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ABSTRACT 

We consider the properties of l-dimensional gauge field-theories at finite 

temperatures and densities. The massive Schwinger model in the presence of 

a uniform charge background is shown to form a Wigner crystal which Debye 

screens charged impurities. The two species Schwinger model with oppositely 

charged fermions is studied at finite baryon density. This system does not under- 

go a phase transition as the density is increased, but becomes progressively more 

polarizable until at infinite density Debye screening occurs. Finally we consider 

the massive Schwinger model at non-zero temperature and show that Debye 

screening occurs at infinite temperature. We speculate that in three dimensions 

this last transition occurs at finite temperature. 
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1. INTRODUCTION 

Quantum Field Theory is usually studied at zero temperature and fermion 

riumbeF density. However, a good deal of interesting physics occurs in environ- 

ments of extreme temperature and density. Physics at temperatures and densities 

corresponding to the masses of electron and positron pairs can be understood in 

the framework of perturbative Quantum Electrodynamics. However, it is believed 

that when the temperatures and densities increase to the point where the average 

energy density becomes comparable to that of hadronic matter new phenomena 

occur. In particular, a number of phase transitions have been conjectured as the 

density of matter in a neutron star is increased. These phenomena include pion 

condensation; 1 abnormal nuclear matter2 and the transition to a state of free 

quarks3 at high density and/or high temperatures. 

At these extreme conditions it is probably important to describe matter in 

terms of quark constituents which interact through forces which at zero temperature 

and densities can account for confinement. For these reasons we will study the 

high density and temperature limits of l-dimensional theories which display 

confinement. In particular we will consider the Schwinger model with one or two 

massive fermion species. We would rather, of course, study Quantum Chromo- 

dynamics in three dimensions, but we do not have sufficient tools to do that at this 

time. Hopefully, the questions we pose and some of the phenomena we find in the 

l-dimensional models will have their analogs in higher dimensions. This will be 

discussed further in the text. 

This article consists of six sections. In Section II we review the properties 

of the massless and massive Schwinger models. The massless model behaves as’ 

a plasma which can Debye screen an arbitrary charge while the massive model 

behaves as an insulator. In the third section we consider the massive Schwinger 
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model in the presence of a uniform background charge density. We find that an 

opposing, non-uniform charge density is induced. In fact, theinduced charged 

ferm+ons form a Wigner crystal, In Section IV we consider the two species 

Schwinger model and introduce a chemical potential to control the particle density. 

At a finite chemical potential a phase transition occurs and the ground state density 

of particles becomes non-zero. However, the theory continues to confine its 

fermions. Only as the density goes to infinity does the dielectric polarizability 

tend to infinity. Therefore, formally speaking, a transition to an unconfined 

phase occurs at infinite density. Equivalently, the long-range confining force 

between static sources vanishes smoothly as the density goes to infinity. Finally, 

in Section V we consider the massive Schwinger model at high temperatures. The 

system again undergoes a transition to a plasma phase at T=M. We speculate 

that in the real three-dimensional world, this transition would occur at finite 

temperatures. Some concluding remarks and discussion appears in Section VI. 
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11. USEFUL PROPERTIES AND FORMULAS OF THE SCHWINGER MODEL 

The massive Schwinger model4 is defined by the l-t1 dimensional Lagrangian 

density 

(2.1) 

where F =aA - A and m is the bare mass of the fermion. The properties 
PV PV VP 

of this model indlude the following: 

1. The spectrum consists of neutral, massive bosons. 5 

2. If sources of charge + eg are embedded in the vacuum at separation 

distance L, a confining linear potential occurs6 
.- 

V(L, e) = e2g2f(e ,m/g) . L (2.2) 

For e=integer the sources are neutralized by the creation of pairs whose members 

then bind to the sources. This phenomenon causes f to be a periodic function of 

E which vanishes whenever e=O, + 1, + 2, . . . This behavior can be summarized - - 

for small electric fields E by saying that the vacuum is a dielectric with a field 

dependent dielectric constant l/f (E/g, m/g). 

3. For the special case m=O the long-range force is Debye screened. This 

means that mlLq ( f E, m/g) = 0 so that longrange confining forces are now absent. 

