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ABSTRACT 

A covariant model of the electromagnetic form factor of the deuteron in 

the impulse approximation is presented. The treatment includes spin and 

allows for a complete determination of the two elastic structure functions. Our 

results are in good agreement with experimental data. 
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1, INTRODUCTION 

The study of electromagnetic form factors of bound states at large momentum 

transfer constitutes a powerful tool in determining its degree of compositeness and 

underlying dynamics 0 This fact has been known for some time, and the dimensional 

counting prediction for n elementary constituents Fn - (9 
2 l-n 

) appears to be 

consistent with experiment for a range of bound states starting with pions (n = 2) 

up to light nuclei such as He4 (n = 12). ’ For the nuclear case an alternative yet 

complementary explanation for this behavior has been given in terms of the short 

distance characteristics of the nucleon-nucleon force. 

Schmidt and Blankenbecler in Ref. 2 developed a model with scalar nucleons, 

which was fully relativistic and which incorporated in a very simple form the short 

distance behavior of the nucleon force. In particular it was applied to the deuteron 

case, and predictions were given for the He3 and He4 form factors. 

In the present work we have extended the previous ideas on the deuteron 

form factor to include spin. This enables us to describe the two elastic structure 

functions corresponding to charge-quadrupole and magnetic scattering., The paper 

is organized as follows: In Section II we present our model and give all necessary 

formulae. Section III is devoted to a numerical analysis and comparison to 

experimental data and finally our main conclusions are exposed in Section IV. 

An appendix contains those detailed results of calculations which we do not include 

in Section II. 
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II. DEUTERON FORM FACTOR 

We shall write the covariant decomposition of the elastic form factor of 

the deuteron as:3 

Gp (q2) = J&o CD’! j” ID> 

= Gl(q2)({*o*)d’+ G2(q2) t’(S”‘q) - t”(5.q) I (20 1) 

- G 3 
(q2) t’qt*“q do 

2M2 I 

where 5 and {‘are the polarization vectors for the incoming and outgoing 

deuterons of momenta D and D’ (see Fig. 1) satisfying the conditions 

and 

t.D = t’.D’= 0 , 

dp = D’p.DDI-1 > qp = D’p - DI-1 
(2.2) 

M stands for the deuteron mass and e the electric charge. Gl, G2, and G3 are 

Lorentz scalar functions of the invariant momentum transfer q2 of the problem. 

IIa. IMPULSE APPROXIMATION 

In this approximation the deuteron is coupled via strong interactions only 

to the two nucleon channel, so that the electromagnetic elastic vertex will be 

described by the diagram depicted in Fig. 1. Conventional Feynman rules give 

for this diagram4 

f’ (k, k +q) 

(20 3) 

where Aa@,pl) is the Bethe-Salpeter (B-S) vertex that describes the covariant 

coupling of the deuteron to two nucleons arbitrarily off mass shell. 
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In the previous equation fP (p ,p’) is the elastic electromagnetic vertex of 

the nucleon and m is its mass. We will carry out one of the four integrals in 

eq. (2.3) using a very convenient method developed by M. Schmidt. 5 

First of all let us introduce Brodsky’s parametrization of the vectors of 

the problem 
2 2 

D+&q,D-g 

(2.4) 

k= 

With the momenta written this way one gets 

(2.5) 

where k 2 and x run from -00 to +% 

Now the integral over k2 can be carried out directly since only the singularity 

coming from the pole in the propagator of the non-interacting nucleon contributes 

to the integral. This occurs because the poles from the other two propagators are 

always in the lower half k2 plane. For x values between 0 and 1 however, the pole 

is in the upper half plane and one finds that 

d2kjjix 1 1 

zx (k + q)2- m2 k2- m2 

Tr ?(D-k)[$-$ 
I 

+m fP(k, k + q) gf+m ra(k) ] [ I (2.6) 
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with the additional condition 

‘k2 - -& 2 k: M2(l-x)-m --x- 
1 

The functionro(p) was introduced by Blankenbecler and Cook’ and results from 

12 ho(p, p’) when p =m2, i. e. it is the B-S vertex (deuteron- two nucleons) 

with one leg on shell, and describes completely the deuteron structure in the 

approximation we are working in. The most general form for these functions 

is given by 

rCY(p) = F(p2) Yo- 7 p - G(p2) Q! M -b 
2 

M [H(p2) Ya- w pcy 1 (2.7) 

IIb. THE MODEL 

Having presented our basic mathematical framework we next turn to the 

actual construction of the model. As a first step we will restrict ourselves to 

the use of the functions F and G in the B-S vertex. This we justify by noting that 

in the on mass shell limit the functions H and I do not contribute. However if 

we proceed strictly in this way and try to compute the form factor in Eq. (2,6), 

we obtain a non-gauge invariant result, being the gauge-invariance violating 

terms of the order of the binding energy. Since the H and I contributions to the 

amplitude are of this same order, it is clear that one can choose the functions 

F, G, H and I related in such a way that gauge invariance automatically follows. 

