact solution to the 

rescattering problem, and hence is definitely to be preferred, it is nevertheless 

useful to explore more approximate techniques in which the physical interpretation 

is more transparent. In particular, the isobar model, in which the resonant 

pair is treated as a stable elementary particle (with a real mass), embodies a 

good deal of the relevant physics and is relatively easy to employ. It does, 

however, completely neglect the three-body cut structure, and it tends (corre- 

spondingly) to introduce an artificially abrupt behavior at the isobar threholds. 26 

Such problems become exacerbated, of course, when the f*resonancelf is actually 

a very broad object such as the E . These facts suggest that some compromise 

between the literal isobar model and the exact three-body treatment could provide 

a very useful alternative. 

In this spirit we introduce the following approach. We first note that the 

factor which forces one to an integral equation in the exact treatment corresponds 

to the overlap ,f3 # p ? terms in the unitarity relation, Eq. (6.21). In the isobar 

approximation, one argues that such terms may be neglected in comparison with 

the diagonal p = p ? term. Thus, introducing the on-shell amplitude 

L 
7 (Yo! 0;M3) = ~~rug(M~yk~~,~~oygkao~~3) > (6.24) 

0 

with Mi y given in terms of M32 by Eq. (6.20)) the unitarity 

relation reduces to 
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AT 
L (yQ! 

0 
++k~’ kp;M3) * 

(6.25) 

*T 

Here iP is pair c. m. momentum of particles afYf (o!‘#Y I#/?), whose invariant 

energy is given by 

So = M32 + m 
p”- 

2M3ep . (6.26) 

In Eq. (6.25) the upper limit k corresponds to the kinematic maximum for the 

spectator motion; i. e. , E satisfies Eq. (6.26) with& =mh+mfy . 
P 

We now observe that as a consequence of Eq. (6.15), we may express Eq. (6.25) 

in the form 

L 
AT o!o! 0 

&$k’ol kp;M3) * 

(6.27) 

, 

where AD 
P 

vanishes for k 
P PM. 

>k Referring to Eq. 
LL* product TV pip (y implies that the integrand contains 

0 

(6.13), we note that the 

the factor 

AD&) 
(6.28) 

IDp (spN 

in the zero width limit. The singular nature of the diagonal term in this limit 

is one rationale for ignoring the p# pf contributions, and hence one may “justify” 

the isobar model in the narrow width approximation. 

In the realistic case of finite (and possibly large) widths, however, we 

shall define a generalized isobar description along the following lines. Thus, 
L we look for 7a!ol inthe form 

0 
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TL Q~ 
0 

khlk 
aO 

“(k~-kQo> t (s, ) 
k, 2 o! a 

a 

(6.29) 

where ha(kb) is a real-valued function. This is motivated by the form of 

Eqs. (6.13) and (6.14), and the fact that resonant amplitudes factorize, at least 

in the neighborhood M3 N MR. The second term will thus be realistic if a three- 

body resonance is present, which is usually the situation of interest (at least 

potentially). In the isobar limit, ho@o) is essentially a form factor describing 

the coupling of the isobar to the resonance (more precisely, gQhQ! is that form 

factor), and XL ~Q! is an isobar-to-isobar scattering amplitude. The latter is 
0 

restricted by requiring that this expression satisfy the (approximate) unitarity 

constraint of Eq. (6.27). Via straight forward substitution, one obtains the 

condition 

L 
AP,! = 

/ 
(%Ykcv2 

E 
h; o,,j2 At&,) l 

o! 

0 

(6.30) 

This equation has a familiar ,form; one simply takes XL apt”3) as the solution of 

ep (M3) = A$ W3) + F Af;y (M3)p; W3F$ (M3) 9 (6.31) 

where h L 
@P 

is a real-valued function of M 2 
3 - In particular, one might choose 

A$(M3) =$;/(M32 - sap’ ; (6.32) 

i.e., a K-matrix parametrization. In the case of a single uncoupled channel (Y, 

one then obtains 
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(6.33) 

The simple choice expressed in Eq. (6.32) thus leads to a Breit-Wigner parametri- 

L zation of XQQ o 

Of course, since the function pi (M3) is restricted only by its discontinuity 

in Eq. (6.30), it is not uniquely determined. One possibility is 

definition 

4/r 

m 

PfpQ) =& 
dMh2 A p;(Mb) 

t 
Mi2- M32-ie 

, 

where Mt = I: orno is the three-body threshold, and A$Q(M$) is 

Eq. (6.30). This particular choice has the asymptotic property 
3 

to adopt a dispersive 

(6.34) 

calculated via 

-b 0 as 

M3 
y+m, but such a constraint is purely ad hoc; one could just as well add a 

constant, or a polynomial in M3”, to the definition in Eq. (6.34). A different kind 

of possibility is suggested by the appearance of the exact three-body equation. We 

thus define the alternative choice 
&I! 

