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1. INTRODUCTION 

In these lectures I would like to describe a model of hadronic scattering 
- 

at large momentum transfer, either transverse or longitudinal. This model 

emphasizes in this regime the importance of forces involving the interchange of 

constituents of the hadrons, hence the name, CIM, or constituent interchange 

model. 132 As will be shown, this model should not be thought of as being different 

from quark-quark scattering models, or from QCD (quantum chromodynamics) 

but contains both of them. Omission of the CIM diagrams is not a consistent 

approximation. The CIM is, in fact, a rearrangement of standard perturbation 

theory to take into account the fact that the binding force is very strong in color 

singlet states. We could call this Singlet Dominance. For example, if one demands 

that an anti-quark, or ;i, be found a large distance from the center of a baryon, 

the easiest way for it to propagate to such distances is via intermediate states 

involving light mesonic (singlet) states. But more of this later on when the CIM 

contributions and their absolute normalization will be discussed. 

Before discussing the physically complicated case of hadrons, it is helpful 

to discuss constituent models in a regime where we know they must apply-i. e. 

nuclear scattering. 3 In addition to developing our intuition and methods of 

approximation, we can extend the usual description of nuclei into the relativistic 

domain-that is, a regime where particle production occurs but does not dominate, 

where the finite size of nucleons plays an important role, and where the motions 

of the nucleons must be described by relativistic kinematics. All of this is 

clearly possible to include in a theoretical model but the important point is its 

simplicity and usefulness, and the ease with which predictions can be made. We 

will find a remarkably simple model that works quite well for certain experimental 

cross sections. Further tests are required before its general validity can be 

assessed. 
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II. THE HARD SCATTERING EXPANSION 

For applications to both the hadronic and nuclear case, an expansion of 

the full>cattering amplitude must be made in order to compute anything. In the 

hadronic case the relevant expansion is called the hard scattering expansion, 

whereas in the nuclear case it is called the impulse approximation. Let us 

review some of the basic assumptions used in this familiar expansion. This is 

particularly important since by trying to add ad hoc features to the first term, 

it is possible to define nonsense that doesn’t appear to be nonsense at first glance. 

The hard scattering expansion for an inclusive reaction is illustrated in 

Fig. 1 and written as 2 

E c g (AB-+CX)= 
2,’ 

dxd2kT dyd2+ Ga,A(XI kT)Gb,B(Y, ‘.T) 
3 , 

r@, s’,x, y) E * (ab+ Cd; sl,tl,ul), . 
d3C 

(2-l) 

where the a,b, d sum is over incoherent final states. If this is the case, then the 

formula takes on a simple probabilistic meaning. The ratio r = h (s’, kz, j?)/ 

xy h (s, A2, B2) is the ratio of the internal (off shell) and external (on shell) 

phase space factors and h(s) t, u) is the usual quatratic form, 

h(s, t, u)2 s2+t2+u2 - B(st+su+tu). 

If one keeps kT and &.I small, one finds r G 1. 

Our discussion will be based in the diagram shown in Fig. 1, which represents 

the inclusive process A-I-B + C-tX. Here the interaction takes place through the 

emission of virtual subsystems @ and g, which are the ones that scatter in an 

internal basic process a-tb + C+d, where C is the detected particle. M0 is the 

amplitude for this basic interaction, and the amplitudes for the emission of the 
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5 and b subsystems will be contained in distribution functions G(x,ET), to be de- 

fined precisely in a moment. However, the interpretation of the various factors 

i-n Eq.31) is clear. The factor G a/A(x’ ‘T) is the probability of finding a consti- 

tuent of type a in nucleus A with fractional “momentum*’ x and transverse momenta 

ET. A similar interpretation holds for G b/B’ The basic cross-section factor 

that actually produces the detected particle C also has a clear probabilistic 

meaning. We have neglected any final state decay to C for simpliticy, but such 

can easily be added in. 

The sum over the intermediate and final states must be chosen so that 

Eq. (2.1) is a sum over incoherent final states. This means that the simplest 

way to classify the terms is according to the final state configuration of particles, 

not the possible intermediate states that can contribute. The sum over a, b, and 

d must be chosen with the final state configurations in mind. For example, this 

means that one particular Feynman graph contributes to several terms in the sum 

depending upon the disposition of the final state particles, that is which particular 

particle (or particles) is recoiling against the large (transverse) momentum of 

particle C, for example. 

The internal amplitude MO that describes the process ab --) Cd must be 

predicted by the model or fit to experiment (as in the nuclear case). 

The “momentum” fraction x(and y) is not exactly the momentum fraction of 

component a in A. It is defined rather as an lVinfinitef’ momentum fraction 

x = (aO+aZ)/(A,+Az). In detail, we define the awkward looking momenta 

i 
A2 * 

A= p1+?@-l 3oT’p1 
A2 -m 
4P1 

B= 
B2 -p2+4pz 

(2.2) 
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where a particle’s name and four-momentum are denoted by the same symbol 

except for the off-shell particles a and b. A and B have been defined in a general 
4 

,set of frames along the interaction axis. A specific frame in this set is selected 

by relating P1 and P2. For example, the center-of-mass frame is defined by 

the conditions 

A2 B2 
pl- 4p1 =p2- 4p 

2 

and 

&=P1+$ +p2+Bg- . 
1 2 

The other momenta that are on-shell are defined as 

i 

cr2 + 
G Q! = (l-x)q + 4(lwx)P1 , - q, (1-x)P1 - g+)$ 

1 
1 

p = 

This rather cumbersome set of variables will greatly simplify our later dis- 

cussion. For example, note that with these parametrizations, the phase space 

integrals are of the form 

4 2 d a! = d kT &, da2 

2 and then the a! integral, due to the corresponding on-mass-shell e-function, is 

trivial. The off-shell momenta are calculated by momentum conservation: 

( 
k2 + k$ 

a= xpl + 4xP1 

a2 + Q; 

W2 ’ 

(2.4) 
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where 

k 2 = x(1-x)A2 - 2 xc2 .- k$/(l-x) 

Q2 = y(l-y)B2 - yp2 - 

(2.5) 

Note that with these parametrizations, as mentioned before, 

ao+a3 
x=AO+A3 

which is the usual light-cone variable, and hence x can only have values between 

zero and one. 

Since the G’s are probability functions, they must be related to the square 

of a wave function; a careful analysis shows that 

(2.6) 

where $is the bound state Bethe-Salpeter wave function with one leg (CY) on-shell. 

We will see in our analysis that the distribution functions are explicitly measured 

in the experiments we are considering. For this reason it is important to have 

a reasonably good prediction or description of their properties. We shall analyze 

these functions in detail and get information about them from limiting cases, like 
- 

the non-relativistic limit and the short distance or ultrarelativistic behavior. 

It is also straightforward to derive an equation for the electromagnetic 

form factor of the state A in terms of $and the result is 

where the integral multiplying Fa is the body form factor of the nucleus. This 

can be used to predict the form factor when a sufficiently promising wave function 

Z/(X, kT) is developed. We are particularly interested in possible relations between 

the large qc behavior of the form factor and inclusive measurements in the forward 

direction. 
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III. INCOHERENCE PROBLEMS 

Let us illustrate some of the problems associated with keeping the various 4 
terms in Eq. (2.1) incoherent. For simplicity, we shall consider the production 

of a massive lepton pair (the Drell-Yan process) since the gauge invariance of 

the photon more or less forces us to a consistent treatment. 4 In &CD, the gauge 

invariance with respect to the gluons will certainly force one to a similar com- 

plete treatment with similar results. 