An alternative and equivalent way to obtain a gauge invariant amplitude is 

to use only functions F and G and the substitution rule 

k--+Dx -$(l -x) (2.8) 

under the integral sign in Eq. (2,6), L 

This rule is also implicit in the gauge invariant scalar form factor of the 

deuteron. In fact, in this latter case5 
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F(s2)(2D + 9) 

and by a trivial use of (2.4) we obtain 

W2) = 

(2.9) 

(2.10) 

so that the rule (2.8) is obviously fulfilled. We do not explicitly have to choose 

the H and I invariant functions using this method. 

In the Appendix we collect all formulae derived from the computation of the 

trace in (2.6) and the use of (2.8). 

Having established how to deal with gauge invariance we now make a choice 

for the functions F and G in the B-S vertex. It is known that the nonrelativistic 

limits of F and G are4 

F 

k2-m2 
-*u 2k 

Oa- 
(2.11) 

G 3M2 w2 --- 
k2- m2 iz2 fi 

where u. and w2 are the usual phenomenological S and D wavefunctions of the 

deuteron in momentum space. 

We are now prepared to make a definite relativistic ansatz for F and G. 

For u. this has been done by Blankenbecler and Schmidt. 2 Their result is: 

No(x)(l - x)I + I 

u. - (k;+M!$x))(k; ,+M2(x)+c$) 
(2.12) 

where M2 (x) = m2 - x(1 - x)M2. 

In the same philosophy we generalize the w2 wavefunction to be: 

w- 
N2(x)( 1 - x)I + 2(kF +M2(x) - me ) 

2 (kf +M2(x))(kf +M’(x)+$)~+’ 
(2.13) 
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This we achieved by generalizing the simple effective D-wave 

-2 k 
w2 N (me+kF)3 

where E is the binding energy of the deuteron. The choice of the power I in the 

wavefunctions is dictated by the underlying dynamical interactions one assumes. 

In the scalar case2 this underlying dynamics was taken to be the exchange of 

vector mesons with monopole form factors at each vertex. We assume the same 

mechanism to take place. We therefore choose the power I = 4. This is also 

the value dictated by the familiar counting rules in quark constituent models ., 

In this way we reproduce the large q2 behavior of the deuteron form factor 

predicted by those models 0 1 

III. NUMERICAL RESULTS 

To make contact to the experimental data we first define the three “physical” 

form factors in terms of the GI, G2 and G3 form factors given in the text. 

2 
Gc= Gl-- 

6i2 GQ 

GQ= G (3.1) 

GM= G 2 

Their experimental values at q2 =0 are: Gc(0) = 1, GM(O) = 1.71 (inunits of 

e/2M) and G Q (0) = 25.84 (in units of M -2)a Hence the values at the origin for 

Gl, G2 and G3 are: 

Gl(0) = 1 , G2(0) = 1.71 and G3( 0) = 26,550 
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The elastic structure functions A and B in the Rosenbluth formula 

” i 

0 
A+B+ tan2 f 

I 

are given by 

A=GE+ 2 
GM 

(3.2) 

and these are the quantites we are going to compare with our model. 

In our actual numerical analysis we will restrict ourselves to the most 

economical set of parameters in order not to introduce too many adjustable 

variables. 

First of all, we know that the proportion of D-wave in the deuteron is small. 

