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ABSTRACT 

Local supersymmetry transformations are used to generate solutions of the 

Dirac equation in the presence of instantons. We show that all spin l/2 zero- - 

eigenvalue modes for an isovector fermion in an N-instanton field can be obtained 

by spacetime dependent supersymmetry transformations, and that through 

additional supersymmetry operations these can be used to generate zero-eigenvalue 

solutions to the small-fluctuations problem for the Yang-Mills field. Similar 

problems for supergravity theories with a gravitational instanton are also discussed. 
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1. INTRODUCTION 

.- 
Recently, considerable attention has been given to the problem of constructing 

zero-efgenvalue modes of the Dirac operator 1-4 in the presence of an instanton 

field. 5 ’ 6 In particular , Jackiw and Rebbi’ have constructed the 4N zero-eigenvalue 

modes for an isovector fermion in an N-instanton field. It has been noted that four 

of these modes can be obtained by global supersymmetry transformations of the 

N-instanton solution itself 192 and this has been further discussed by Zumino. 7 

As we shall show in Section II below, all 4N zero-eigenvalue solutions can be - 

obtained by suitable local supersymmetry transformations. Although this technique 

does not lead to any simplification in obtaining the solutions, it does provide an 

interesting interpretation of them and suggests that in a supersymmetric model 

all zero-eigenvalue solutions can be obtained by local supersymmetry transformations. - 
n 

Brown, Carlitz and Lee’ have linked the small fluctuations problem for the 

Yang-Mills field to the Dirac problem discussed here. The 4N fermion zero-eigen- 

value modes provide 8N zero-eigenvalue fluctuations of the Yang-Mills field and 

indicate that the complete N-instanton solution depends on 8N-3 parameters. 398 

In Section III, we derive this fermion-boson correspondence by supersymmetry 

arguments. Finally, in Section IV, we discuss aspects of the zero-eigenvalue 

problem for boson and fermion fields in supergravity theories. 

Throughout this work, we start with solutions qi to the field equations of a 

supersymmetric theory and by infinitesimal supersymmetry transformations 

obtain solutions 6Gi to the linearized equations in the presence of the background 

fields $i.g In principle, supersymmetry requires that all spinors be Majorana 

and anti commuting. However, when we deal with infinitesimal transformations 

and linearized equations, these requirements may often be dropped. 7 In each 



-3- 

case, one can explicitly verify that our solutions are valid when the spinors are 

complex c-number fields. In the following we shall use such spinors and work 

exclus+vely in Euclidean space. 

II. THE DIRAC EQUATION IN AN N-INSTANTON FIELD 

The theory of SU(2) gauge bosons coupled to isovector spin l/2 (Majorana) 

fermions is globally supersymmetric. 10 Since we wish to obtain solutions to the 

Dirac equation by local supersymmetry transformations, we begin by coupling the 

theory to supergravity which gauges the original supersymmetry. I1 The system 

now contains the gravitational field 2 
PV 

(or vierbein @), a spin 3/2 field ap, the 

gauge field a; and the isovector spin l/2 field ga. We begin with the following 

solution to the classical field equations; 

%.lv = pv 17 

$ =o 

ii; = A; 

Aa 
lli 0 = 

(2-l) 

where Aa is an N-instanton solution. 596 
P 

Performing an infinitesimal local super- 

symmetry transformation on this solution gives 11 

P-2) 
“i$ =qJp=2K-la 6X 

P () 

a; =o 

bqa = qQa = F,“; Zpv e(x) 

where F a is the N-instanton field tensor and 2 
PV = t [Y/y r,l * Because of the 

PV 
local supersymmetry of the system, 6sa = $a will satisfy the linearized field 

equation for ga which, due to the supergravity coupling is now 11 
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P-3) 

where 
.- 41 ab D 

P 
= ap(jab + AC pcb 

P (2.4) 

the spin connection term being absent since i = qPv. Therefore, qa = FPv TV e(x) aI-z 
PV 

will be a solution to the Dirac equation in the presence of the N-instanton field 

F a provided that we choose e(x) so that the right-hand side of Eq. (2.3) vanishes, 
PV 

where we have substituted qP = 2K-‘$ E(X) into Eq. (2.3). It can easily be veri- 

fied directly that the ansatz 

satisfies the Dirac equation 

yPDLb qb = 0 (2.7) 

provided e(x) satisfied (2.5). The introduction of supergravity fields was just a 

device to lead us to this result. 