P; (M3) = 

J 

%Yk: 
E h; tk,)2t,ts,) ; 

o! 
0 

(6.35) 

this corresponds more closely to the way in which the denominator Dil(sa) gives 

rise to singularities in7 
aaO 

via Eq. (6.14), and has the additional virtue that 
.L p, can be expressed analytically for simple choices of ho , Lt Q!. As an example, 

we have calculated pk via Eq. (6.35) for the pK and K*r channels using 

ta = t~hON~tscr)/D&J , and (L=l) 

(6.36) 

hi(ka) = c[N~(s~,]-’ /@Q2+4mf)-1 . 
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Here cL, , DE d” (Q,=l) are the explicit parametrizations of Eq. (5. l), and 

c=O. 088 (GeV/c) 3/2 . The corresponding (dimensionless) values for Re pi, 

are shown in Figs. 15a, 15b. A comparision of the two sets of curves illustrates 

the effect of narrowing the isobar width; i.e., pL’o(*?r) exhibits a considerably 

more rapid behavior near the isobar threshold (1.03 GeV) than does pi (pK) 

(1.22 GeV). In order to discuss the zero width limit one takes hI&(ka) = 

& ffi(lia)/gE, where ci is normalized to unity at the isobar mass (ka=kz); with 

this convention X$ (M3) is p recisely the spectator-isobar invariant PWA. In the 

zero width limit one then has 

s 

Ko! 

Api- %koY 
E cl! 

0 
(6.37) 

= 2ri kz/M3 ; 

hence the formalism expressed in Eq. (6.31) becomes just the usual isobar model 

(with our convention for the phase space factor). However, for finite widths, our 

generalization avoids the cusp-like behavior at the isobar thresholds, and produces 

a more realistic-looking amplitude. 

Given the form of Eq. (6.29), the procedure for constructing the amplitude 

of interest is trivial. Thus, 

s 

KP 

7a (LMQJQ = 8 
dkgk; TV ” (kol k ;M3) 

9 QP 
7; (LMQ& 

0 tp (s/g 

(6.38) 

Q 
= T;(LMQ~~~) + hi (k,)too(s,)zXL p abP 1 tLMQP$) , 

where s KPdk k2 

IP (LM QPhP) = 
2 

9 
hIp’(k/$(LMQ X 

Pp’ * 
0 

(6.39) 
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Here we recall that we simplified above to the case of a single channel for each 

p (Qp= 0, hp= L); in general, of course, the amplitude Xkp is a matrix on the 

(discrete) space labeled by (p Qp AP), hi (kp) + hkQ h 
PP 

(kp), and I: + ZpQ 
P 

A . 
P P 

For practical manipulations, one may introduce the isobar amplitude ycr corre- 

sponding to Eq. (5.4), and expand the latter as in Eq. (5.5); i. e. , with expansion 

coefficients bt (M3) referring to the full PWA. With this understanding, Eq. (6.38) 

can be expressed as 

bk” = bEip -c Cl$ XopIp . (6.40) 

Here, for simplicity, we have employed a, p as general labels for the set of 

discrete indices, and it is understood that b:, bgip, Co1 I k’ /3’ X ap are functions 

of M3 in a given state of total L, M. The coefficient Ci corresponds to the 

expansion of ht (k,); specifically, 

/ 

M3-mc2 
hL 

ck” = 
aQ h lka) 

dMpr~~W~r~M3) a “, &M;+ . (6.41) 

Y%+“r 
K WQoko a 

As noted above, the combination is a vertex form factor coupling the 

isobar to the “resonancetl described by XL 
&I! 

cwp; thus (hi gg)/ka! is a function of 

QCY ki (the threshold behavior cancels). Similarly, go(Miy)/FCy is a function of 

K:. As a consequence, the integrand is in fact a smooth function of M 
Pr 

for 

L reasonable choices of ho . 

Given Eq. (6.40), the cross sections including the effects of rescattering 

(with or without resonances, depending on the parametrization of X 
QP 

) can now be 

calculated in precisely the same fashion as we employed in Section V for the purely 

production term. In fact, the degrees of freedom have all been expressed in 

discrete form, and the resulting formalism is comparable in simplicity to the 
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familiar isobar model. Nevertheless, the proposed generalization incorporates 

both subenergy dependence and (some) effects of the three-particle cut structure, 

and thus represents a far more comprehensive description of the production- 

rescattering problem. It should also be noted that the primary effect of our 

approximate treatment is the ease with which X 
w 

can be calculated; our exact 

three-body scheme can also be reduced to the form of Eq. (6.40), but X 
a!p 

must 

then be calculated via the set of algebraic equations discussed above. 