In other words, long-range forces do not occur whatever the charges + eg of the 

sources. In this case the vacuum is referred to as a ffplasmalf or “conductor”. 

The behaviors summarized in properties (2) and (3) give us a practical 

method of labeling a general theory as either “confiningl! or “plasma”. 

These properties of the Schwinger model are most easily obtained by 

studying the Bose form of the theory. Writing the equivalent Bose form of the 

theory in the Coulomb gauge consists of the following correspondences: 738 
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h 

: $#I: - cmNm cos(Zfi4) (2.3a) 

: $r,t,!~: --t - cmN, sin(2&@) (2.3b) 

I!, = : Srpfi @V -b a+ (2.3c) 

: $ ia$:+&Nm(8P@)2 (2. 3d) 

where Nm denotes normal ordering with respect to the fermion mass m and c is 

a numerical constant. Now the Hamiltonian in the Coulomb gauge 

%=I ij (iy18, + m)# dx 
2 

- &J 11 jo(x) Ix-y1 job9 hdy (2.4a) 

becomes 

S=Nm 
I,[ 

+r2(x) + (alc$)2 - cm2 cos(2&@)] dx ’ 

(2.4b) 

Finally, doing two integrations by parts, the Bose form of the Hamiltonian density 

becomes 

X=Nm $7~~ + (8l$)2 + < G2 - cm2cos(2JYr$)] (2.4c) 

where we have ignored surface effects. Accounting for non-vanishing boundary 

conditions for 4 is equivalent to placing charges of fractions + E at spatial 2 

infinity, respectively. 597 Then Eq. (2.4~) becomes 

c%‘=N m I (2.5a) 

or, shifting the field $ + @ - fi E, 

2 
SfE’=N n I +gr2 + i(al$)’ + & +2 - cm2cos(2&Y$ - 27r9 1 (2.5b) 
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Normal ordering with respect to the fermion mass m is often inconvenient. 

Aside from the appearance of additive constants different normal ordering pre- 

scripttis ofscan be absorbed into redefinitions of the coefficient of the cos 

term. 8 The prescription is 

NMCOS(kf’) (2.6) 

Choosing M = g,&, Eq. (2.5b) becomes 

tip= NM +r2 + &a,~))~ + &M2+’ - cmM cos(2&$ - 27~) 1 (2.72 

Much of the physics of the massive Schwinger model is very accessible when GYZ’ 

is written in this form. For example, one can easily confirm property (2) listed 

above Eq. (2.7) and its generalization to the two species model will play a central 

role in the following sections of this article. 
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III. THE MASSIVE SCHWINGER MODEL IN A 
BACKGROUND CHARGE DENSITY 

As our first example we consider the Schwinger model in equilibrium with 

a uniform charged background. An external charge distributionpc. (z) can be 

incorporated into the Bose Coulomb gauge formalism of Section II by replacing 

j,(z) in Eq. 2.43) by j,(z) + p, (z), . 

’ 3f= Ij$(iyldl + m)zC)dx - Z g2 I( j,(x) + P, tx)) Ix-Yl(jo(y~ -t p, (Y)) do dy . . 

(3.1) 

If we define Qc as 

(3.2) 

then the Bose form of the Hamiltonian density becomes 

%= NM [$I-~ + &31$)2 + M2(++$J2 - cmMcos(Q&$)] (3.3) 

for the E=O case which we study first. 

A uniform charge background should be thought of as the limit of a finite 

line of charge extending from -L to +L. If the region is chosen symmetrically 

relative to the origin then, 

Gc = az (3.4) 

for IzI< L and Gc is zero elsewhere. The Hamiltonian density then becomes, 

<ti= NM 
I 
&r2 + $(i31$)2 + $M2($ f az)2 - cmM cos(Z&r$)] (3.5) 

for (zl<L. It is convenient to define a new field 7=+ + az. Then Bq. 3.5) becomes 

Z@= NM [+n2 + $(LI,$)~ -t gM2z2 - cmM cos2& (7 - az) 1 (3.6) 
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where we have dropped constant terms coming from the kinetic energy. In this 

form-e Hamiltonian density does not have translational invariance. The source 

of this asymmetry is the positioning of the center of the charge distribution. Note, 