Consider the two diagrams in Fig. 2 which correspond to a=i, b=q, and 

b=(qq), respectively. The first diagram is the natural one in the Drell-Yan 

theory5 in order to produce large QT pairs. The large transverse momentum 

of the pair arises from the wave function or structure function G ,/,(Y,QT). How- 

ever, this is an incorrect treatment since the second b=(qq) term is coherent 

with the first and is even of the same order in all couplings. It is necessary to 

treat these two terms together and to include them both. They can be described 

as an initial and a final state interaction, respectively. From the relevant 

quark’s point of view, they are the direct and crossed graph for the process 

glue + quark -+ photon + quark. At large Q T’ one finds that these two terms 

cancel to leading order, as will be discussed in more detail later. 

That this is not an unexpected feature of initial and final state interactions 

can be seen by considering the theorem derived in potential scattering by Amado 

and Woloshyn. 6 They proved that the term with the leading behavior of the wave 

function at large relative momentum actually cancels in a general class of break- 

up reactions. This cancellation is due (essentially) to the orthogonality of the 

bound and (ingoing) scattering states and is therefore expected to be a very 

general phenomena. 
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We have seen therefore that simply adding a large kT spectrum to the 

initial state quarks and then using the Drell-Yan formula is incorrect in principle. 

This Gould come as no surprise since D-Y stated in their original paper that 

their model was not gauge invariant if large transverse momenta were allowed. 

It is easy to see that if an intermediate quark carries a large kT, its (mass)2 

is of order (-k 2 
T /(l-x)). Thus it is not possible to make such a contribution 

gauge invariant to this order unless the photon is attached to both ends of this 

far offshell propagator. This leads us naturally to the initial and final state 

interaction effects described earlier. One way to avoid troubles here is to 

demand that the intermediate particles a and b remain near their respective 

mass shells and hence that they not carry a large transverse momentum. This 

forces all large momentum transfers to occur in the central process. This in 

turn allows the photon to be attached in all necessary orderings to insure gauge 

invariance, as well as the proper incoherence properties of the hard scattering 

expansion. 

We discussed final state photons above only because a proper treatment 

of gauge invariance forces us to a reasonable result. The same is true of 

reactions in which ordinary particles are produced -one must still satisfy the 

conditions used to define the hard scattering expansion. This is especially 

true in QCD where the gluons must be treated in a gauge invariant manner. 

Since we are now forwarned, let us return to a treatment of nuclear (or heavy- 

ion) scattering processes. 
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IV. NUCLEAR WAVE FUNCTIONS AND COUNTING RULES 

We shall demand that our theory join onto the familiar nonrelativistic 

treatmznts when the energies and momenta are small. In particular, the G 

function must be closely related in this limit with the square of the nonrelativistic 

wave function. This requirement will allow us to achieve a clearer understanding 

of these functions and their expected behavior, and also to explore the way masses 

should enter into our formalism. 

First we want to see the meaning of the x-variable in a nonrelativistic limit. 

For momenta small with respect to the masses, and in the rest frame of the 

nucleus, x becomes 

k 
x-2 + x 

A A ’ (4.1) 

and hence is related to the longitudinal momentum, measuring deviations with 

respect to a central value z A. Since on the average, and in the rest frame of the 

nucleus, we expect kZ = 0, this means that on the average x = i . In other words, 

each nucleon carries the same fraction of the total momentum of the nucleus, A 

very reasonable result in the weak binding limit. 

Recall that G is the probability of finding a constituent of A with longitudinal 

momentum x and transverse momentum E T. This means that G must have a 

maximum at x N 2 A (the average nucleon longitudinal momentum) and at ET=O. 

Considering the definition of G, and using the Bethe-Salpeter equation we see 

that 

2 
G- cp x(1-x) 

+ M2(x) 2 ’ 1 
where 4 is defined as the vertex function and 

(4.2) 

M2(x) = (1-x)(a2-k2)-ki = (l-x)a2 + xo2 -x( l-x)A2 . 
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This form implies that G has a maximum at ET=0 and at x=x0, where M2(x) is a 

minimum. We find 

A2+a2-oz2 
xo = 2A2 

g- 
: ’ 

and as expected, the constituents prefer to share the momentum according to 

their mass. 

In the limit of small momenta one then finds 

+ E2 (4.4) 

where it has been assumed that the binding energy for nucleon E is the same for 

bothAanda. The G function becomes 

where (A=2 for simplicity) 

2 
‘NR - xo(1-xo)~2 . 

In order to have a better understanding of the function qNR, consider the 

Schrodinger equation in momentum space 

h(E) = (ae + lF)-l J d3P v<l;- - 3 #NR(l3 = tae + E2)-1$NRfi) , 

so that the vertex function expresses more or less directly the behavior of the 

potential V. The falloff of # is related to the softness (or hardness) of the 

potential. As a simple example consider a general Hulthen model of the nuclear 

wave function: 

l-g 

+NR = (ae + E2)-l(ael + E2) 2 . 
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In the familiar Hulthen deuteron case, one usually chooses g=3, and E 1w36e , 

The second factor is then much flatter in c2 than the first. 

A relativistic version of this wave function can be achieved by writing 

q = N(x) 
(k2-a2) g-1’ 

2 2 2 (q-al) 

P-5) 

where N(x) is slowly varying for x near 1, and where we choose 

(1-x) (a “1 -k;) = M2(x) + G2 + + (4.6) 

since the second factor should have a minimum at the same place as the first, 

i.e. x=x 0’ 

The form factor for the type of wave function of (4.5) is easily seen to fall 

as 

F2 (q;) - (q;)+’ (4.7) 

for large q$. Thus the falloff of the form factor and the behavior of G for large 

kt are closely related and also we shall see that the behavior of G for x near 

1 is also closely related to the form factor falloff. This latter relation is the 

Drell-Yan-West relation. 

For general x, the relativistic G function can then be written as 

G(x,rT) = N2(x) x(1-x)~ 

2(27r)3 
[M2(x) +k;r [M;(x) +k!I,r-g . (4.8) 

Forx-x o, the denominator factors are rapidly varying and as has been discussed, 

this reduces to a familiar nonrelativistic Hulthen form. For x >>xo, the numerator 

factors control the behavior of G, and 

while its large k 2 
T behavior is ( 1 

k2 -g-l 
T ’ 
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In our analysis, the behavior of G for x “x0 will be especially important. 

Note that this is new information not directly contained in the nonrelativistic 

wave fan&ion. We can also discuss quasielastic scattering which explores the 

G function for x-x0 as well. Let us now turn to a discussion of the calculation 

of the power g in selected theories of the nucleon-nucleon interaction. 

Our main contact with experimental data is through the structure functions 

G(x, kT). A helpful tool for expressing the predictions of specific theories is in 

” 7,8 terms of “counting rules. These allow one to characterize the asymptotic 

behavior of G in terms of the number of constituents and the short distance 

behavior of the basic interactions of the theory. 

The procedure here is to extract the leading behavior from the lowest order 

diagram in perturbation theory. For “soft” theories, one can show that the higher 

orders either are small compared to the leading term or have the same behavior. 

Consider the wave function (or structure function) diagram given in Fig. 3, where 

k is the momentum of particle a and is defined in Eq. (2.4). We shall assume 

scalar particles for simplicity. Note that A now also means the atomic number 

of particle A. 