In concluding this section, it is instructive to reconsider the question of 

production-resonance interference within the context of Eq. (6.40). Suppose, 

for example, that the production isobar amplitude ? of Eq. (5.4) is independent 
P 

of the subenergy. Recalling Eq. (5.5), we thus have?; = b:” ‘py, where $y 

is just a constant (in subenergy) by Eq. (5.6). Suppose also that the combination 

@; g;/Kia hCY klY ) occurring in Eq. (6.41) is a constant; then CE = slkC:. Combining 

these assumptions with Eqs. (5.4) and (6.39)) we find that 

bk” = alkb; , 

and 

by = b;;’ + C$ XaPoP b[;P/C[ , (6.42) 

where we have used Eq. (6.35) as our definition of p 
P’ 

In the case of uncoupled 

channels (A 
QP 

= 0, a# p), this reduces to 

bl” = (l+XQapQ)b;;P 

= b;;P,‘(l-ha~p,) (6.43) 
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the last line following from the particular parametrization of Eq. (6.32). We have 

thus reproduced the result stated in Eq. (2.41); i. e. , the full amplitude “7 cr=bF $1” 

has a zero at soa! (the position of the K-matrix pole). Conversely, the difference 

in the subenergy behavior of “7 z and (higi/rSf(Yki”) weakens the interference 

effect, and leads in practice to smoother, more realistic cross sections. A 

similar smoothing takes place as the result of having two or more coupled channels 

in Eq. (6.42); in fact, this was noted by Basdevant and Berger in their unitarized 

isobar analysis of the A1 (they included coupling to K%). ’ Thus, in practical 

terms, the effect of subenergy dependence is to add additional Y7channelsf1 to the 

isobar model. The sensitivity of the differential cross sections to such inter- 

ference is well illustrated by the examples discussed in the next section, and 

indicates that ad hoc neglect of the subenergy variations is a very questionable 

procedure. 
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VII. APPLICATION TO K+p + K+r+ r - p 

As an illustration of our formalism, and of the various questions concern- 

ing subenergy dependeace and vertex corrections discussed above, we report in 

this section some results recently obtained for the l+O+ state of K+n+r-. 

These results must be regarded as preliminary, in that only the parameters 

describing the resonant rescattering (X 
QP 

) were varied in the fitting pro- 

cedure. Thus, the fits obtained are within the context of a given model of 

production, and the particular choice for ho (ka) stated in Eq. (6.36). In 

addition, a definitive treatment of the K7rx system would require the consider- 

ation of other JM states, a fit to the K- data as well, the possible inclusion of 

direct production, and an adequate treatment of nonresonant features such as 

the t-dependence of do/dM3 dt. All of these aspects are presently being 

studied, and will be presented in a paper devoted exclusively to the Knlr sys- 

tem. Despite the preliminary status of this work, however, it appears very 

likely that the present conclusions will hold up, unless direct production is 

very significant. In any case, our general points concerning the utility of this 

approach, and the likely importance of vertex and subenergy effects, are 

independent of the specifics of this reaction (e. g. , the masses and widths of 

the Q mesons). 

We shall deal specifically with the SLAC experiment at 13 GeV/c. 27 The 

relevant data have been analyzed by several independent groups, and the 

present consensus is that two Q mesons exist in the mass range 1.2 to 1.5 

GeV. 28 Thus, the experiment appears to require a state Q2 (1.39) decaying 

almost entirely to K*r ( P2 -160 MeV), and a state Q (1.30) coupling principally 

to pK (I’ -200 MeV). This explanation invokes both direct and Deck-like 
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production, and is based on an isobar-model treatment of the rescattering 

effects . In particular, subenergy dependence is entirely neglected, as is the 

effect of structure functions at the Deck vertices. 

For our purposes, the relevant experimental facts consist of the isobar 

“cross sections” do(K*n)/dM,dt and da(pK)/dM, dt (i.e., the cross sections 

which correspond to including only a single isobar channel in the total ampli- 

tude), and the “relative phase” A$ f $ (pK)- Cp (K*r ) between the respective 

isobar amplitudes. This set of “data” is convenient to work with, and affords 

an easy comparison between our results and those quoted above. However, our 

formalism should really be applied directly to the data, and a comparison at 

the present level cannot be entirely precise. The reason is simply that the 

original fitting procedure from which these “data” derived explicitly assumed 

zero subenergy dependence, and the “cross section” dc(K*a)/dM, dt is 

actually calculated using the fitted isobar amplitudes. Thus, if our treatment 

were applied to the data, the resulting “cross section” we would compute 

would be somewhat different. In the present application, since the p and K* 

are relatively narrow, this should not be too important, but a comparison with 

E and K might cause some problems. Similarly, the definition of ‘*relative 

phase” in our treatment is ambiguous, since our “isobar” amplitude is 

actually a function of subenergy. Relying again on the narrowaess of the iso- 

bars in this instance, we adopt the convention that A+ is computed by simply 

setting MPr= NZ~ , but this would not be satisfactory in general. 