A however, that .X is invariant under the discrete translation z -+ z + a . The 

equation of motion following from Eq. (3.6) 

a2 a2 (- > -- 
at2 az2 

7+M25+2&c. mMsin2&(?-az)=O (3.7) 

has non-trivial static solutions which also only have the discrete symmetry 

G z-z+ a. In particular, the state of minimum energy is such a non-trivial 

periodic solution of this equation. As will be discussed further below, these 

solutions consist of periodic waves of charge density. Their appearance is not 

surprising since they have a classical physics analog. In 1937 Eugene Wigner 

considered the possibility that the lowest energy state of a neutral system of 

charges in a uniform background charge density would be an ordered, crystalline 

state. 9 He argued, in fact, that at sufficiently low temperatures such “Wigner 

crystals” would indeed form. Before discussing the stability of such crystals 

in our l+l dimensional world we will study the classical equations in more 

detail. It is convenient to rescale the space-time variables (z, t) and define, 

then Eq. (3.7) becomes 

y = az , t = at (3.8) 

(5 - $)i$+J$J+2Jic. +$ sin2&(T-y)=O (3.9) 

Consider the low density case in which “a” is small and consider just the 

potential energy pieces of Eq. (3.9) 
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4\ 

?!I ~+a?J*c. y 
a2 

sin2& (F-y) = 0 (3.10) 
a 

The solution to this equation can be determined graphically and as shown in 

Fig. (1) for the case m/g<< 1. To good approximation 

so 

$ z 2& c - E sin(B& az) - az (3.llb) 

(3. lla) 

which generates an induced charge density 

; 
a,$ = 4& a . c $j cos(2& az) - a 

6 
(3.12) 

The ripples in Eq. (3.12) indicate the crystal structure alluded to above. Next 

consider the case m/g>>l. Then the induced charge density consists of narrow 

spikes, periodically spaced. This is a reasonable result, since in this limit one 

should recover the classical Wigner crystal. 

Do quantum fluctuations destroy the classical Wigner crystal? One might 

expect an affirmative answer in view of the general theorems which state that 

continuous symmetries (such as translation invariance) cannot be spontaneously 

broken in one dimension. 10 However, these theorems do not apply to the Wigner 

crystal because it is held together by long-range Coulomb forces. The stability 

of the crystal can be tested explicitly in perturbation theory. For small m/g 

one can treat the cos-term in Eq. (3.6) as a perturbation on a massive free 

field. An explicit evaluation of the lowest order quantum correction to the vacuum 

expectation of $ gives 

<?(z, t)> = 2& cmM /sin(2& az’) AF(z-z’, t-t’; M) dzl dt’ 
(3.13) 
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corresponding to the graph in Fig. (2). Eq. (3.13) is a well-defined, finite 

pericZic function. The lack of i&a-red problems in the perturbation series 

indicates that long wavelength fluctuations do not disorder the system. For large 

m/g the classical analysis is reliable and it also indicates the existence of the 

ordered crystal. 

Next we wish to understand the confinement properties of the theory with 

a given background charge density. Is there a lone-range confining potential 

between two widely separated static charges 2 eg? The external charges may be 

described by an extra contribution to the background charge density, 

cg6(x-L) -.eg6(x+L). Corresponding to this j,(x, t), one must add to $ a field 

which has the constant value &?E between the two sources and is zero elsewhere. 

The coefficient of the long-range potential then equals the change in the energy 

per unit volume in the region between the two sources. Eq. (3.6) now becomes 

X= NM ir2 + &a,+)2 + &M2($ + az +,/?E)~ - cmMcos(2&?@)] (3.14) 

Shifting the field $ + $ + az + fi E , we have 

LX= NM &r2 + +(alqj2 + +M2G2 - cmM cos2fi ($-az-$?e)] 

(3.15) 

Observe that s non-zero E can be absorbed into a shift in the position of the 

Wigner crystal and therefore adds no volume-dependent energy to the system. 

So, the Wigner crystal causes screening-the system behaves like a plasma, not 

a dielectric. 
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IV. THE TWO SPECIES SCHWINGER MODEL AT FINITE DENSITY 

As our next example we consider the two species Schwinger model in which 

the tw”o species have equal mass and opposite charge. This model allows us to 

study a system at non-zero baryon number density but vanishing background charge 

density. Therefore, we have a l-dimensional analog of the environment of color- 

less nuclear matter as might exist in real neutron stars, say. 