For a renormalizable interaction between the constituents, such as vector 

exchange with point interactions, the falloff of the vertex function arises solely 

from the constituent propagators. One finds 

where the masses in kl (see Eq. (II-15)) depend on detailed properties of the 

force. The wave function is 

Z) N (k2 - a2)-‘(kT - .q)lwn 
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Comparison with Eq. (II-14) immediately tells us that 

g =2A-3 -h 

As a perhaps more relevant example, consider a nucleon-nucleon interaction 

mediated by the exchange of vector mesons, such as rhos or omegas, with a 

monopole form factor at each vertex (vector dominance would assume such a 

behavior to fit the dipole nucleon form factor). One finds 

where the masses in the form factors and/or gluon propagtors are chosen to be 

the same for simplicity. The final result in this case is 

g=6A-7 . 

This is the same result as one would get by counting quarks. While one might 

expect that the quark degrees of freedom become relevant at ultrahigh energies 

where they can be excited, we see that one gets the same prediction for g in this 

theory when the nucleon form factor effects play a role. These, of course, may 

in turn be due to internal structure, but the internal degrees of freedom need 

not be fully excited. 

For more general structure functions G a/A’ where the state a is a bound 

state of E nucleons, a similar analysis can be carried through. One finds in this 

case 

g = 2T(A-a) - 1 (4.9) 

where T (= 1,3, etc. ) depends upon the basic nucleon-nucleon interaction as 

discussed earlier. Again, we have assumed full breakup of the nucleus after a 

is extracted. If the nucleus is not fully broken up, then the calculation is 

extremely complicated but one might conjecture that g should be replaced by 

g = 2T(A-a)eff -1 , (4.10) 
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where (A-a)eff is the effective number of fragments that the remaining nucleons 

produce. One may also expect additional nonscaling behavior as well if some of 

the frrgments remain bound. 

Now we shall predict the behavior of inclusive yields in order to test the 

theory and to see if one value of one value of T fits all the inclusive scattering 

reactions and the elastic form factors. 
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V. INTERACTION BETWEEN NUCLEI 

As a first application we will consider inclusive scattering of nuclei at high 

energi;^es and get simple predictions that can easily be compared with experiment 

without extensive numerical calculation. 3 First, consider the situation in which 

the energy per nucleon is large compared to the nucleon mass. The kinematics 

for this regime is quite simple: 

s’ = xys 

t’ = yt 
(5 - 1) 

u’ = xu 

d2 = xys f yt -t xu 

and 

2 ut cT=s =c+ 2 

The condition d2 > 0 restricts the range of x and y that contribute for fixed values 

of s, t, u, and all finite masses have been neglected. Note that the internal 

reaction can be inclusive (d2 > 0) or exclusive (d2 = 0). This last situation is 

also called quasielastic scattering. 

All inclusive basic processes of interest to us here will be parametrized 

as 

1 ‘= E(8) 1 -(Ixbl)” f(k+) (5.2) 

and exclusive processes as 

[ 1 
1 

do 
EC-& = E(s’)6 [(k+Q-C)2 - d2 I fW$ . (5 * 3) 

where k+ = CT - kT - QT and E(s’) is assumed slowly varying. H will be assumed 

to be constant. The function f(q) is strongly peaked at kJI = 0 (for small kJl, it 

could be written as an exponential e 
,r2kt2 

T, for example). 



-16- 

Now we will go into a discussion of our model in some regions of phase 

space in which it is easy to get predictions. 

First define in terms of the missing mass m 

m2 IFcmI E=-=l-xRs l- - 
S 

I’max 

5= CT 
C max 

cL 
X.Jm 

(5 * 4) 

N t-u 

xL = Cmax - - s ’ 

and for the most part we will concentrate in the region E not near one. 

When t is fixed (and s, u large), one finds (xR = 5, Feynman’s variable) 

in this the projectile fragmentation region, 

and hence 5 2 xF/y. The condition d2 > 0 becomes y > 5. In this regime, 

the inclusive cross section becomes 

1 
2 

&cd kT Ga,Atx9i;-r) L- dYd2QT Gb/B(s,$) PC g] ’ * (5.5) 

First consider an inclusive basic process. Since f(I$) in formula (III-2) is 

strongly peaked in k$,, we can approximate the kT and QT integrals by replacing 

in the G’s by the mean value K2 which should be of the order of Cc. 

The inclusive cross section is then proportional to 
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Note that the distribution for the target G 
a/A 

has integrated out in this limit, and it 

depends on A through its normalization only. 

l? C$ 7 MT(x6), and if XF is not small compared to x6, then the main 

variation in the integrand is from the factors of (l-y) and (l-xF/y), The first 

factor cuts off the integrand near y = 1 and the other near y = xF. If only their 

variation is retained, and the denominators taken constant, we have 

Ed- (l-x$J 
gB+H+l 

d3C 
. (5.6) 

A more accurate treatment is possible but the above will suffice for our purposes. 

In the target fragmentation region, where u is fixed and s, t large, the above 

arguments can be repeated with the result that 

- (l++ 
gA+H+l 

, (5.7) 

where gA is the power behavior of the target distribution function G a/A’ This 

result could also have been achieved by simply interchanging the target and beam 

particles in the previous result. These predictions will be compared to data in 

a later section. 

One can estimate the range of validity in xF of the above formulas by a 

simple argument. The momentum fraction xF must be large enough so that the 

particle is out of the “quasielasticff peak where the denominator factors in 

Eq. (HI-6) are rapidly varying. The average momentum fraction xB of particle 

B is <xB> = l/B. The average x retained by the detected particle is roughly 

N l/(H+2). Therefore, the behavior given by Eq. (5.6) should hold reasonably 

well for x F ‘5 l/B(H+2). 

For an exclusive basic process, which yields the familiar quasielastic 

formula, the calculation is also simple. Using Eq. (m-3) and expanding the argu- 

ments of the delta function for the case b+n -+C+n, where b and C are nucleons, 

one finds that a reasonable approximation is: 
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p g-’ = E(s~)~[~(s-A~-B~)(x~-A-~;] f(k+). 

whercthe shift A has to be calculated using more exact kinematics. At high 

energies A 4 0; for the experimental data to be discussed shortly, A - 0.06. 

Again the x integral is not restricted and the full inclusive cross section is 

Eda 
d3C 

- GC,/B , (5.8) 

where the prime means that the elastic cross section is evaluated at reduced 

kinematics. Thus, the quasielastic peak should occur at xF = C/B + A. This is 

slightly larger than the naive expectation C/B, the most likely momentum in the 

state B. This shift will be included in all our numerical calculations. Eq. (5.8) 

can be interpreted as a relativistic generalization of the Glauber approximation 

but with a more precise definition of the covariant wave function. 

For our particular model, we require, of course, that the same value of 

T fit both the inclusive (say pion production) and exclusive case. 

Another situation in which we can get simple predictions from the model is 

when the produced particle (C) has large transverse momentum (s, t, u large, 

and masses negligible). In this regime (ecm z 900), we have that 

and 

(5.9) 

Inclusive basic process. The condition d2 > 0 means that in the limit 

of primary interest to us x and y in formula (B-7) are going to be both close to 

one. By a similar analysis as in Section A, the CT and *?$, can then be integrated 

out and we can write approximately (G(x) N (1,~)~) 
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/ 

1 

- dx 
0 I 

1 

dy(l-x)ga(l-y) gb + C+X) 1 W2) , 
0 

which cSn be applied, for example, to pion and proton (not including the quasi- 

elastic peak) production at large transverse momentum. 

We will consider two different parametrizations for the internal cross 

section: 

and then one finds, using Eq. (III-12): 

do 
EC d3C 

- N EF+H+l(C;)pf(C;) , (5. 10) 

where F = 1 + ga + g b and where E is close to zero. For E not near zero, there 

is a function which is slowly varying in E that multiplies this result. 