With this understanding, we have applied the approximate three-body 

treatment of Sec. VI. B to the production model with ng=O, various choices of 

nfg Pan=.% I.c~+ = .3 in the conventions of Sec. V. Thus, the cross sections 

in the absence of rescatterings (resonances) are those show.n in (nf =2) Figs. 
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13a, 13b. Employing the simple parametrization of Eq. (6.32), this leads to a 

sevea parameter model, including normalizations N pK’ NK*, of the produc- 

tion term. Specifically, since we expect some coupling of Q (1.30) to KNIT, we 

take (channel 1 =pK, channel 2 =K%) 

s12 = s21 = sll 
(7.1) 

with All, h12, h21 given by Eq. (6.32). The five parameters determining 

X (0) (0) 
Q!P are thus sll , s22 , All , h22, P, . The full sevea parameters are 

determined by a standard x2 fitting routine using the three “data” sets dis- 

cussed above. As a technical aid, we note that the differential cross sections 

can be expressed in the form 

du (a) = 
dM3 dt ;k’ Ckk’ a (h’+;b;: , (7.2) 

where c o! kk, is an Hermitian matrix, and is computed using the subenergy 

expansion set $F of Eq. (5.6), and the relevant denominator function DQ! (so). 

This array is stored, and hence da can be rapidly computed given the b: from 

Eq. (6.40). 

Initially, an attempt was made to reproduce the Q,, Q2 fit described in the 

literature. Thus, the choice nf = 1 produces a “Deck” amplitude which is 

virtually identical to the isobar version; this model was employed along with 

the X ap parametrization of Eq. (7.1). The success of this fit depends on 

production-resonance interference to suppress the (relatively flat) Deck term 

inK*r at M3z 1.4, together with a significant direct coupling to the Q2 
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resonance at 1.4 GeV. However, in the absence of a direct production term, 

such a fit could not be obtained with our model; theK*r intensity and A+ 

constraints were basically incompatible. On the other hand, the inclusion of 

vertex corrections in our approach permits us to obtain a totally different type 

of fit. Thus, by using a three-body vertex function which suppresses the large 

M3 tail of the K*n distribution, the correct behavior of A$ can be obtained via 

the “natural” trend for $(pK), with $(K%-) comparatively small and flat (the 

cross section for pK is always easy to fit). The only drawback to this alterna- 

tive is that such vertex functions also move the “Deck” peak to lower M3, 

destroying the agreement of o(K*n) in that region (see, e. g. , Fig. 13. b). 

This fact was noted by Bowler in his attempts to construct a one-resonance (Q,) 

fit to the data; 28 he subsequently concluded that two Q’s were essential. 

In our case, we chose nf= 2, and performed a x2 fit using all but the two 

highest mass points in the K*n intensity (we return to this poi.nt below). This 

actually produced a rather good fit, but turned out to be physically unacceptable; 

i. e. , (0) the parameter h22 came out to be negative (h22 N - 2.2 GeV2), pro- (0) 

ducing a pole on the wrong sheet (s = sr+ if/2 ). The origin of this problem is 

that we require a suppression of the low M3 K*n cross section to compensate 

for the effect noted above. Since Rep,! (K?Yr)< 0 in that region, we see from Eq. 

(6.43) that h22 must be positive for M3 inthe range 1.0-1.1 GeV(Mi<s22- 

(0) 1.28 in the fit); thus ~~~ < 0. 

On the other hand, there is no cogent reason a priori to restrict the X 
QP 

parametrization to the K-matrix form; i. e. , to impose a simple Breit-Wigner 

pole. In fact, the present author has pointed out several examples of more 

complicated effects which are naturally indigenous to three-particle systems. 798 

In particular, it was recently proposed that an unusual singularity at M3 = 1.18 
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in K*n could be connected with a Q9 resonance (the corresponding A, effect is 

at 1.1 GeV); 29 
Y I 

this would not correspond to a simple pole. Fits incorporating 

will be reported elsewhere; we restrict ourselves here to the that singularity 

simpler choice 

(7.3) 

with h(,ol> 0. If one ignores the (small) coupling p2 , this leads to 

x22 (PTr) = - A(Zoi (4 - s22) . (7.4) 
1+ h&) (M; - s22 ) p2 (K*r) 

Although this does produce an acceptable pole oa the correct sheet, it clearly is 

not of the Breit-Wigner type. In fact, if s22 is not far from the pole position, 

the behavior of X22 (l&r) is similar to that of by in Eq. (6.43), with a nearby 

zero on the real axis. We emphasize that there is no fundamental reasoa to 

reject this form. Moreover, its unusual properties are highly suggestive with 

respect to some mysteries concerning the Al. In particular, an A1 pole of 

this type would not result in a peak in pr scattering, and hence the absence of a 