Two obvious solutions to Eq. (2.5) are 

E(X) = u and E(X) = y. xu P-8) 

where u is a constant spinor. When substituted into Eq. (2.6) they give the four 

solutions which have previously been generated by global supersymmetry trans- 

formations. 192 

Since the tensor F a 
PV 

is self-dual for the N-instanton solution, Z a 
WFPV 

acts as a left-handed chiral projection operator. For this reason it is convenient 

to introduce a two-component notation. We define’ 



and we find that Eq. (2.6) gives left-handed solutions to the Dirac equation 

(2.9) 

q”_ = F a CT E 
PV cl* - 

(x) 

Furthermore, this relation can be inverted to give 

E (x) = Fp; apv zi): 

( 1 
F a 2 
EL* 

(2.10) 

(2.11) 

so that for every Z/,J~ which solves the Dirac equation an E (x) can be found. (We 

have used the fact that for self-dual fields (a pvFp:)2 = (FPz)2). We can write, 

for an N-instanton solution 

- [ 

4f - (1,2) 
pv Qvg@ - f 

E (x) = 2 
olvg$*2) 

P/-1 I 

U 

2f2-f2 
IJV l-w 

(2.12) 

where u is an arbitrary two-component spinor, 

f pV=a a ’ PVP 0 
(2.13) 

g($2) = acL (5 Mi1’2)) 

(19 2) and zP, p and Mi are as given in Ref. 1. Substituting Eq. (2.12) into (2.10) 

then gives the 4N solutions of Jackiw and Rebbi. 1 
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III. SMALL FLUCTUATIONS OF THE YANG-MILLS FIELD 

The instanton field A: and the zero-eigenvalue mode $’ that we have found 

in the pevious section form a solution to the full, coupled SU(2) field equations. 

The spinor ~,6~ is a chiral eigenstate, y5 qa = -ea and in Euclidean space & $+. 

As a result, the isovector current for zi)a vanishes, 

abc -b E $ Yp GC = Eabc iJb YsYpYs 

abc -b = -E ICI Y/f = 0 

and the coupled Yang-Mills field equation 

3c 
(3.1) 

ab b D F abc -b 
P pv=gE $ Y,c=o (3.2) 

is satisfied. In addition, ea. satisfies the Dirac equation in the presence of the 

field A:. Thus, we may take the solution A; = AZ, i” = $a and perform a global 

supersymmetry transformation (it is not possible now to find a local transformation 

for which the supergravity fields decouple) to obtain 

(3.3) 

By our usual supersymmetry arguments, the expression for 8Ai in Eq. (3.3) 

generates solutions to the linearized Yang-Mills field equations. In particular, 

AZ + 8AE (to first order in 8A,a) gives a self-dual solution to the sourceless 

Yang-Mills equations. The argument is due to Zumino’ and is based on the 

identity 
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ylJDp - Y&, = +y,p7P~5 
( yTDp - ypD., 

) 
(3.4) 

+&yy - ( v P 

applied to A; + 6 a;. Therefore, if E (x) is chosen to satisfy Eq. (2.5) 

E(X) F a 
4 (3.5) 

gives the zero-eigenvalue solutions to the small fluctuations problem for the 

Yang-Mills field about an N-instanton solution. Note that since E F” E(X) is 
QP 0 

pure left-handed only the right-handed components of 77 will enter into Eq. (3.5). 