We see that this regime gives us information about the distribution func- 

tions of both target and projectile. It also follows that the Ct dependence is the 

same for the complete process as it is for the internal interaction, except for the 

(C$)’ factor, but P is normally small and this factor is essentially constant. 

In certain cases (quasielectric scattering), the internal basic process is 

going to be dominated by elastic scattering. This means that the cross section 

can be written as (G(x) N (l-~)~) 

1 
dy (l-x) ga gb (l-x) 

where Rb = &cl 2 g do (C f b -+ C + d) and R;: now contains a factor S(d2). ) TT dt 

Writing the elastic cross section as 

do 
dt - dpf(c;) 

gives the prediction 

do 
EC -&= I(E) eF(C$Pf(C$ . (5. 11) 
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Note that in this case the multiplying function I(E) must be rapidly varying 

in order to produce the quasielastic peak. Right at the quasielastic peak we have 

<y> =-l/B, <x> = l/A, where A and B are the atomic number of the states A 

and B respectively. Using d2 = 0, we get for the peak value (neglecting kinematic 

mass effects) 

E&Z 1 A;B . -v 

One expects that (I(E) eF) will be rapidly varying and will lead to a quasielastic 

peak for E - E Q’ For E > E Q’ I(E) should vary much less, and the main E 

dependence should come from the E F factor. 

In the previous section we have presented a detailed analysis of our 

relativistic model and the predictions it gives when applied in specific regions 

of phase space (projectile fragmentation, target fragmentation and large p,). 

While because of their simplicity we have considered only these special cases, 

it is possible to obtain a generalization of these results that is valid for all angles. 

In fact, it can be shown that 

E * = I(E) ,F+l+R(l-xRz)-F- (l+xRz)-Ff 
’ d3C 

J(+ , (5. 12) 

where z = ~0.~6’ cm,F-=l+ga, F+=l+gb. AsbeforeF=l+ga+gb, andI 

is a slowly varying function of E above any quasielastic peak. This result is 

valid for an inclusive internal process parametrized in the form 

- (l-~$~ J(C$ . 

If need be, this form can be easily generalized. Although Eq. (III-20) was 

derived assuming lzl not near one (outside the forward and backward cones), we 

see that it also has the correct limit inside those regions. This expression can 
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then be used to characterize inclusive nuclear reactions at all angles. Further- 

more since we expect a smooth transition from the regions of validity of Eq. (5.12) 

to 0theT regions of the Peyrou plot; for example, the central region, this equation 

can be used to fit the data everywhere with effective powers F, F-, F+. 
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VI. PION AND PROTON YIELDS AND FORM FACTORS 

As the first application of the model, consider 7r- production in the pro- 
Ih 

jectile fragmentation region. The small angle data in Fig. 4 taken from J. Papp 

et al. , 9 clearly supports the value H=3. The value of T now can be determined 

by looking at deuteron beam data. The fit for T=3 is compared with the data in 

Fig. 5. Now all parameters are fixed and the prediction for alpha beams is 

compared with the data2 in Fig. 6. 

The proton yield in the forward and backward direction is fully determined 

since it depends only on T @I=-1). For these reactions the data is not as extensive 

in the variable xF as in the pion data so the tests are not as severe. The reaction 

d+C -+p+X is predicted to go as e5. The data is in reasonable agreement with 

this behavior but it does not fall quite this fast for the largest xF values. The 

prediction for the proton yield from carbon-carbon collisions is compared with 

the data in Fig. 7. 

It will be very interesting to extend the above discussions to other energies 

and reactions and to compare theory with experiment. Of particular importance 

here is measurements over the entire angular range to check the validity of 

Eq. (5.12). These will be forthcoming, I understand, from the Berkeley group. 

NOTE: In particular reactions, and especially at lower energies, the nuclei may 

not completely fragment so that a value of Aeff <A may have to be used to fit the 

data here. Thus even at low energies it may be useful to fit the form (5.12) to the 

data and to extract values of F, F,, and F . If they can be interpreted in terms 

of an A eff, this interpretation can be checked by comparing with other yields 

(the pion to the proton for example). 

Let us now discuss the nuclear form factor arising from the model wave 

functions that fit the inclusive data (T=3). We are concentrating on the short 
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distance or large q2 behavior, and hence will make no attempt to fit diffraction 

etc., that arise from effects of the edge of the nucleus. The form 

factor is written as 

FA(s2) = c Fa(s2) 
/ 

dxd2kT 

ww 
3 &) $ tx*i;, + t1-x);iT) Gatx, ‘T) 9 

where the sum runs over the nucleons (protons and neutrons) in the nucleus A. 

Fa(q2) has been replaced by its on-shell value, and the integral multiplying it 

is then the intrinsic body form factor of the nucleus. 

A very plausible wave function $ which we saw before gives a G function 

with many correct properties, is 

zi)tx&) = N(x)(l-x) 2 

[kc + M2(x)l [k; f M2(x)+ 6’1%. 

where for the case of the deuteron g=5 for T=3 (the exchange of vector mesons 

with monopole form factors at each vertex). 

First, since + describes one off-shell and one on-shell particle, neither 

+ nor G are necessarily symmetric around x = l/2. Isospin symmetry implies 

that G p/D(x) = Gn/D(x)3 not that Gp/Dtx) = Gn/D (l-x). However, this is a good 

approximation at not too high energies, when we consider a deuteron as composed 

of only one proton and one neutron, which means 

Note that then this is equivalent to a momentum normalization condition. The 

symmetry of G around x = l/2 fixes the function N(x) = N0x2. The deuteron form 

factor can now be computed. A fit that can be achieved for our spinless model 

is given in Fig. 8 for the value 



-24- 

65 200M.e , 

where M is the nucleon mass and E is the binding energy of the deuteron. Here 4 

the isoscalar form factor was taken to be equal to the proton form factor. This 

is the same Sk value that was used to fit quasielastic scattering discussed 

earlier. The data is from Ref. 10. If spin were put into the model, and 

especially if D-state effects were then included, the fit could be made much 

better since the quadrupole contribution naturally gives a shape that is similar 

to that of the data points. 

Predictions have been made by I. Schmidt3 for the He3 and He4 form 

factors out to a (-q2) of 6 (GeV/c)2. These will soon be measured at SLAC, 

and will provide new tests for the model. Finally, note that T=3 is the same 

behavior as expected by quark counting, 11 as was pointed out before. 
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VII. STRUCTURE FUNCTIONS AND NONSCALING 

Since we now have a relativistic wave function for the deuteron that fits 

both in^elastic inclusive scattering and the elastic deuteron form factor, it can 

be used to describe deep inelastic electron scattering from the deuteron. A 

separation of the neutron and proton structure functions can then be performed 

with some confidence in regions where one would not trust a nonrelativistic 

treatment. 12 To discuss inelastic scattering we simply return to Fig. 1 and 

Eq. (2.1) and set B=b=C=electron, and consider the various choices for a and 

d. A classification of the terms contributing to the deuteron structure function 

is given in Fig. 9. In Fig. 9c, the two nucleons recoil coherently, sharing the 

q2 of the virtual photon. This is small for large q2. In the second term, 

Fig. 9b, one has d=nucleon (or baryon resonance), and it recoils with momentum 

q. This term may be important for moderate q values, and is given by terms of 

the form (a = proton or neutron) 

- XDGa/D D a tx ) F2 (q2) , 

where Fa(q2) is the dipole form factor of the nucleon. 