Again it is convenient to recast this theory into an equivalent theory of Bose! 

fields. ” We associate a Bos& field 4 with each fermion $i(i=l, 2) and take over 

the results reviewed in Section II for each species. It is useful to introduce fields 

$+ and $- defined by 

Then the total charge density is 

p=J-T 1 1 2 & al+- ha (+ -q~ )= 2 

and the baryon density 

(4.1) 

(4.2) 

(4.3) 

The Bosd: form of the Hamiltonian density reads 

2.V = Nm $r12 + &r 22 + Btyq2 + 4(a,@,) 2 2 (c1-9,j2 + 2n 

(4.4) 
-cm2cos(2& $,) - cm2cos(2& $2)] 

In terms of c$+ and + this becomes 

eW= Nm &r2 
[ - 

+ $(a,$ )2 + M2+f + 9~: -2cm2cos(J;;@-)cos($ $+)I 

(4.5) 

in the case E=O which we study first. 
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In some of our detailed analyses we will consider this theory only in the 

limitr’q case M>>m. Then one would expect that the low energy behavior of the 

theory would be described by Eq. (4.5) by setting + to zero and adjusting the 

coupling constant appropriately. The necessary resealing of the coupling constant 

(the coefficient of the cos term) has been computed in Ref. (11) with the result 

that 

(4.6) 

if M>;m. 

We wish to study the two species model of Eq. (4.5) at finite baryon density. 

To do this we introduce a chemical potential ~1 and add to the Hamiltonian the term 

/-j&W = P a/al++& f (4.7) 

To avoid ambiguities we let the chemical potential be non-zero between -L and 

+L and set it to zero elsewhere. Now the Hamiltonian becomes 

(4.8) 

Next define $+=q+ + bz. This separation evidently produces a constant background 

Baryon density 
J 

ib. Substituting into Eq. (4.5) we have 

L??= N 
ir 

+a2 + +(a,$ )2 + 81~4~ + $f + $(a,;?;+ + b)2 - 2cm2cos(& $-)cos&($++bz) dz m - 1 [++w - @+W] (4.9) 
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so, 
4r 

Z’=N + &(d@ )2 + M2q2 + &; + $(a,$+)2 

-2cm2 cos($GY $-)cos& ($+ + bz)] dz 

+ a [ @4-;i;+(-L)] + I$ [ $+tL)-ant-L)] 
(4.10) 

dropping several irrelevant constant terms. We now define b = -2~ &to eliminate 

the last two terms. 

Next we wish to minimize the classical energy and find the system’s ground 

state. Consider two possible configurations for $+ and $ : 

1. T+” -bz and + = 0. Then the average baryon density is zero. 

2. T+ =Oand$ =O. Then the average baryon density is approximately 

$b. 

Which of these two configurations is energetically favored? We cannot solve the 

classical equations analytically so consider only the case M>>m. Then the M 
2 2 

$ 

term in Eq. 4.10) forces @ to be small and we set it to zero and adjust the 

coefficient of the cos term as explained above 

x = No/ [ +T: + $(al$+)2 - 2c’m2cos& (5, + bz)] dz (4.11) 

Now we consider only static fields and compare the energies of cases 1 and 2 listed 

above. For the first case 7, = -bz, + 

X(static) z + b2L - 4cm2L (4.12a) 

For the second case T+ zz 0 and 

X(static) z 0 (4.12b) 
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Evidently for 4cm2>b2 case 1 is favored and the ground state has zero average 

baryon-density . However, if 4cm2< b2 the ground state will have non-vanishing 

baryon density. Since we have not made an exhaustive search for the optimal 

F+ ‘t 1 is not clear whether this transition is abrupt or continuous. Luckily it is 

not difficult to understand the physical origin of this transition and argue that it 

is in fact a continuous function of b. 