We therefore neglect in F the D-wave content compared to the leading S-wave 

contribution, Since, however, the G function is pure D-wave we will keep it in 

our analysis s 

Our parameter set is Kg, p, 6. and 62, where K 0 is an overall normalization 

factor and p measures the relative proportion of F and G in Eq. (2.7), 

The resulting values of our fit are 
r) 

6; = o 72 

6; = .20 

P = .16 

(3*4) 

and K. is such that GI is normalized to unity at q2= 0. In Fig. ?s 2 , 3 and 4 we 

give the curves for A and B compared to experimental data, 8, 9 

The set of parameters (3.4) renders the following values of the form factors 

at q2= 0: 
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Gl(0)=l 

As one can see from these figures, the theoretical curves are remarkably 

good especially for the B function where the agreement extends over the whole 
3 9 

measured q” range (although Fig, 4 does not show the very low qa data points). 

For the A function our results are only excellent for very low q2 and beyond 

-q2L 2 Gev2. This is not surprising since the model is best suited for the 

* G2(0)=l. 71 

G3(0)=29. 16 

high q2 tail, However, a more careful choice of the F functions, i. e, the 

inclusion of the small D-wave admixture in it, would likely render a better 

natching in the low q2 regime. As it stands now, we basically get for A the 

same behavior and shape as in a previous naive scalar calculation. (2) 

IV. CONCLUSIONS 

In this paper we have presented a fully covariant description of the 

electromagnetic form factor of the deuteron. In this model the triangular 

diagram of the impulse approximation has been calculated using Bethe-Salpeter 

wavefunctions with one leg on shell, which are simple relativistic generaliza- 

tions of the phenomenological S and D Hulthen wavefunctions whose falloff has 

been dictated by the asymptotic counting rules. This extension to include spin 

has permitted a prediction for both A and B elastic structure functions in the 

Rosenbluth formula. 

We have compared our model with existing experimental data. We obtain 

good agreement for A in the high q2 region (q2 > 2 GeV2), and excellent - 

agreement over the whole momentum range for the structure function B, 
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Since in our actual numerical analysis we always made the simplest choices, 

it is obvious that taking into account all the potential richness of the model, 

would probably render even better results, especially for the low q2 region in 

the elastic structure function A. As a final remark, being equipped with a 

B. -Ss. vertex for the deuteron with spin, one can obviously use it to predict 

the inelastic structure functions of deuterium. 
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APPENDIX 

Here we present all expressions for the three form factors. These 

formulae are obtained by making explicit use of the substitution rule Eq. (2.8). 

We should stress once more that this is a quite definite and natural (since it is 

directly inspired from the scalar form factor derivation) recipe to obtain 

uniquely gauge invariant results. 

For i = 1,.2,3 we get 

Gi=/h2\b, [ F F *{ fINEi +ffEi (2)}+ GG* (fTEi (3) +fZNEi (4) 
> 

- 

-F*G fl”Ei (5) + f,NEi(6) - G* F f;Ei (7) + f2NEi(8) 11 
where 

N 
fl,2 fflP,2 +f:,a 

fp7 n 
192 

are usual dipole form factors of proton and neutron. 

F and G are functions of x and k, . 

F* and G* are displaced functions of x and kL + (l-x)qL. 

The expressions for the Ei are: 

El (1) = 2 (1+x) (m2 
I 

-k2) -D.q(l--x)+%xD.k 
I 

El (2) = q2 

El (3) = El(4) = E1(5) = El(6) = E1(7) = El(8) = 0 

(3-x) (m2-k2) - D.q (l-x) + 2D.*k 
I 

E2 (2) =2 [ (m2 -k2) + 2D. k + q; (l-x)] 
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E2 (3) = E2(4) = 0 

E2 (5) = E2(7) =$ (l-x) (D . q + k2-m2) 

E2 (6) = E2(8) =gq2(l-x) 

E3 (1) = 4M2x(1-x)2 

E3(2) =4&%x 

E3 = (l-~)~ k2 (1+x)-2xD. k+ (l-x).-D l q + m2 (3x-l) 
I 1 

zz (l-x)2 (2x-l) E3 (4) = 2 

E3 (5) = E3(7) = 2mM (2x3-4x2+3x-1) 

I 2 
E3(6) = E3(8) = -mM(l-x) 2-E[k2 (l-x2) -2D*k(l-x)-F x (I-x)~ 1 
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FIGURE CAPTIONS 

1. Feynman diagram for the electromagnetic form factor of the deuteron in 

the impulse approximation. 

2. The elastic structure function A compared with experiment 

(0 5 1q21 5 6GeV2). 

3. The elastic structure function A compared with experiment 

(2 GeV2f Is21 5 12GeV2). 

4. The elastic structure function B compared with experiment. 
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