The first term Fig. 9a is inelastic scattering from the nucleon and is 

given in terms of their structure function FZa(x, q2) (which may not scale): 

(7.2) 

which clearly vanishes faster than (7.1) as xD- 1. Note that if G a/D(y) is 

strongly peaked at y=1/2, which is certainly true in the limit of zero binding, 

this contribution becomes 

- F2at2xD q2) 8 ( 1-2xD) , , 
which has a simple physical interpretation. 
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These contributions have been used to describe inelastic scattering from 

the deuteron from low to high q2 values and to extract the neutron structure 

functi-en. 13 We will not go into this in detail but will use the physical picture 

described above in which coherent recoils in the final state lead to nonscaling 

terms that fall in q2 but vanish less rapidly as x --+ 1. Examples are shown in 

Fig, 10 for the nucleon. Figure 10a has a single recoil quark, lob has a recoil 

diquark and meson system, and 10~ depicts a recoil baryon (or baryon resonance) 

system. The last three terms are not important in the range of large to moder- 

ate q2 and large x and will be neglected. 

Using our previous rules, (T=l of course), and dimensional counting for 

the form factors, the diquark term is q of the form 

d 
FZa (x, q2) = Ad F; (s2) x2&-x) V-3) 

where 

Fd(q2) = d2/(d2-q2) 

is the diquark form factor. The valence, or large x, part of Fig. 10a will be 

written in the form 

- A(x) (l-~)~ , 

where A(x) is finite at x=1 and slowly varying. 

The total nucleon structure function will be written in the form 

FZa(xq2) = A”(x)(l-x)~ + A; F;(q2)x2(l-x) , (7.4) 

and the main question is whether or not this will fit the data for large x, say 

x>O. 2, with an A (x) that does not depend on q2. If this is possible, then we 

have possibly identified important contributions to nonscaling that have a very 

simple and expected physical origin. Note that the sea is in A(x)-that is, there 

is a term that vanishes as (l-~)~ that measures the amount of (qq) sea present. 

It is not important for x:0.2, our region of primary interest. 
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Suffice it to say, the fits are very good for all x and for x>O. 2, A(x) 

is independent of q2. The final results are shown in Fig. 11 for the proton 

structure function. Since the deuteron was treated earlier, one may extract 

the neutron structure function which is shown also in Fig. 11. The diquark term 

is quite small, but fits all the scale breaking for q2>2, x>O. 2. 

Note that the ratio of A(x) for the proton to that for the neutron is z 3/2, 

which is the ratio of the squares of the valence quark charges. Also, the ratio 

of the diquark term for proton/neutron is = 3, which is the ratio of the squares 

of the diquark charges ! This agreement is an amusing feature of our model and 

show its consistency if not correctness. There are, however, other ways to fit 

this data, using &CD, for example, and its asymptotic freedom behavior but the 

particular method as applied seems questionable to me (i.e. , believing in a 

leading log expansion and even a leading log log expansion), and the resultant mass 

scale (the 11 2 in the coupling constant) seem highly artificial.. However, taste 

aside, this may be correct. What seems more likely to me is that each is z l/2 

the truth. 

Finally these functions can be applied 12 to neutrino data and fit quite well 

the main features of the data without any change in the parameters (for example, 

the lack of nonscaling seen in the new data for XC 0.2). 

Recalling the comments in Section III, we see that here too we disagree with 

the conventional QCD calculations for the structure functions. For example, if a 

virtual gluon makes a qi pair, the ?j structure function is dominated by antiquarks 

near their mass shell (if one does not take too seriously the leading log approxi- 

mation). Thus the 6 is around a long time (by the uncertainty principle), interacts 

with the other quarks, “thermalizes”, and produces a (l-~)~ behavior in G- 8 
q/P * 
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VIII. MASSIVE LEPTON PAIRS 

Before considering purely hadronic processes, let us consider an inter- 

mediate one-the production of a massive lepton pair by hadron beams (inclusive 

inverse ’ ‘photo”-production, where the virtual photon produces the lepton pair). 

Let us reiterate the points made in Section III about coherence and the hard 

scattering expansion. The total yield is a sum over intermediate states a and 

b (and the final state d). These terms must be incoherent-and this requires, 

for example, that a beam fragment in one term (in the sum over a and b) not be 

allowed to end up in the same part of phase space as an identical fragment from 

the central process of another term in the sum (all other particles being the 

same). This is a difficult requirement to enforce with mathematical precision. 

Clearly one can easily make a mistake in this regard if large momentum trans- 

fer scattering is allowed in both the beam or target vertex (or structure) function 

and the central scattering process. Simply adding a broad transverse momentum 

to the beam fragmentation function can lead to double counting (as well as trouble 

with gauge invariance in the present reaction). To avoid this problem we shall 

insist that all large momentum transfer scatterings occur in the central process 

only. In this way we can avoid double counting and coherence problems but yet 

can include all possible diagrams. 

The full cross section of a beam particle A on target particle B is found 

to be 

Q4 % (AB-, f!+n-X) = c 
dQ a,W 

/dxdy Ga/,(x)Gb/,(y)Q4 % (ab-+Q+Q-d;s’t’u’ ;Q2) 
dQ 

(8.1) 

The easiest way to enforce gauge invariance (not the only way) is to 

assume that the basic process is meson-quark --$ (1+P-)-quark. 4 This model 
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allows the rate to be normalized in two different ways and yet in the correct 

physical limit, is identical to the Drell-Yan model of q?.j annihilation. In Ref. 4, 

the cr”oss section for meson + quark + I+1 - + quark, was shown to be (see Fig. 12b) 

Q 4 = (Mq-+ 1+1-q) 
d4Q 

= 1 c?h2 6(s+t+u-Q2 
6n-2 

-2M2)Z (s, t, u;Q2) (8.2) 

where t: is a simple function given there. 

We are not interested in a quantitative evaluation of the cross section but 

rather in qualitative behavior in different regions of phase space. 

The large Qt and Q2 distributions can be extracted from the above 

formulas by writing ~Ga,~(x) a (1-xJga, and similarly for b/B. By manipulations 

similar to those used to extract the large transverse momentum behavior in hard 

scattering models, but which are more involved because both Q2 and Qc are large, 

it is possible to derive the form 

Q 4= 
d4Q 

(AB +1+1-X) G +8.3) 

and 

where p is a mass parameter related to internal masses in the model, d is a 

constant (d z l), J is slowly varying for small E , and F=l+ga+gb. This is a 

universal characterization of the QT distribution for all beam particles (since 

or. and d are the same). Finally 

t+u Q2 -- -v 
S S s ’ (8.5) 

where& is the total missing mass with respect to the photon (hadron masses 

were neglected in the above kinematics). This form can be used to parametrize 

detailed numerical calculation and may prove useful in fitting data. After 
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integrating over QG, the factors eF J(E) xF) are simply r,elated to the folding 

of structure functions in the Drell-Yan formula. The explicit E F factor charac- 

terize; the threshold behavior. After integrating over xF and Qt, which adds 

an extra factor of E 2, the threshold behavior for the mass distribution do/dQ2 

is E~+~. For D-Y, this final power is 11 for pp scattering and 5 for np scat- 

tering if one uses the dimensional counting predictions for the structure functions, 8 

For the meson-quark scattering case, F=9 and 3, respectively (again using 

dimensional counting), hence the final E power is the same in the two cases. This 

is not unexpected since the first diagram in Fig. 12b is clearly the same as the 

Drell-Yan mechanism. It is equally clear that the second diagram is required 

for gauge invariance. In fact, at large Q,, it cancels the leading Qi4 term 

arising from the first diagram! 