To do so we consider a simpler theory -free, massive fermions in the 

presence of a background fermion number density. We may write this theory 

using the Bose correspondences as a sine-Gordon equation in the presence of 

a chemical potential 

CT= NmJ [ ST2 + $(d,~)~ - cm2cos(2& +,I d.z 

The chemical potential term can be integrated to give an energy proportional 

to the total charge. In terms of fermion degrees of freedom the Hamiltonian is, 

z=l<ak(../m+b)dk+/b$k (A--b)dk (4.14) 

Now consider the possible phases of this theory as b is varied. For small b it 

is not energetically favorable to populate any mode of the fermion field, but when 

b>m it becomes favorable to populate anti-particle states for which ’ ,j?%?<b. 

From this observation we can calculate the particle density in the ground state. 

All the modes are populated up to the “Fermi surface” kf = ,/xi. But the b 

connection between particle density and kf in one dimension is simply P = Lk (27r) f’ 
so the ground state density satisfies the equation b2 _ 4~~. p2 = m2. This 

equation is plotted in Fig. (3) along with the cases 1 and 2 considered above. 
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Note the general agreement between the various curves. Therefore, we feel that 

the re”a1 transition in the two species model is continuous and our crude estimates 

given by cases 1 and 2 are reliable for b everywhere except in the immediate 

neighborhood of the transition point. In that region a continuous curve resembling 

that in the figure is probably correct. 

Now we return to the equation of motion following from Eq. (4.11). 

q q+ + 2,i% c1m2sin& ($+ + bz) = 0 (4.15) 

A classical solution of Eq. (4.15) would have periodic solutions indicating the 

possibility of a crystalline structure. However, quantum fluctuations are sure to 

destroy this ordered phase because the perturbation is about a massless field 

and in l+l dimensions there are definitely divergences here. 
10 Indeed, the 

approximate description in which $ = 0 is equivalent to the massive Thirring 

model in the presence of a chemical potential. Since this model has no long-range 

forces, the existence of a crystal will violate the theorems on spontaneous order 

in 1+-l dimensional systems. 10 

We now consider this model in the presence of a pair of fractional charges 

+ eg separated by a distance 2L. Following the logic of Section III we must modify 

the Hamiltonian to be 

(4.16) 

- 2cm2cos$G (@- + EC) cos& (++ + bz)] dz 

Again choosing M>>m, the C/J degree of freedom is frozen out and we can place 

qJ_=oinx, 

S’= N,/[ +T: +; (alJS2 - 2c’ m2cos(7re)cosfi (T+ + bz) 1 dz (4.17) 
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To study confinement we must compute the ground state energy of Eq. (4.17). 

ThisTs done in the Appendix for large densities, i. e. M/b<<l. There we determine 

that the vacuum energy density shifts by an amount proportional to 
m2M b C0S2(7rE). 

The string tension is then, 

2 M Tension = const . m l i;- * sin2(re) (4.18) 

Note that as the background density increases a larger and larger percentage of 

the external charge is screened away by polarization. However, only at infinite 

density does the screening become complete. This behavior contrasts sharply 

with Quantum Electrodynamics where a plasma occurs for arbitrarily small 

density. 
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V. THE MASSIVE SCHWINGER MODEL AT FINITE TEMPERATURE 

% is interesting to ask whether theories of confinement pass to an unconfined 

phase as they are heated. This is known to be true of lattice Quantum Chromo- 

dynamics in 3+1 dimensions. 12 Here we will compute the temperature dependence 

of the string tension in the massive Schwinger model. General theorems concerning 

the absence of spontaneous symmetry breaking in theories of one spatial dimension 

prohibit us from finding a transition to an unconfined phase at a finite temperature. 10 

Instead, we shall find that the string tension vanishes smoothly as T, the temperature 

goes to infinity. We believe that it is reasonable to expect this transition to appear 

at a finite value of kT (k is Boltmann’s constant)-probably on the order of a GeV-in 

theories of confinement in 3+1 dimensions. 12 

To begin we review the calculation of the string tension in the theory at 

T=O. We will do this using the Hamiltonian without any normal-ordering because 

then the generalization to finite T is most elementary. From the discussion of 

Section II we anticipate that the coefficient of the cos-term in the Hamiltonian will 

then be renormalized order by order in perturbation theory. So, we will write, 

L.W’= C&T~ + i(i3l+)2 + iM2e2 - mKcos(2&$-2re) (5.1) 

and adjust K to keep the energy density finite order by order in perturbation theory. 

