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. I  REMARKS ON THE TOPOLOGY OF GAUGE FIELDS* 4r 

Y. Nambu? 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

In contrast to the short distance behavior of quantum chromodynamics 

(QCD), which is within the scope of perturbation theory and thus can be 

subjected to quantitative tests, the large distance or strong coupling regime of 

&CD is not well understood yet even qualitatively. An overriding problem of 

interest in quark confinement, and various theoretical schemes have been put 

forward to show that the quarks can indeed be confined. These schemes, though 

varying from one to another in detail, rely on the idea that the growing coupling 

constant at large distances plays a key role. It is not clear yet, however, 

whether confinement is a natural consequence of &CD alone, or it requires some 

independent and extraneous assumptions. 

(Introductory remarks made at Orbis Scientiae Conference, 
15-20 January 1978, Coral Gables, Florida. ) 

*Work suppo rted in part by the Department of Energy and the Guggenheim 
Fellowship. 

“fOn leave from the University of Chicago. 
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Another important aspect of gauge fields is the existence of topologically 

nontrivial configurations such as vortices, monopoles and instantons. They may 

be regarded as natural consequences of gauge physics. Most likely these 

configurations also are crucial to the understanding of confinement as is claimed 

by a number of recent papers. For this reason I have planned this session to be 

organized mainly around the topological problems. 

My own remarks on these questions will be very brief: 

1. Action versus Free Action 

There is a formal analogy between statistical mechanics and the Feynman 

formulation of quantum field theory, which seems to become especially relevant 

in gauge theories. This analogy was emphasized by the Princeton group’ who 

made use of the concept of entropy. Let us write down the Feynman integral (in 

the Euclidean form) for a gauge field 

where the coupling constant does not enter the definition of F 
PV * 

The functional 

measure is not clearly defined, but we intend to integrate over the AP without 

imposing special gauge conditions. For a given value of the action, there is a 

corresponding phase space volume which we write symbolically as exp S : 

Z = exp 
/ I 

- -+I+ S (I)) d1 
g 

= exp [ - ‘o/92) , 

0 “(I - g2 S)min . 

(2) 
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Let us call 0 free action in contrast to the action I. In principle, we 

should minimize 0 rather than I, and this difference could become important CI 

for large g2, which plays the role of temperature. 

This statement takes on a real significance when the topology of gauge 

fields is considered. Suppose we start from the lowest value of I, i. e. the pure 

gauges: F 
PV 

= 0, I = 0. This part of phase space can be parametrized by a 

unitary matrix field u, 

Ap = iu’apu , u+u = 1 Pa) 

The field u, however, may be topologically non-trivial. For example, choose 

u =7,xp//xI , Tp = (5’9 i) (3) 

in the case of SU(2) theory. Then u becomes singular at the origin, and F and 
PV 

I cannot be identically zero since the Pontrjagin index 

1 
2 

Tr FVvFpvd4x = 
J s 

Q dS 
P P’ 

Qp = - $ Tr u+~~u~~u+~~uE tivhp 
(4) 

is computed to be nonzero. Thus we might say that pure gauges are not a well 

defined concept, or the entropy cannot be defined for given I, at least not for 

I = 0. There seems to be a sort of uncertainty principle between I and S due to 

topology. Clearly this is related to the Gribov problem2 and Singer’s 

observation3 of its generality. At any rate we are forced to enlarge pure gauges 

to their neighborhood which I will call almost pure gauges. It is conceivable 

that for large enough g2 the gain in S by including various topologies can out- 

weigh the cost of larger I, thus actually owering the free action. Then the 

topology-averaged field configurations which minimize the free action may 
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deviate substantially from the naive classical configurations which minimize 

oqly I. 4r 

2. A class of almost pure gauges. 4 

It is both natural and convenient to consider the following class of almost 

pure gauges 

AP = ifu+au (5) 

where f is a scalar function which vanishes at the singularities of u, The 

topological characterization of a singularity will not be altered by this if f-l in 

a region surrounding it. From Eq. (5) we obtain 

F 
PV 

= f(l -f):avu+avu+ apfu+avu - (cl-~). 

It is not surprising that this class of configurations cover various known 

examples of nontrivial topology such as instanton, meron, monopole, and string. 

A more interesting point is that we can generalize Eq. (5) further as 

Ap = ix 
i 

f$a U. . 
Pl 

The many-instanton solution of *t Hooft (in the singular gauge) is indeed of this 

form. Furthermore, Eq, (7) can be written as a London relation5 

N 
AP= hJP =Ay, J. 

i=l 11-1 9 

J. = ih.u”D u 
l/J . 1 i -1-1 i 

where 

DPu = aPu+iuA 
P 

, (8) 



fj and hi are related by 

4r fi = hhi/(l + hZhj) . (9) 

Then a simple superposition principle holds for the currents J. V 
to generate 

many instantons, and the total curre.nt is conserved: DP JP = 0. It might also 

be instructive to observe that Eq. (8) can be further simplified if JP is defined 

in terms of a 2NX2 rectangular matrix U: 

U = Zbhi’ui (assuming hi2 0), U+U = (Zhi)l , 

JP = + [ U+(DPU) - (D,v+) U] . (10) 

U has a guaged SU(2) symmetry acting from the right, and a global SU(2) X SN 

symmetry acting from the left which may be generalized to SU(2N). These two 

are independent, like color and flavor. 

3. A remark concerning the Wilson criteria. 

The Wilson criterion is widely used to test the confinement property of a 

theory. In the context of functional integration, one evaluates 

( i w =cwpi , 

W = Tr exp[i$APdxP] J (11) 

where pi is the weight of a configuration i. In general Eq. (11) is expected to 

yield an asymptotic form 

-sew ]-XL] *bexp [-PL”] + .., n>I (12) 

where L is the linear dimension of the Wilson loop. What I would like to 

emphasize is that to prove confineme.nt, one must first show the absence of 

configurations contributing to the first term rather than the presence of 
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co,nfiguratio.ns contributing to the second term. I suppose that the former task 

is more demanding and difficult than the latter. 
- 
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