signal in processes initiated by p-exchange (e.g., rp4 AlA) would be 

automatic. 30 

In the present case, the use of Eq. (7.3) immediately solves the problem, 

and the resulting fit is illustrated in Figs. 16a- 16c (dashed lines). The cor- 

responding parameters are given in Table II. The fit to the pK intensity is 

clearly excellent, but does not represent much of a feat; almost any production 

model attempted yields a virtually unique curve, with almost identical results 

for the hlo1), sll fit parameters. The K?? intensity is generally superior in 

the range M3z 1.45, and even manages a number of wiggles which may or may 
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not be realistic in the data. Its principal failure is clearly at high M3 , where 

it cannot reproduce the very rapid drop of the “data”. Since the corresponding 

K?n amplitude is virtually pure production in that region, another calculation 

was performed using a Gaussian vertex function. Recalling Eq. (5.7), this 

fit uses 

(7.5) 

with ppK= .52, %.+T=. 46 GeV, and is represented by the solid line in Figs. 

16a-c. With respect to K*r , this clearly yields a significant improvement at 

large M3 without producing much change anywhere else. Taken together with 

the variations with nf shown in Fig. 13b, this suggests that a vertex shape 

could be found to fit the data precisely. Physically, the K*r distribution would 

then be a direct reflection of the structure function for K (KYUT) , and not the 

signature of a resonance as interpreted in the Q2 (1.4) fits. At this point it 

does not seem worthwhile to explicitly construct such a function, particularly 

since the underlying isobar analysis could be misplacing the content of the 

various isobar channels in this mass region. In this context we note that the 

total l+ 0 + cross section exhibits a break above 1.45 GeV very much like 

that of our curves, with the corresponding cross section difference attributed 

to EK. 
31 

With respect to the A+‘s produced by our fits, the agreement is compa- 

rable in quality to the published analyses, and such discrepancies as exist are 

insignificant given the above-noted ambiguities in defining the relative phase. 

In addition, however, the curves exhibit a small-M3 behavior which has not 

previously been obtained in such fits. In fact, past analyses have simply 

thrown away the values of A+ for M3 < 1.2 GeV, on the grounds that the very 
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small pK cross section in that region makes A$ intrinsically unreliable. 28 

Although this argument certainly has merit, it is nevertheless true that all of 

the experimental fits reported exhibit the trend displayed in Fig. 16~. Unfor- 

tunately, this behavior is very difficult, if not impossible, to obtain within the 

context of the isobar model, and certainly not using simple Breit-Wigner poles. 

In our case the essential ingredient is the inclusion of the subenergy depend- 

ence; i. e. , retaining terms beyond k=l in the expansion of Eq. (5.5). Indeed, 

if we calculate A$ using the same fit parameters, but keep only by, we 

obtain the dashed curve in Fig. 17 (shown with the usual case k (4 for compar- 

ison). The possibility of obtaining this behavior is therefore linked to the 

subenergy dependence. In addition, of course, the fitting parameters have to 

have a certain character. Thus, the appearance of this trend in our fits is a 

direct consequence of the low mass pole we obtain in the I&r channel. Specifi- 

cally, we have used the above formalism to define an an.alytic continuation of 

X 
aP 

to the second sheet, and by this means established the pole positions 

conclusively. Using the notation Q (MR, IR), where the pole is at JsR = 

MR-iTR/2, our current results yield the values Q1(1.30, 0.16) and Q2 

(1.15, 0.24). The former is clearly in good accord with the results of the past 

analyses; the latter has a.very different character. 

We conclude this section with an example which displays the sensitivity of 

production-resonance interference to postulated subenergy dependence. Thus, 

in Fig. 18, we note the effect of replacing M 
PY 

in the pK channel (solid curve) 

with HE a! = Mp (dashed curve); all parameters have been held fixed. This substi- 

tution clearly produces a dramatic effect in the normalization; if this is scaled 

down there is still an appreciable difference in the shape. A similar calcula- 

tion for K*r yields a much smaller effect, on the order of lo-15%; in part this 
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is due to the narrower K* width, but the most important factor is apparently the 

nature of the interplay between the production mechanism and the resonance. 

VIII. SUMMARY AND DISCUSSION 

In the preceding sections we have dealt with a great many topics relevant 

to our central theme of diffractive production and rescattering. In fact, we 

have gone considerably beyond that particular application, introducing both a 

formal framework for calculating a large class of production models, and a 

varied set of mathematical techniques for analyzing any three-body final state. 

Our intention in this final section is to briefly summarize our principal results 

and coaclusions, and to conclude with some specific suggestions of a practical 

nature for experime.nta.l analysis. In particular, we wish to stress the 

following points: 

(1) A consistent set of rules has been introduced for the relativistic n-body 

scattering problem. Expressed in a manifestly covarient form, the theory 

satisfies the cluster property explicitly; this property is violated by virtually 

all relativistic equations in the literature, including all forms of the relativistic 

Faddeev (three-body) equations. In addition, the relativistic free propagator 

thus proposed guarantees that the singularity structure arising from one boson 

exchange will be exactly reproduced. Again, this is not the case for current 

theories, and could be an important feature for applications at intermediate 

eaergies; e.g. , to describe NN-NN and NN-.NNT in the context of an explicit . 

three-body (NNT) theory. 

