SLAC-PUB-2087 LBL-7273 February 1978 (T)

ASYMPTOTICALLY FLAT SELF-DUAL SOLUTIONS TO EUCLIDEAN GRAVITY *

Tohru Eguchi

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

and

Andrew J. Hanson

Lawrence Berkeley Laboratory University of California, Berkeley, California 94720

ABSTRACT

In an attempt to find gravitational analogs of Yang-Mills pseudoparticles, we obtain two classes of self-dual solutions to the Euclidean Einstein equations. These metrics are free from singularities and approach a flat metric at infinity.

(Submitted to Physics Letters B.)

Work supported by the Department of Energy.

The discovery of pseudoparticle solutions to the Euclidean SU(2) Yang-Mills theory¹ has suggested the possibility that analogous solutions might occur in Einstein's theory of gravitation. The existence of such solutions would have a profound effect on the quantum theory of gravitation.^{2,3} Since the Yang-Mills pseudoparticles possess self-dual field strengths, one likely possibility is that gravitational pseudoparticles are characterized by self-dual curvature.

In fact it has been pointed out by Hawking³ that the Taub-NUT metric⁴, when appropriately continued to Euclidean space-time, produces a self-dual curvature and hence is a possible candidate for a gravitational pseudoparticle. He has also given a generalized multi-Taub-NUT metric. However, these metrics do not approach a flat metric at infinity.⁵ To see this, let us write the Euclidean Taub-NUT solution as

$$(ds)^{2} = \frac{R + m}{R - m} dR^{2} + 4 (R^{2} - m^{2}) (\sigma_{x}^{2} + \sigma_{y}^{2} + (\frac{2m}{R + m})^{2} \sigma_{z}^{2})$$
(1)

where σ_x , σ_y , σ_z form a standard Cartan basis,

$$\sigma_{x} = \frac{1}{2} (-\cos \psi \, d\theta - \sin \theta \, \sin \psi \, d\phi)$$

$$\sigma_{y} = \frac{1}{2} (\sin \psi \, d\theta - \sin \theta \, \cos \psi \, d\phi) \qquad (2)$$

$$\sigma_{z} = \frac{1}{2} (-d\psi - \cos \theta \, d\phi)$$

obeying the structure equations of the exterior algebra,⁶

-2-

$$d\sigma_{x} = 2\sigma_{y} \wedge \sigma_{z}, \text{ etc.}$$
(3)

Here Θ , ψ and ϕ are Euler angles on S^3 with ranges $0 \leq \Theta \leq \pi$, $0 \leq \phi \leq 2\pi$, $0 \leq \psi \leq 4\pi$. Then it is easy to see that the above metric describes a distorted 3-dimensional hypersphere S^3 for any fixed value of R > m.

Since a Yang-Mills pseudoparticle approaches a pure gauge at infinity and is interpreted as inducing transitions between topologically inequivalent vacua, one might require that gravitational analogs have a similar asymptotic behavior. In this letter we explore the possibility of gravitational pseudoparticles which possess a selfdual curvature and approach a flat metric at infinity. In the following we present two classes of such solutions. They are both singularity-free in the entire spacetime and their manifolds have a simple topological structure.

In deriving these solutions we exploit a particularly useful choice of gauge (local Lorentz frame). First we define a local orthonormal frame using the vierbeins e^a_{μ} , and take

$$e^{a} = e^{a}_{\mu} dx^{\mu} . \qquad (4)$$

In terms of the e^{a} , the metric is expressed as $ds^{2} = (e^{0})^{2} + (e^{1})^{2} + (e^{2})^{2} + (e^{3})^{2}$. Then the connection one-form ω_{b}^{a} is defined by

$$de^{a} = -\omega_{b}^{a} \wedge e^{b}, \ \omega_{b}^{a} = -\omega_{a}^{b}.$$
 (5)

Latin indices are raised and lowered by a flat metric. Then we define the curvature two-form by

$$R^{a}_{b} = d\omega^{a}_{b} + \omega^{a}_{c} \wedge \omega^{c}_{b} .$$
 (6)

Now we note that if ω_{h}^{a} is self-dual,

-4-

$$\omega_{1}^{0} = -\omega_{3}^{2} , \text{ etc.}, \qquad (7)$$

then R_{b}^{a} is self-dual. This follows directly from the definition (6) of R_{b}^{a} . Since any self-dual curvature gives a vanishing Ricci tensor, any metric yielding a self-dual connection is a solution to the Einstein equation. On the other hand, it is easy to show that any self-dual curvature can be obtained, by a suitable change of gauge, from a metric yielding a self-dual connection.^{*} In this "self-dual gauge", the problem of finding a self-dual solution to the Einstein equation⁷ is therefore reduced to one of finding self-dual connections and hence solving first-order differential equations generated by Eq. (5). This is quite analogous to the Yang-Mills case.¹

In the following we consider two types of metrics having axial symmetry as in the Taub-NUT case: **