Then, there are two independent choices for 7 and the 4N solutions to the Dirac 

equation generate 8N small fluctuations for the Yang-Mills field. Furthermore, 

again since $a satisfies the Dirac equation, 6iz automatically satisfied the back- 

ground gauge condition 

DLb (A)&; = 0 (3.6) 

IV. SUPERGRAVITY 

We consider now a theory of supergravity 12 13 (or extended supergravity - 

but for simplicity we discuss here the pure supergravity case). We begin with a 

solution to the classical field equations 

(4-l) 

where e ap could represent an instanton-like solution to the gravitational field 

equations. 14 Performing an infinitesimal local supersymmetry transformation 

on these fields gives 12 
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6s = T,$ = 2K-lDPt (x) 
(4.2) 

where D is the covariant derivative for the vierbein e a 
CL P’ 

Because of the super- 

symmetry of the model, qP will satisfy the linearized spin 3/2 field equation which 

is just the covariant Rarita-Schwinger equation 

(4.3) 

We have thus generated zero-eigenvalue modes of the Rarita-Schwinger equation 

in the background gravitational field given by ea 
P 

by local supersymmetry trans- 

formation in analogy with our treatment of the Dirac equation in Section II. 

However, an important difference between the two cases is that supersymmetry 

is a gauge symmetry of the Rarita-Schwinger equation. As a result, even if we 

fix a gauge for the Rarita-Schwinger field (like Y~$~=O), we find that the solutions 

of Eq. (4.2) are pure gauges and are not physically relevant. 

A similar problem arises when we treat small fluctuations of the gravitational 

field around the background field e” 
P. 

Suppose we have a physical solution to 

Eq. (4.3) (not a pure gauge), $P. Recall that in Section III we noted that our Dirac 

solutions had zero isocurrent and so they formed along with the instanton field a 

solution to the coupled Yang-Mills-Dirac system. We then generated zero-eigen- 

value modes of the Yang-Mills field by supersymmetry transformation. In the 

present case, we note that the fields 

P-4) 
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form a solution to the coupled Rarita-Schwinger-Einstein equations (the super- 

gravity equations without the quartic (7 $)2 term in the Lagrangian). This is 

because we can always choose $P to be a y5 eigenstate. Then, if we choose such 

eigenstates the energy-momentum tensor for the Rarita-Schwinger field vanishes 

(4.5) 

since $ + = 
I-1 + I-L 

in Euclidean space. This is in complete analogy with the vanishing 

of the Dirac isocurrent in Section III. Consider now an infinitesimal super- 

symmetry transformation 

sisa 
CL 

= Kijyaq 
I-L 

(4.6) 

= 2 K-lDP (e” y )n 

around the previous solution. It is known (see the first paper in Ref. 12) that in 

general the Rarita-Schwinger-Einstein Lagrangian is not invariant under super- 

-. symmetry transformations unless one adds a quartic (‘; +)2 term to it and a 

quadratic ($ +) term to the transformation law for $ . 
P 

However, we observe 

that this additional term (A5Z?,,, of Eq. (10) in the first paper of Ref. 12) contains 

an overall factor $ y $ which will vanish in Euclidean space since we choose 
h dP 

+P to be a chiral eigenstate, y5$P = + $P. Therefore, for variations around such 

solutions we have invariance of the Rarita-Schwinger-Einstein system itself. 

Note that just as in the Yang-Mills case, for a $P of one chirality only those 

components of 7 having opposite chirality will enter into Eq. (4.6) for 6e” 
P’ 

The variation 

(4.7) 

where qP is a solution of the Rarita-Schwinger equation, produces a variation in 

the metric 

(4.8) 
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which satisfies the linearized field equations. The corresponding variation in 

the spin-connection is 12 

4\ 

GUpab = 
-l- 

-e nySyp e abed Deed (4.9) 

Note that additional terms usually found in 6Uclab (see Ref. 12) are absent here 

because $p satisfies the Rarita-Schwinger equation. Now for any $p which satisfies 

the Rarita-Schwinger equation we have the identity 

eabcd Dcqd = Y5(Da% - Dbea) (4.10) 

Then, since $p is a chiral eigenstate we can easily show that 6u, pab Of Eq’ f4* g, 

is self-dual (or anti-self-dual). A self-dual spin connection will in turn generate 

a self-dual curvature R ,uvab’ 
However, we now run into the problem of isolating from the zero-eigenvalue 

modes of Eq. (4.8) those which are physical and not just pure gauges. We have 

no general procedure for doing this and so have been unable to establish a gauge 

invariant method for counting these modes. 
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