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ABSTRACT 

In an attempt to find gravitational analogs of 

Yang-Mills pseudoparticles, we obtain two classes of 

self-dual solutions to the Euclidean Einstein equations. 

These metrics are free from singularities and approach 

a flat metric at infinity. 
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The discovery of pseudoparticle solutions to the Euclidean 

SU(2) Yang-Mills theory1 has suggested the possibility that 

- analogous solutions might occur in Einstein's theory of gravitation. 

The existence of such solutions would have a profound effect on the 

quantum theory of gravitation. 2,3 Since the Yang-WLls 

pseudoparticles possess self-dual field strengths, one likely 

possibility is that gravitational pseudoparticles are characterized 

by self-dual curvature. 

In fact it has been pointed out by Hawking3 that the Taub- 

NUT metric4, when appropriately continued to Euclidean space-time, 

produces a self-dual curvature and hence is a possible candidate for 

a gravitational pseudoparticle. He has also given a generalized 

multi-Taub-NUT metric. However, these metrics do not approach a 

flat metric at infinity05 To see this, let us write the Euclidean 

Taub-IRJT solution as 

w2 = E dR2 + 4 (R2 - m2)6 2 + oy2 + (*m)20z2 1 (1) 
X 

where Ox' Q 9 Y (Jz form a standard Cartan basis, 

cos $ d8 - sin 0 sin JI d4) 

uY 
= $ (sin \Ir d0 - sin.8 cos JI d$) 

u 
Z 

= ; (-d$ - cos 8 d(j) 

obeying the structure equations of the exterior algebra, 6 
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.- 

dax = 2u A (~z, etc. 
Y (3) 

* Here 8, Ji and 4 are Euler angles on S 3 with ranges 

O<Qrfl, 05452Jr, oup-4fl. Then it is easy to see that the - - 

above metric describes a distorted 3-dimensional hypersphere S3 

for any fixed value of R > m. 

Since a Yang-Mills pseudoparticle approaches a pure gauge 

at infinity and is interpreted as inducing transitions between topo- 

logically inequivalent vacua, one might require that gravitational 

analogs have a similar asymptotic behavior. In this letter we explore 

the possibility of gravitational pseudoparticles which possess a self- 

dual curvature and approach a flat metric at infinity. In the 

following we present two classes of such solutions. They are both 

singularity-free in the entire spacetime and their manifolds have a 

simple topological structure. 

In deriving these solutions we exploit a particularly 

useful choice of gauge (local Lorentz frame). First we define a 

local orthonormal frame using the vierbeins e" 
II' 

andtake 

a e =e a$xp . (4) 

In terms of the ea, the metric is expressed as 

ds2 i= (e0)2 + (e');! + (e2)2 + (.e3)2 . Then the connection one-form 

ma b is defined by 

de' = - uab h eb, aab = - aba . (5) 

Latin indices are raised and lowered by a flat metric. Then we &fine 

the curvature two-form by 
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a 
Rb = &jab t- “;lc * ‘Deb l 

Now we note that if uab is self-dual, 

(6) 

op 2 
1=-“3’etc.J (7) 

then Rab is self-dual. This follows directly from the definition (6) 

of Rab. Since any self-dual curvature gives a vanishing Ricci tensor, 

any metric yielding a self-dual connection is a solution to the Einstein 

equation. On the other hand, it is easy to show that any self-dual 

curvature can be obtained, by a suitable change of gauge, from a metric 
* 

yielding a self-dual connection. In this "self-dual gauge", the pro- 

blem of finding a self-dual solution to the Einstein equation7 is 

therefore reduced to one of finding self-dual connections and hence 

solving first-order differential equations generated by Eq. (5). This 

is quite analogous to the Yang-Mills case. 1 

In the following we consider two types of metrics having 
** 

axial symmetry as in the Taub-NUT case: 

I: (ds);! = f2(r)dr2 + r2g2(r)(ox2 + oy2) + r20Z2 (8) 

II: (ds)2 = f2(r)dr2 + r2(ax2 + Dy2) + r2g2(r)oz2 . (9) 

Here we consider these metrics directly in the Euclidean space and 

do not regard them as a result of some continuation from the Minkowski 

regime. Asymptotic flatness requires that 

lim f(r) = lim g(r) = 1 . 
r+oo r--)m 
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Taking as our orthonormal frames 

I: e" = (f(r)% rdr)~x, r&by, raz> (11) 

II: e" = (f(r)d~~ rux.' ray' rdrb,> T 02) 

we find after some simple algebra that the self-duality of the 

connection iqlies 

I: g2 = f(2g2 - l), f = g(g + rg') 

II: fg = 1, f(2 - g') =g +rg' . 