(2) When applied to a three-particle system, our scattering formalism 

defines an alternative to the current relativistic Faddeev equations. In addition 

to the propagator difference noted above, the equation possesses an automatic 
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and unique cut-off; this eliminates the need for ad hoc procedures and/or form -- 

factors in obtaining convergence (the equation is manifestly of the Fredholm 

type). As an example, we have presented explicit equations for the case of a 

separable s-wave interaction. 

(3) A modification of our relativistic three-body equation has been introduced 

for the purpose of data analysis. The resulting formalism permits one to 

construct exactly unitary rescattering corrections for any three-body final 

state, and in such a manner that the technique can be utilized within a x 2 

fitting program. Although less general than a comparable technique previously 

proposed, ‘z the new proposal is considerably easier to apply and to interpret 

physically. 

(4) As a simple application of our formalism, we have considered the ques- 

tion of production-resonance interference. Our results confirm those of 

Aitchison and Bowler, 9 and indicate that dramatic interference effects are 

more the rule than the exception. In our treatment the controlling factor can 

be isolated, and is identified as the difference in off-shell behavior between the 

production and decay amplitudes. In the special case of diffractive three-body 

production, this translates to the difference in the subenera,dependence of the 

Deck and resonant amplitudes. The importance of this effect has been illustra- 

ted via our numerical results for the Kn7r system. At the two-particle level, 

the result is best summarized by noting that the total amplitude behaves more 

like cos (6) exp (i6) than sin (6) exp (i6). The nature of our scattering treat- 

ment is such that this behavior tends to emerge automatically. 

(5) Our formalism has been applied to construct a generalization of the Deck 

model for diffractive production, including vertex form factors at the two- and 

three-particle vertices. In particular, a complete set of formulas for calcula- 
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ting such models and the corresponding cross sections have been presented in 

detail. Via an obvious modification of the vertex amplitudes, these formulas 

can be immediately applied to non-diffractive processes such as 7rp4Al A, 

Kp-AlA, etc. In fact, the unknown parameters introduced by our generalized 

description will ultimately be over-constrained by successive applications to a 

great variety of reactions governed by the same rules (and parameters). Thus, 

the definitive test of our approach will be its ability to simultaneously account 

for a heterogenous assortment of data; given our current experience with the 

AlI this is no small challenge. 

(6) Within the context of our production model, we have investigated the 

nature and importance of subenergy dependence, and the effect of vertex struc- 

ture on the differential cross section. In particular, we found that introducing 

structure at either vertex implied a considerable dependeace of the isobar 

amplitude on the subenergy. Taken in conjunction with the dependence (implied 

by unitarity) which arises from rescattering,3 this result re-emphasizes the 

need for properly taking this degree of freedom into account. In fact, even for 

the relatively narrow isobar states (K*, p ) considered in our numerical 

examples, it was found that significant effects can occur, particularly with 

respect to the rather subtle interplay between the production and resonance 

terms (see, e.g., Fig. 18). 

It was also found that the introduction of a form factor describing the dis- 

sociation of the incoming meson into the three-body state can have dramatic 

consequences for the differential cross section. In fact, one may easily simu- 

late a resonance-like peak when this is combined with a sharply rising phase 

space. This effect can thus lead to the misidentification or misplacement of a 

resonance, a fact which is well illustrated by our numerical treatment of the 
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l+O+K 7r7~ system. 

(7) Motivated by the simplicity and physical appeal of the isobar concept (as 

opposed to a true three-body approach), a generalization of the isobar tech- 

nique has been introduced for use in three-particle data analysis. The proposed 

form includes some of the true three-body cut structure, and avoids the cusp- 

like behavior associated with the artificial isobar “thresholds”. Thus, while 

rigorously approaching the isobar model in the zero width limit, the general- 

ized model results in smoother, more realistic cross sections, and is much 

better suited for applications to broad “isobars” such as the E . At the same 

time, it is equal to the naive isobar model in practicality and simplicity. The 

utility of this approach is evident in our Knr analysis. 

(8) By employing strong vertex corrections associated with kaon dissoci- 

ation, our approximate (isobar) treatment achieves a rather good fit to the 

l+O+ state of K7r7r generated by the reaction K+p ,K+n+ 7r -p at 13 GeV/c. Ln 

contrast to the conclusions reached in previous analyses, 28 the state Q2 

(coupling predominantly to K*n) is found to occur at 1.15 GeV, and not at 1.40 

GeV. It is furthermore associated with an amplitude suggested by some recent 
30 theoretical work ; this does not correspond to a simple Breit-Wigner repre- 

sentation. Assuming a similar effect in the A1 system, this would translate to 

an Al of 1070-1100 MeV in terms of its pole location, but would @ give rise to 

a peak in pr scattering. It would thus not be seen in processes dependent on 

o-exchange (e. g. , ro- AlA), but could coincide very nicely with the effect 

recently seea in T -decay. 33 This result thus has some rather appealing 

features, but is as yet premature in the sense that a description of all the 

relevant K7r7r data has not been attempted. The requisite work is in progress, 

and a paper dealing specifically with the Q mesons should be forthcoming in the 
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near future. With this understanding, we quote the results to date as M = 
QI 

lw3” rQ1 
= .16; and MQ2 = 1.15, rQ2= .24. 