At large energies, where the E dependence can be neglected, it is easy 

to see that i&r> has the limiting values 

<QT> s ;P Q-CCL 

a prediction that can be experimentally checked but the present data is not over 

a large enough range in Q. The E dependence produces an energy dependence in 

<QT> in addition to the dependence on Q. A very rough estimate yields 

63.7) 

which can be a growth of z 30% over the ISR energy range. 
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IX. HADRONS AT LARGE TRANSVERSE MOMENTTJM 

In order to treat hadrons, we simply consider quarks as the constituents 

with a normal gluon interaction (thus T=l) and apply our previous formulas. 

The main difference is that is is customary to interchange A and B in our pre- 

vious discussion and to consider A as the beam particle. This changes only the 

notation, not the physics! First a review of some relevant experimental results 

and numbers. 

The fixed angle (90’ center of mass) exclusive two-body cross sections at 

large s will be parametrized in the form 

da 
I = ES-~ . I x-1 goo (9-l) 

Throughout the paper pure GeV units will be used. Inclusive large pT cross 

sections at 90’ center of mass from FNAL ’ 12 and the ISR3’4 can be fit to the 

form (E = l- 2 P,/JS = I- yr, 

EZ/ =IEF (4) 
9o” 

[;<;;Eg 8 GeV,c 
(9 - 2) 

Table I summarizes the values for I, N, F, and E, n for the various well-known 

cross sections of interest. 14 For N and F we have chosen the nearest integer 

values, and then fit the normalization constant I. 

The reactions pp +K-X or 5 X near 90’ can be fit by the following behavior 

(E < 1): 

EL!!2 d3 (PP-+ K-X) 
P 

E.E (PP + K+X) 
= l.oe3*5 

d3p 

(9.3) 

Ed0 d3 (PP-, FX) 
P 

E do 

~ o 366.9+2.4 

-& (PP-+PX) l - 
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Table I 

(GeV Units) 

Reaction E n 

PP -‘PP 
f -I- 

7r P-)TP 

T p-t7Pn 
+ 

YP-+~ n 

Reaction 

PP + +,o,- 7T X 

pp-,K+X 

PP--+PX 

?i-*p+7r”x 

1.2 x log 10 

2.5 x lo4 8 

2.5 x lo4 8 

1.2 x lo1 7 

I N F - 

(9,8,7) 4 9 

5 4 9 

500 6 7 

3.5 4 -7 

By analyzing data on the momentum distribution of particles balancing a 

large pT trigger, one can estimate that between l/2 and l/4 of the trigger particles 

are “prompt” as opposed to those that arise from the decay of produced resonances. 

We shall attempt to compute the yield of the prompt component only, which we 

take to be roughly l/3 of the values of I given in Table I. 

An example of the quality of the fit is shown in Fig. 13 taken from Cronin 

et al. , Ref. 14. 

We first need to choose simple forms for the G functions in order to 
15 compute the yields . The G’s are constrained to satisfy the spectator counting 

rules6 as x -+l (with T-l) and to have a reasonable shape for small x (i. e. , 

some flattening off in xG). A form (Fig. 14) with these properties which yields 

simple integrals in later calculations is 
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xG a,A(X) = (1 + g,)ra/,N(a/A)(l-dga x>:: a 

where 

(9.5) 

ga = 2n(ZA) - 1 

and n(a) is the minimum number of quarks in the spectator system. Here 

f 
a/A 

is the fraction of total momentum carried by a in A 

1 
f a/A E I 

dx xG 
0 

a/A(x) 

and 
-1 

N(a/A) = (l-$a)ga (1 + g^,) 1 

(9.6) 

(9.7) 

As an example, reasonable values for u or d quarks in a proton are ga=3 and 

A 
X a = 0.25. N(a/A) adjusts for the shape dependence of the structure function 

relative to a pure (l-x) power and approaches 1 as 2 * 0. 
a Throughout these 

lectures if “a” refers to a quark, it will be a quark of a given color. This means 

that there will be many odd looking factors of 3 in our formulas that are due to 

color sums and normalizations. 

In order to assign values to the momentum fractions f (of mesons in a 

proton, for example), it is necessary to use the convolution formula 

Ga/A(X) = Ff$ GI,n ($) Gn,#) . (9.8) 
X 

Note that to avoid double counting one of the G’s must be “irreducible:’ i. e. , a 

valence distribution function, and the sum, c’ , is restricted to non-overlapping 

intermediate particle states (n) having no quarks in common. A simple integra- 

tion yields 
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Using-&he above formulas and experimental data wherever possible, such as for 

the quark and antiquark distributions, one arrives at the values given in Table II. 

These will be used in our later calculations of note. 

In a scale invariant theory all exclusive differential cross sections at 

large momentum transfers in the fixed angle regime can be written as a sum of 

terms of the form 

do 
~=7CBS T+“-N(-t)-T(-U)-u , (9.10) 

where 5% contains the relevant coupling constants. This parametrization is 

appropriate for general processes involving quarks, gluons and hadrons. 

There are two critical coupling constants for quark-hadron scattering which 

we now define. For the coupling of a meson to its simplest valence two-quark 

component, we define a standard coupling, g/$3, of the 7rf to a‘u and 8 quark 

of one color. We also define h/J’-3 to be the coupling of a quark of one color to 

a baryon. Defining standard values 

(9.11) 

we give in Table III the cross section forms for all elementary processes of 

interest for quarks irteracting with Jp= O- mesons and J: P 1- = 2 baryons. One 

should take special note that the Yq + Mq cross form given in the table incorpor- 

ates three additional diagrams, other than the one drawn, as required by gauge 

invariance. All cross sections are those for quarks or diquark systems of one 

given color. The spin l/2 quark spin 1 vector gluon structure of QCD is re- 

flected in the tabulated results. For instance the qM + qM cross section in a 

scalar quark $ 4 model is proportional to 1/s2u2 instead of l/su3 as found for 

spin l/2 quarks. The latter value is in the table. 
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Table II 

.- 4 

Distribution Function Parameters (per color) 

xG a/A(x) = (1 + ga)fa/AN(a/A) (l-X)ga(x > ca) 

a/A W/A) 

u/P 3 .2 

d/p 3 .2 

S/P 7 0 

(2UP 1 .6 

M/P 5 .3 

K-/P 9 0 

B/P 3 .5 

q/r 1 .3 

S/T 1 .3 

M/n. 3 .4 

fV V 
u/p = 2 fd/‘p = ’ O4 

& ’ fM/p = . 1 

c 
M 

fM,p z.4 

c qzu,vfdP= *17 

.1 

.067 

.Ol 

.1 

. 1 

.024 

.12 

.083 

.083 

.l 

c 
BfBlp z ‘72 

c f- 
q/P 

= .03 
;i 

1.22 

1.22 

1 

1.6 

2.4 

1 

3.2 

1.1 

1.1 

2.1 

fV V 
q,M = f$M = .033 

; fB,‘p = ’ l8 

c ’ f MM/r= ‘8 

c f- q/r = .083 

(~q;w/P = * 3 
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TABLE IU 

ELEMENTARY CIM SUB PROCESSES (Spin and Color Averaged) 

dcr=m x CA2 

dt s2 

Subprocess CD CA2 

M M 
qM-qM (ut) x s 

q 9 
acl ,3 

M M 

qM----qM (st) ) ( A!.. 
aG s3 

9 9 

a M 

q&-MM 

q 

Mq- yq’ht) 

M 77T 
9 q’ 

2aaM L &2 + u2) xs A’ 
2 

S2t i 1 u s 

Y9 -Mq’ (ut) aQM 
l-(52+ u2)(!jq2 

dp -dp (ut) 