I:
$$(ds)^2 = f^2(r)dr^2 + r^2g^2(r)(\sigma_x^2 + \sigma_y^2) + r^2\sigma_z^2$$
 (8)

II:
$$(ds)^2 = f^2(r)dr^2 + r^2(\sigma_x^2 + \sigma_y^2) + r^2g^2(r)\sigma_z^2$$
. (9)

Here we consider these metrics directly in the Euclidean space and do not regard them as a result of some continuation from the Minkowski regime. Asymptotic flatness requires that

$$\lim_{r \to \infty} f(r) = \lim_{r \to \infty} g(r) = 1.$$
(10)

Taking as our orthonormal frames

-

I:
$$e^{a} = (f(r)dr, rg(r)\sigma_{x}, rg(r)\sigma_{y}, r\sigma_{z})$$
 (11)

4

II:
$$e^{a} = (f(r)dr, r\sigma_{x}, r\sigma_{y}, rg(r)\sigma_{z})$$
, (12)

we find after some simple algebra that the self-duality of the connection implies

I:
$$g^2 = f(2g^2 - 1), f = g(g + rg')$$
 (13)

II:
$$fg = 1$$
, $f(2 - g^2) = g + rg'$. (14)

Asymptotically flat solutions are given, respectively, by

I:
$$f(r) = \frac{1}{2} \left(1 + [1 - (a/r)^{\frac{1}{4}}]^{-\frac{1}{2}} \right)$$
 (15)

$$g(r) = \left\{ \frac{1}{2} (1 + [1 - (a/r)^{4}]^{2}) \right\}^{-1}$$
(16)

II:
$$g(r) = f^{-1}(r) = [1 - (a/r)^4]^{\frac{1}{2}}$$
, (17)

where \underline{a} is an integration constant. The curvature components of case II are given by

$$R_{1}^{0} = -R_{3}^{2} = -\frac{2a^{4}}{r^{6}} (e^{0} \wedge e^{1} - e^{2} \wedge e^{3})$$

$$R_{2}^{0} = -R_{1}^{3} = -\frac{2a^{4}}{r^{6}} (e^{0} \wedge e^{2} - e^{3} \wedge e^{1})$$

$$R_{3}^{0} = -R_{2}^{1} = +\frac{4a^{4}}{r^{6}} (e^{0} \wedge e^{3} - e^{1} \wedge e^{2}) .$$
(18)

The curvatures for case I have the same algebraic form with the replacement

$$\frac{2a^{4}}{r^{6}} \rightarrow -\frac{a^{4}}{2r^{6}g^{6}} \qquad (19)$$

Hence in both cases the curvatures are regular everywhere for $r \ge a$ and fall off like $1/r^6$ at infinity. For comparison, we note that the Taub-NUT curvature pr_0 duced by Eq. (1) is obtained by the replacement

$$\frac{2a^{4}}{r^{6}} \rightarrow \frac{m}{(R+m)}^{3}$$
(20)

and thus goes like $1/R^3$ at infinity.

The manifolds described by the above metrics have the topology $R \times S^3$. Although the metrics have an apparent singularity at r = a, it can be eliminated by a change of variable,

$$u^2 = r^2 (1 - (a/r)^4)$$
 (21)

For instance, the solution II now takes the form

$$(ds)^{2} = du^{2}/(1 + (a/r)^{4})^{2} + u^{2}\sigma_{z}^{2} + r^{2}(\sigma_{x}^{2} + \sigma_{y}^{2}) . \qquad (22)$$

Our next task is to compute topological invariants of the manifold. Here, as in the Taub-NUT case⁸, we have to be careful about possible contributions from the boundary of the manifold.

Â-genus (axial anomaly).

The Atiyah-Patodi-Singer theorem⁹ gives the \hat{A} -genus of the manifold $[r_1, r_2] \times S^3$ as

$$\hat{A}(r_1, r_2) = \hat{A}_{vol} - \left(\hat{A}_{surf} + \frac{1}{2}(h_D + \eta_D)\right) \Big|_{r_1}^{r_2} . \qquad (23)$$

 \hat{A}_{vol} is the volume integral of the Riemann curvature tensor contracted with its dual and \hat{A}_{surf} gives the contribution due to the deviation of the metric from a product metric on the boundary.¹⁰ h_D is the number of harmonic spinors of the Dirac operator restricted to the boundary and η_D gives its spectral asymmetry.^{9,11} Using the formulas in references 8 and 11 we obtain

$$\hat{A}(r_1 = a, r_2 = \infty) = \frac{1}{4} - 0 + (-\frac{1}{6} - \frac{1}{12}) = 0$$
 (24)

for both solutions I and II. Thus these solutions by themselves will not induce chiral symmetry breakdown, just as in the Taub-NUT case. 8

Euler-Poincare characteristic (trace anomaly).