Whether or not this interpretation ultimately proves viable for this parti- 

cular system, this example provides an excellent illustration of the kind of 

effects one must consider when vertex corrections are taken into account. Our 

analysis also offers an explanation for the behavior of the relative phase $(pK) 

- 4 (IPr) below the pK threshold. Thus, as a consequence of including the 

subenergy dependence (and having a low mass Q2 state), A$ starts off near - 

-180’ at 1.04 GeV, rather than at 0’. Such behavior is quite anomalous from 

the standpoint of the standard isobar model, and hence the A$ data below 1.2 

GeV has invariably been discarded. In our treatment, however, it emerges in 

a very natural way. 

(9) As an interesting byproduct of our development, we have been forced to 

discard the physical picture in which the meson decays into three particles, two 

of which subsequently interact to form an isobar. This view of the dissociation 

process is not compatible with the mass-dependence of the diffractive cross 

section, as we have shown. Instead, one must postulate a (sequential) decay 

of the meson into an isobar-spectator, with the isobar subsequently decaying 

into the observed two-particle state. This would appear to give increased 

credibility to the quark model viewpoint of the isobar as an elementary particle. 

Finally, in the course of verifying this result numerically, we were forced to 

construct a model three-body decay amplitude with some useful properties for 

future applications. 

In conclusion, we consider a simple recipe for incorporating the primary 

effects we have investigated in a model suitable for data analysis. Thus, we 

wish to include both subenergy effects and the possibility of suppression at high 
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mass due to vertex corrections. To take into account the latter, we make use 

p= of the approximate factorization found in our calculations, and thus set TV 

Bpo (Mpr ) F (M3 ). The function F (M3 ) then appears as an overall multipli- 

cative factor for the entire amplitude, T = 2 TV . In particular, one might take 

F(M3)= exp( - 4 /M2), and vary MO as a free parameter. To handle the 

subenergy depe.ndence, we rely on our observation that BE (M 
Pr 

) is readily 

approximated by a low-order polynomial in M 
Pr * 

We thus expand BE (Mb) = 

2 kb;‘P d’; Wpr , g3 ), where $ is fixed at the upper end of the relevant 

three-body mass interval (e. g. , %I3 = 1.6 GeV for the Kr7r problem). Instead 

of committing ourselves to a model for the production mechanism, we consider 

the biip as free parameters (for the diffraction process they can be taken as 

pure imaginary). Similarly, we take the coefficients c:, defined previously by 

Eq. (6.41), as free real-valued parameters. Employing Eqs. (6.35), (6.39) 

and (6.40)) we then obtain 

63.1) 

o&M )=X I@ 3 k&t ,f(M3)Cf:C:r ’ 

Thus, by computing and storing c 
k, (M3 ) (for the necessary discrete set of M3), 

a;P o! one can rapidly compute p, and Ia! for a given set bk , G k . The array 

xo!p (IL23 ) is then computed via the (reso.nance) parametrization A ap (M,) from 

Eq. (6.31), and bz(M3) is calculated from Eq. (8.1)‘. Finally, one forms 

&= Ba ‘Mp $ F t% ), where Ba is computed using the coefficients b: (M3 ). 
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Alternatively, for fitting to the isobar “cross sections” o (cY), one can simply 

work with Eq. (7.2), using bitbE (M3) F(M3). 

The technique so defined appears extremely easy to work with, and allows 

one to freely vary the subenergy dependence of the production (bEiP ) and 

resonance (CL) terms in the fit. Furthermore, since the CE’s and b:ls have a 

fixed phase, one can go beyond the isobar model (to the level of linear M 
Pr 

dependence) at the expense of two real parameters per channel. In fact, since 

it is the difference in subenergy behavior which is most crucial, one might pick 

either Ct or bi ‘p = 0 and work with a single real parameter. Applications of 

this technique are now being studied. 

In conclusion, it should be noted that a general computer code for imple- 

menting the approach discussed in this article has been developed, and is 

available to anyone who might be interested in employing these techniques. The 

author also wishes to express his appreciation to Dr. Thomas A. Lasinski for 

many helpful and stimulating discussions during the course of this work. 
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TABLE 1. 