/I -77 

Su bprocess CD 

dp - pa ig 

4 
“28 

q B 
dp-pd 4 

B q 

q M 
q(2q) - MB C 

(2q) B 

2 
“B 

$B”M 

‘B”M 

3303C1F 

M B 
(2q)M-Bq ~ 

x 
(2a) a 

CA2 

s2+u2 
s2t4 

s2+ t2 
s2 u4 

t2+u2 
u2s4 

s2+u 2 

u2t4 

u 
t5 

s 
U5 
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The exclusive scattering process AB ---t CD (see Fig. 3a) can be considered 

as the scattering of A + C off of a quark constitutent of the target B. Since the 

consti%ent in general has some fraction, x, of the target momentum, the basic 

subprocess occurs at a reduced energy and one readily shows from this quark 

interchange diagram that 

g (AB --+ CD) = FBD 2 (t)Ntoh $f (Aq+cq; s = <x> s,t = t,u = <x>u) 

+ permutations (A, C + B, D) , (9. 12) 

where the form factor reflects the sticking probability in the final state and the 

mean value theorem has been used to replace x under the integral by <x>, 

N cob is the number of coherently interfering diagrams which contribute. Using 

the standard form for d $dt, Eq. (9. lo), defining n=4 + N, and taking 

FB(t) = (1-t/$)-2 for a proton target, we obtain at large s 

(AB+CD)=r <x> T-NN2 
cob 24+T+U(Mv)8 , (9.13) 

which is consistent with dimensional counting. One expects that <x> “> l/3 

should characterize scattering from a valence component of the proton target. 

Using the above formula, and the values of T and U from Table III, one 

finds by fitting the data for E that 

o!M = 1.2 GeV2, aB = 10 Gev4 (9.14) 

which we adopt as standard values. These values also give reasonable numbers 

when one computes momentum fractions such as f- 
q/M 

and f 
q/p’ 

This consistency 

further supports the model. 15 

It is apparent that the direct inclusive process, AB-, CX, in which the beam 

does not radiate prior to interacting with a constituent of the target, is obtained 
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from the previously quoted exclusive scattering formula by replacing the form 

factor by the relevant target structure function. A simple calculation then leads 

to the?-esult 

EC A (AB-‘CX)= 5 & 3x xG~,~(x) . 
d3pc b,d 

$ (Ab + Cd’, s’ = xs, t’=t, u’=xu) . (9.15) 

The sum of b, d is over .quark flavors and the explicit 3 results from the sum 

over colors. The structure function G and da/dt are for quarks of one given 

color. The variables used to describe inclusive scattering subprocess cross 

sectionA+B+ C+Xare 

where& is the total missing mass and. 

x1 = -u/s = + XR(l -I- z) 

x2 = -t/s = + “R (1 - z) (9.16) 

where 

and z ( = cos 0) is the cosine of the center-of-mass scattering angle. The on 

mass-shell condition for particle C determines x in Eq. (9.15) to be 

x = x,/(1-x,) . 

Forx > +3 one may substitute the simple forms for G b,B and du,dt from (3.1) 

and (3.6) and obtain 

EC + 
N-U 

= 3g c (l+gb)fb,BN@/B) x1 (l-Xl) 
N-T-l-gb 

d pc 
K(gb, W (9.17) 

b,d 
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where the dominant dynamical variation in E and pT is contained in 

K(F, N) = eF (p; + M2)-N , (9.18) 

and the effective mass scale M is less than- 1 GeV. 

The double bremsstrahlung process depicted in Fig. 1 is easily evaluated 

using the G functions and du/dt forms already discussed. The result can be 

written in the form 

da EC 3 = 3 c I(a,b)K(F, N;F,‘F-)J(e,z) . 
cl PC a,b 

(9.19) 

Here we have employed (as appropriate for all our CIM applications) the presence 

of one quark-loop color sum. The sum is over the flavors of the interacting 

constituents, and 

I(a,b) = g fa,Afb,BN(a/A)N@/B) 2 
F+ + F- 1 t2 + gaJrt2 + ii@ 

r(2 + ga + gb 
. (9.20) 

The main dynamical behavior is contained in the K function 

K(F, N;F+, F-) = eF(p;+M2)-N(1 -t xRZ)-F+ (1 - xRzrF (9.21) 

Note that the effective power of E = (1-xR) changes as one approaches z = + 1. 

Also note the similarity to formula (5.12) which we derived in the nuclear case. 

The parameters in the above are given by 

and 

F=l+ga+gb 

F+=l+U+g,-N 

F-=l+T+gb-N , 

(9.22) 

all of which can be easily calculated by quark counting and reference to Table III 

for T and U values. 
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For generality let us write the structure functions in a slightly more general 

form than Eq. (9.5)) namely 

xGa@ ) = fa”aM-a) WQga R,(x) (9. 23) 

where, as in our (9.5) example, Ra(x) = 1 for x>f: a, and Ra(x) = ((~-&(Lx))~~ 

for x6x. Using this form, the slowly varying factor J becomes 

r(2%a+gb, 2-F 1 
J(e,z) = d~~l+~~gaM H(q) 

gb 
,- (l+gc$- (l+gb) , (9.24) 

where 

One can see that for xR>$(ca+$,, and for z not too near 2 1, J(E,z) = 1. We 

have found that for the relevant values of ga, etc. , J can differ from one by 

typically 20 or 30% in the interesting experimental range, say E< 0.7. 

Setting J=l allows us to make simple predictions for the prompt rate of 

production of mesons, baryons, antibaryons, etc. All constants are now known. 

For meson production from a proton beam, we will write down the complete 

answer (the only time I dare: ). Now the leading subprocesses which contribute 

to large pT inclusive reactions are those which have the minimum pT and E-+ 0 

fall-off and the largest overall normalization. In this case the dominant contri- 

butions based on quark-hadron interactions arise from quark-meson scattering 

NM* --t qM) and the fusion process (qi + M%*). The contributions from the ut 

diagram Fig. 15a, and fusion diagram Fig. 15b yield 



-41- 

E dcr - (pp + MX) = c.+ 
d3p 3 c fM*/‘pfs/p N(M*/pWu’rW6 

M*q 
w KS@, 4;5,0) 

3 2 
+ZYM c f- 

q, GEM, %I* 
q,p fq,p~(ti/p)N(s/p)27 w Ks(lL 43, -1) 

3 2 
-+ZQM c f- 

:, qeM, f~* 
q,pf,,p~~s/p~N(q/p~27 w K&W 4;3,3), 

where KS = $[K(;F+F-) + K(;F-, F+)) . Using the numbers in the tables, the yield 

at 90°, for prompt 7r’, from the qM+ qM plus fusion graph is 

E= (pp d3p + bx) = K(9,4) 
[ 
2.2 + O.O6n(M*) E 2 1 (9.26) 

where n(l?.I*) is the number of states in the n/l* sum (-3 to 4). This equation 

includes the contribution from the st topology diagram of Fig. 15c which has the 

angular distribution Ks(9, 4;1,0); at 90’ it contributes only l/4 of that of the 

dominant ut contribution. Using a factor of 3 to account for the total/prompt 

effect, the experimental rate is roughly 9K(9,4), compared to the prediction of 

6.6 K(9.4). 

The rate for YT- production is somewhat smaller than for $ since G 
u/P / 

GUp 
increases as x increases. The nf and 7r- rates must be equal, however, 

atxT = 0, in the Feynman scaling limit, so the T’/T- ratio must decrease as 

xT decreases to zero. As xT increases, however, it should rise and saturate 

to a constant value in the symmetric quark model used here. 

The dominant K- cross section for E + 0 arises from the fusion term. 