The Euler-Poincaré characteristic χ is related to the thermal effects of gravitational pseudoparticles.^{3,12} To calculate χ , we apply the Chern-Gauss-Bonnet theorem,¹³

$$\chi = \chi_{vol} - \chi_{surf} \Big|_{r_{l}}^{r_{2}}$$
(25)

where χ_{vol} and χ_{surf} are the analogs of \hat{A}_{vol} and \hat{A}_{surf} in

in Eq. (23). Using the known formulas, we find for both solutions I and II the Euler characteristic

$$\chi(r_1 = a, r_2 = \infty) = 3 - (-1) + (-4) = 0$$
 (26)

This of course agrees with the combinatorial calculation for $R \times S^3$.

We observe that at large r, our curvatures fall like $1/r^6$; in contrast, the Euclidean Taub-NUT and Schwarzschild solutions fall like $1/r^3$. This suggests that our metrics describe gravitational "dipoles" while Taub-NUT and Schwarzschild describe monopoles. This is probably a sign that our Euclidean solutions will not have a meaningful continuation to Minkowski space, as is the case for the Yang-Mills pseudoparticle.

Acknowledgements

We are deeply indebted to I. Singer for a number of informative discussions. This research was performed under the auspices of the Division of Physical Research of the U. S. Department of Energy.

Footnotes

The proof involves decomposing any given spin connection ω_b^a into self-dual and anti-self-dual parts. If R_b^a is self-dual, the anti-self-dual part of ω_b^a is a pure O(4) gauge transformation, $\Lambda_c^a(d\Lambda^{-1})_b^c$, and can be gauged away.

** The spherically symmetric ansatz, $ds^2 = f^2 dr^2 + r^2 g^2 (\sigma_x^2 + \sigma_y^2 + \sigma_z^2)$, leads to a trivially flat metric when we impose self-duality.

"It appears that the manifold of solution II can be compactified by adding an s^2 at $r \Rightarrow a$. In this case (see Eq. (22)) the manifold acquires the local topology of $D^2 \times S^2$; since as $r \rightarrow a$, the D^2 shrinks to a point, the manifold is homotopic to S^2 . If we then omit the r = a boundary term in Eq. (26), we obtain $\chi = 4$. However, we know $\chi = 2$ for a manifold homotopic to S^2 . Hence the Chern-Gauss-Bonnet theorem requires a "corner" correction in this case. A similar situation occurs if one puts a metric on a cone and tries to compute the Euler characteristic using the Gauss-Bonnet theorem without correcting for the apex. For solution I, analogous arguments indicate that the manifold compactified at r = a is homotopic to the manifold of SO(3). Then the apparent Euler characteristic is 4, while the true value is $\chi = 0$. The compactified manifolds admit a spin structure because the second Stiefel-Whitney classes vanish¹⁴. However, in practice the "corners" may make it difficult to treat the Dirac operator on the whole manifold. If such an operator can be defined, the \hat{A} genus (axial anomaly) would also require "corner" corrections. This problem is under study.

References

- A. A. Belavin, A. M. Polyakov, A. S. Schwarz and Yu. S. Tyupkin, Phys. Lett. 59B (1975) 85.
- T. Eguchi and P. G. O. Freund, Phys. Rev. Lett. 37 (1976) 1251;
 A. A. Belavin and D. E. Burlankov, Phys. Lett. 58A (1976) 7.
- 3. S. W. Hawking, Phys. Lett. 60A (1977) 81.
- 4. A. Taub, Ann. Math. 53 (1951) 472; E. Newman, L. Tamburino and T. Unti, J. Math. Phys. 4 (1963) 915.
- 5. C. W. Misner, J. Math. Phys. 4 (1963) 924.
- S. Helgason, <u>Differential Geometry and Symmetric Spaces</u> (Academic Press, 1962); H. Flanders, <u>Differential Forms</u> (Academic Press, 1963).
- 7. For other treatments of self-dual gravitational fields, see,
 e.g., E. T. Newman, Gen. Rel. Grav. 7 (1976) 107; R. Penrose,
 Gen. Rel. Grav. 7 (1976) 31; J. Plebanski, J. Math. Phys. 16
 (1975) 2395; C. W. Fette, A. I. Janis and E. T. Newman,
 J. Math. Phys. 17 (1976) 660.
- T. Eguchi, P. B. Gilkey and A. J. Hanson, Phys. Rev. D, in press,
 H. Römer and B. Schroer, Phys. Lett. 71B (1977) 182.
- 9. M. F. Atiyah, V. K. Patodi and I. Singer, Bull. London Math. Soc. 5 (1973) 229; Proc. Cambridge Philos. Soc. 77 (1975) 43; ibid. 78 (1976) 405; ibid 79 (1976) 71.
- 10. P. B. Gilkey, Adv. in Math. 15 (1975) 334.
- 11. N. Hitchin, Adv. in Math. 14 (1974) 1.
- 12. See, e.g., M. J. Duff, Nucl. Phys. B125 (1977) 334.
- 13. S. S. Chern, Ann. of Math. 46 (1945) 674.
- 14. J. Milnor, "Lectures on Characteristic Classes" (Princeton University lecture notes, 1957).