Elastic Scattering Parameters 

System a (GeV/c) -2 p (GeV/c)-3 r; t tmb) y (mb [GeV/c] $ 

K+P 2.38 0.437 17.4 0.0 

K-P 7.60 0.000 17.1 17.1 

r+P 6.24 0.141 21.3 11.2 

T-P 7.52 0.030 21.3 17.6 

TABLE 2. 

K7r7r Fit Parameters (l+O+) 

VPe 

sll s22 
hffj p2 hg 

NpK/4~ NK*lr/4s (GeV/c)’ (GeV/c)’ (GeV/c)’ (GeV/c)’ (GeV/c)” 

n =2 f 2.92 2.36 1.93 1.46 7.22 0.154 9.05 

Gaussian 4.82 1.82 1.93 1.70 7,16 0.190 6.42 I 
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FIGURE CAPTIONS 

Series of diagrams defining T, for (a) an isolated m-body system, and 

(b) in the presence of n-m non-interacting particles. 

(a) The Feynman diagram for one-particle exchange. (b) and (c) The 

equivalent RST diagrams. (d) Scattering process related to the RST vertex 

a+e -9 c. 

(a) Production diagram leading to the two-particle final state (k,, k2). 

(b) Production followed by rescattering . The latter is characterized by 

the off-shell amplitude t12 . 

(a) “Sequential” production model; the isobar kR decays into the observed 

final state (k p, ky’. (b) Production of a true three-body state (kk, kb, k;l) 

followed by the interaction (t,) of ,6’,r ‘. The latter precedes the inter- 

action (t,) of a1 with particle i. (c) Production of the three-body system 

without rescattering. (d) Production with t2 preceding to. Diagrams (c) 

and (d) together constitute the “simple” production model. 

The RST diagram which, together with Fig. 4a, reproduces the Deck 

amplitude . 

Isospin conventions for the production model. In general, ij is the particle 

isospin, and pj the third-component of isospin; Iol is the isobar isospin. 

(a) Diagram corresponding to the three-particle vertex (simple model). 

(b) The two-particle scattering process associated by crossing. 

(a) Diagram defining the sequential three-body vertex. (b) The associated 

crossed diagram, representing scattering via the isobar of mass da. 

(a) The “fixed” coordinate system defined by the vectors Ei,zi,cf in the 

three-body c. m. (b) The “Q” coordinate system defined by the vectors 

E l? E in the three-body (a/37) c.m. 
a’ P’ Y 

The vector notation corresponds 

to Fig. 4a. 
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10. Subenergy dependence of the isobar amplitudes 7; defined in Eq. (5.4) for 

M3=1. 5 GeV. The l?OT amplitudes associated with pK and K*n are shown 

in (a) and (b), respectively. The solid, dashed, and dashed-dot curves 

correspond to the respective.choices ng=O, 1, -1; the curves are arbitrarily 

normalized to unity at the isobar mass. 

11. The differential cross sections corresponding to (a) pK and (b) K*r for the 

parametrized production model, The curves correspond to ng=O, 1, -1 

according to the conventions of Fig. 10. The pK cross sections have been 

arbitrarily normalized to the value 0.5 mb/GeV3 at M3=l. 28 GeV; the 

K*n cross sections are normalized to 1.0 mb/GeV3 at M3=l. 34 GeV. 

12. Subenergy dependence of the isobar amplitudes for M3=l. 5 GeV. The l+O+ 

pK and K*r amplitudes are shown in (a) and (b), respectively. The solid, 

dashed, and dashed-dot curves correspond to nf=l, 2,0; they are normalized 

to unity at the isobar mass. 

13. The differential cross sections for (a) pK and (b) K*n for nf=O, 1,2 according 

to the conventions of Fig. 12. The normalizations have been adjusted as in 

Fig. 11. 

14. (a) Schematic representation of production leading to a two-particle interaction 

(or isobar) t,,. (b) Production plus three-particle rescattering, culminating 

in interaction t o1. (c) Integral equation for the three-body operator T3, 

15. Real (dashed curves) and imaginary (solid curves) parts of p, (M3), as 

defined in Eq. (6.35). Using the parametrization of Eq. (6.36), the results 

shown in (a) and (b) correspond to pK and KNIT, respectively. 
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16. Fits to the l*O’ state of K+r+r-. The solid curves correspond to the 

production model ng=O, nf=2 and the resonance parametrization of Eqs. 

(7. l), (7.3), (7.4); the dashed curves correspond to ng=O and the Gaussian 

vertex function of Eq. (7.5). Results are shown for (a) the K*r intensity, 

(b) the pK intensity, and (c) the relative phase $(pK)-$(K*7r); experimental 

points are taken from Ref. 27. 

17. The relative phase corresponding to the Gaussian fit of Fig. 16, calculated 

with four terms in the subenergy expansion (solid curve), and with just a 

single term (dashed curve). 

18. Comparison of the Gaussian fit to the oK intensity (solid curve), versus 

a calculation (dashed curve) using the same fit parameters with the subenergy 

fixed at the p mass (M p r=Mp) * 
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