However, for moderate E it is vital to retain various contributions with higher 

E powers, for example E 13 , arising from the ut and st topology qK-+ qK- 

graphs. Combining all these terms, see Fig. 15, our estimate for the K-/K* 

ratio is 
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do(pp --B K- 1 =o lE2 1+4c2 
d “(pp - K+) 

1+0,07 E2 N 0.1 E2(1=+4E2) (9.27) 

Recan that the numerical approximations used are not valid for E ---, 1 (xT+ 0). 

Experimentally, this ratio has the same shape as the above prediction but with 

about twice the magnitude. The fusion term dominates only for xT> 0.6. The 

agreement of the model is quite good. 

It is also possible to do estimates for other baryon beams. One very 

interesting example is 

do-pp.-i 7z = 
do@p --+m) 

P 

1=+-O. 03 n(lCI*) c-2 

HO. 03 n@*) 2 E 

190.12 
-2 

(E - E2) , (9.28) 

using n(M*) = 4. For example, at xT = 0.3, the ratio is predicted to be 1.20. 

In quark scattering models, it should be unity, thus there is not much difference 

until xT is large. In a model with fusion only, the ratio would be E -4 , which is 

4 at xT = 0.3. 

We havenot time to go through all possible estimates of yields, however 

a sampling of possible tests of our model include (these are prompt yields-multi- 

ply by 3 for total rates-see also Fig. 17): 
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E+& (pp+px) = 120$ K(3.6) 

- + 130 K(7,6) + 1.4 n@*)K(11,6) , 

E d” - (pp-+ px) = 5.6 K(11,6) 
d3p 

, 

d”(pp-+y~ = f + (p2 + M2) N 0.007 (p; + M2) - 
du(pp -+ r”) M T 

dm+p+r’) = E-2 2 dfi/?,’ 
N(q/r) + 2 f 5 q,pN(q/P) 1 

du(pp -+n’) N (q/p) 
-2 s1.0 E . 

+ T’X) = K(7,4) -I- 0.016 n(lk*) E -2 + 0.35 XT E -4 . 1 
_ and 

2 
du(np-+ T) QM22 2 
du(w-+ P) 

=-E pT+M 2 t 1 
OLB 

26 
c 

-5 M 
fM,pN(Mh8 

7 ; fg/pNtB/p) 

-0.27 ~~ ip; +M2). 
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X. QUARK-QUARK SCATTERING 

What about quark-quark (as well as quark-gluon and gluon-gluon) scat- 

tering ? - 16,17,18 The relevant diagrams are shown in Fig. 18 and are easily 

calculated. However, in order to compute the cross section for the production 

of a specific hadron h one must incorporate the final state fragmentation function 

4-h of the quark 

/ 

1 

E = (pp, 
d3p 

hx) = g 
XR 

+- Dh,q(z) E -$- (PlP2 + q;s,t/%u/+ 

(10.1) 

Using 

D=de and Eda - = IK(F,N) , 
d3p 

one finds 

Edo d3p (PP-’ h) = 5 d I K(F+f+l, N) 3(xT) , (10.2) 

where J^ is essentially constant, 

$ ‘v I’(l+f)F(l+F) 
/ 

l?(2+f+F) . 

For the r+ yields, a reasonable fit to the quark fragmentation functions 

gives Dn”,u (or ,,(z) = 1.0 (1-z)/z. Eq. (9.8) then gives at 90’ 

Eda (pp--+q 
d3p 

4 7;t.) = K(9,2) o?(O. 035) . 

where we evaluated J(xT) at xT = 0.3. The total yield can be succinctly written 

in the form (adding in Eq. (9.26) 

EF=A [(gi” + (&)2($]~’ , 
dp 

(10.3) 
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which may prove convenient in fitting the large pTdata. Thus for 01~ = 0.15, 

the CIM diagrams dominate for pT< 10, and one has a p;;,” behavior, whereas 

“for pp10, the cross section should show a pG4 behavior. Actually, quark-gluon 

scattering is also important and should be added to the above estimate. Roughly 

speaking it doubles the second term (at least !). 
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XI. FINAL REMARKS 

In conclusions, I think we have shown that there is a simple model for 

the s&tering of composite systems that works well for nucleus-nucleus scat- 

tering and for hadronic reactions. In the former case, we have been able to 

extend the descriptions of nuclei away from the usual and familiar nonrelativistic 

limit in a remarkably simple way. This application allows us to check as well 

the physical interpretations that we make in the considerably more complex 

nuclear case. 

In the hadron case, I would argue that the CIM diagrams must be included 

in any complete treatment and to omit them would be internally inconsistent. 

They are important because up till now, experiments are not at sufficiently large 

values of pT, and their couplings (oM and aB) are large (compared to as). In 

this regard, it is useful to distinguish three regions in transverse momentum 

for hadronic inclusive reactions: 

(1) The asymptotically scale-free, large pT region (above pT - 7 GeV 

for single particles, and pT - 5 GeV for jets), where the simple perturbation 

theory contributions for QCD are expected to dominate if 01~ g 0.3. In this 

region, strong interactions take their most elementary form, 

(2) The intermediate pT zone, where the CIM diagrams are predicted to 

-12 dominate giving scaling law contributions of the form p;,“, pT . . . at fixed 

xT, depending on the detected particle. In this region (roughly 2<pT< 7 GeV for 

single particle reactions), one can trace the quantum number flow characteristic 

of duality diagrams. In the case of exclusive reactions, Regge behavior takes its 

most basic form, with trajectories o(t) receding to negative integers (or half- 

integers), or in the case of Compton scattering to a J=O fixed pole. 
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(3) The most complicated region is at low pT where the cross sections 

Feynman-scale and many different coherent, diffractive, Regge, and resonance/ 

cluste? phenomena operate. 

In the general CIM approach several different areas of hadron phenomenology 

become interconnected: (a) form factors, (b) large t and u exclusive reactions 

(c) Regge behavior at large t, (d) particle yields for XL near + 1 at low t, and 

(e) large pT inclusive reactions. We have shown here that the normalization of 

the various CIM contributions to inclusive scattering are fixed by external con- 

straints and are not arbitrary. They are of a reasonable size to explain the 

moderate transverse momentum single particle yields. 

A theory of short distance hadronic processes patterned after asymptotically 

free QCD is in reasonable agreement with data, however CIM processes based 

on quark-hadron scattering are required for theoretical completeness and to describe. 

the experimental data at intermediate pT. 
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FIGURE CAPTIONS 

The basic hard scattering model diagram with the notation used in the text. 

Xwo coherent contributions to the Drell-Yan process. 

The wave function diagram used to compute the probability functions. 

The xF spectrum compared to the carbon data illustrating scaling and the 

value of H. 

The prediction for T=3 compared to the data of Ref. 9 for a deuteron beam. 

The prediction for T=3 compared to the data of Ref. 9 for an alpha particle 

beam, 

Two inclusive processes for a carbon beam illustrating the counting rules 

and the positions of the quasielastic peaks. 

Fit to the (deuteron form factor)2 data of Ref. 10. 

Contributions to the deuteron structure function, with partons of one of the 

nucleons (a), one nucleon (b), and both nucleons (c) recoiling coherently. 

Contributions to the nucleon structure function, with one (a), two (b), and 

three (c) quarks recoiling coherently. 

The contributions (valence, diquark and sea) and the total structure functions 

of proton and neutron (for q2 = -5 (GeV) 2). 

Massive lepton pair production. 

Fit to data given by Cronin, et al. , Ref. 14. 

Simple model for G’s and their more realistic G functions. 

Diagrams contributing to inclusive meson production. 

Dominant contributions to K- production. 

Important graphs for B and B production. 

Quark-quark scattering diagrams. 
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