Asymptotically flat solutions are given, respectively,by 

I: f(r) =$ 
( 

1 + [l - (a/r)41+) 

g;(r) = 
i 

; (1 + Cl (/ )+-P -ar 
J 

OS> 

04) 

05) 

II: g(r) = f-l (r) = [l - (a/r)41f, (17) 

where a is an integration constant. The curvature components of 

case II are given by 

Rol = - R23 = - $ (Lo A e1 - e2 A eJ> 
r 

0 3 
4 

R2=-Rl= 0 $- (e" A e* - e3 h e') (18) 

R0 
4 

3 
= - R12 = + $- (e" * e3 - e' * e*) . 
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The curvatures for case I have the same algebraic form with the 

replacement 

Hence in both cases the curvatures are regular everywhere for 

r 2 a and fall off like l/ro at infinity. For comparison, 

we note that the Taub-NUT curvature produced by EqO (1) is obtained 

by the replacement 

(20) 

and thus goes like l/R3 at infinity. 

The manifolds described by the above metrics have the topology 

R x S3. Although the metrics have an apparent singularity at r = a , 

it can be eliminated by a change of variable, 

u2 x r2(l - (a/r)4) 0 (21) 

For instance, the solution II now takes the form 

(as j2 = du*/(l + (a/r)$)2 + u2ez2 + r2(ox2 + 0 2 
Y) 

. (22) 

Our next task is to compute topological invariants of the 

manifold. Here, as in the Taub-NUT case8, we have to be careful 

about possible contributions from the boundary of the manifold. 
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2-genus (axial anomaly). 

The Atiyah-Patodi-Singer theorem9 gives 

manifold [r,,r,l x S3 as 

by21 = Go1 - (zsurf + $ (hD + a)> 

the i-genus of the 

r2 
. 

rl 
(23) 

A01 is the volume integral of the Riemann curvature tensor con- 

tracted with its dual and isurf gives the contribution due to the 

deviation of the metric from a product metric on the boundary. 10 

hD is the number of harmonic spinors of the Dirac operator 

restricted to the boundary and qD gives its spectral asymmetry. 9,11 

Using the formulas in references 8 and ll we obtain 

ar, =a,r =co)= 2 i -o+(-;-+o (24) 

for both solutions I and II0 Thus these solutions by themselves 

will not induce chiral symmetry breakdown, just as in the Taub-NUT 
8 case. 

Euler-Poincar: characteristic (trace anomaly). 

The Euler-Poincarg characteristic x is related to the 

thermal effects of gravitational pseudoparticles. 3,12 To calculate 

xt we apply the Chern-Gauss-Bonnet, theorem, 13. 

X = ho1 - %urf I '2 
(25) 

rl 

there xv 01 and Llrf are the analogs of 401 and isurf in 
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in Eq. (23). Using the known formulas, we find for both solutions 
*** 

I and II the Euler characteristic 

x(r1 = a, r2 = co) = 3 - (-1) + (-4) = 0 . (26) 

This of course agrees with the combinatorial calculation for 

Rx S3e 

We observe that at large r, our curvatures fall like 

l/r'; in contrast, the Euclidean Taub-NUT and Schwarzschild solutions 
- 

fall like l/r'. This suggests that our metrics describe gravita- 

tional "dipoles" while Taub-NUT and Schwarzschild describe monopoles. 

This is probably a sign that our Euclidean solutions will not have 

a meaningful continuation to Minkowski space, as is the case for the 

Yang-Mills pseudoparticle. 
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Footnotes 
* 

The proof involves decomposing any given spin Connection aab into 

self-dual,and anti-self-dual parts. If' Rab is self-dual, the anti- 

self-dual part of mab is a pure O(4) gauge transformation, 

A",( d?)cb, and can be gauged away, 
** 

The spherically symmetric ansatz, ds2 = f*dr* + r2g2(a 2 2 + u 
X Y 

leads to a trivially flat metric when we impose self-duality. 

It appears that the manifold of solution II can be compactified by 

adding an S2 at r-a. In this case (see Eq. (22)) the manifold 

acquires the local topology of D2 X S2; since as rda, the 

D2 shrinks to a point, the manifold is homotopic to S20 If we then 

omit the r = a boundary term in Eq. (26), we obtain x = 4 . 

However, weknow x= 2 for a manifold homotopic to S2 . Hence 

the Chern-Gauss-Bonnet theorem requires a "corner" correction in 

this case. A similar situation occurs if one puts a metric on a 

cone and tries to compute the Euler characteristic using the Gauss- 

Bonnet theorem without correcting for the apex. For solution I, 

analogous arguments indicate that the manifold compactified at 

r= a is homotopic to the manifold of SO(3). Then the apparent 

Euler characteristic is 4, while the true value is x = 0 0 The 

compactified manifolds admit a spin structure because the second 

Stiefel-Whitney classes vanish 14 . However, in practice the "corners" 

may make it difficult to treat the Dirac operator on the whole 

manifold. If such an operator can be defined, the 8 genus (axial 

anomaly) would also require "corner" corrections. .Phi.s problem is 

under study. 
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