We wish to calculate the shift in the ground state energy between the charges + eg 

which are located at points + L, respectively. This calculation yields the static 

potential acting between the charges. The calculation will be done to first order 

in the fermion mass m. Therefore, we need the vacuum expectation value of 

cos(2&+-2ne), 
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<cos(2&$ - 27re)> = cos(27re) <cos 2&G> 

= cos(27re) <cosBJr @> 

+ sin (27re) csin2&+ 

= cos(27re) c &. (21/;;)2n;&2n., 
(2n )! 

n=O,l,... 

Consider the first non-trivial contribution to the right-hand side of Eq. (5.2) 

(5.3) 

Define this integral to be I. The corresponding Feynman graph appears in Fig. 4. 

It is ultraviolet divergent, so we cut it off at momentum A, 

I=& k.i(A/M) 

It is easy to see that the general term in Eq. (5.2) contains a factor of 

<4 
2n. > = (2n -l)!! In 

where the (.&n-l)!! simply counts the number of ways the contractions can be 

(5.4) 

accomplished to produce a graph of the topological structure shown in Fig. 5. 

Now the sum in Eq. (5.2) can be done 

c =x (i)2n’ (2&)2n tF;‘;‘)i! In (P a2 ~ 
n GW! ( d-9 2.n<+2n.> 

n 

= c (-qn (4+ 1 f’ 
2nn ! 

= c (-11” (&I)n 
n 

= exp(-27rI) 

So, the shift in the ground state energy 

E = -mK <‘cos(~&$J-2nd dz> J (5.7) 
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becomes 

4 E = -mKcos(2re) e -27r1 . 2L (5.8) 

To obtain the string tension we divide by 2L and subtract the energy density in the 

absence of the external charges 

Tension = mKe -2T1t1 -cos27rr) = 2mKe -2rI sin2(m) (5.9) 

Finally, as discussed above, we adjust K so the combination Ke -27rI = Kf is finite 

as the ultraviolet cutoff A + 00. Therefore, our final result is 

Tension = 2mKf sin2(re ) (5.10) 

Now we compute the finite temperature string tension. We will use standard 

finite temperature Green’s function methods. 13 The string tension calculation then 

runs parallel to the T=O case with finite temperature Green’s functions replacing \ 

the T=O propagators. This causes the substitution 13 

1 1 
2 2. k2+M2;4r n 

, P=m (5.11) 

in the previous calculation. The finite temperature analog of Eq. (5.8) becomes 

-21rI 
E(T) = -mKe &os(Bae) * 2L (5.12) 

Now we evaluate I 
P’ 

Following standard tricks of statistical mechanics, l3 the 

sum over n is replaced by a contour integral by considering 

This expression is useful because the quantity in the second parenthesis has poles 

of unit residue at the points z = 27m/p. Consider the contour integral 

;p cot ;pz 

k2 + M2 + z2 
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where the contour I (shown in Fig. 6) encloses all the-singularities of the integrand. 

Lettiii‘g l? recede to infinity in all directions and observing that the integrand 

vanishes rapidly in all directions, we learn that 

dz ;P cotg p”) = 
k2 + M2 + z2 

0 (5.13) 

circle at 
infinity 

Applying the residue theorem gives 

o=c 1 $ cot(~&2) + lp cot(- 5 p&2) 

22. ‘Z n k2 + M2 + 47r n 

P2 
PiJ?GF ’ 2i@GF 

(5.14) 

Therefore, the sum entering the expression for I 
P 

is 

_ c 1 
n k2+M2+ 4,2,2 

P2 

( ) 
cot z i /L/x2 - 

= 

’ 2ijZG7 

coth (;/3,/k-) 

Substituting into Eq. (5.11) 

(5.15) 
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Or 
4 

Ip=I+A 
P 

(5.16b) 

where we have identified the expression for I from Eq. (5.3) and have defined the 

second term in Eq. (5.16b) to be A 
P’ 

Now Eq. (5.12) becomes 

E(T) = -mKe -27rI cos(274 e -2TAp , 2-L (5.17a) 

We identify the quantity Kf = Ke 
-27tI as in the zero temperature calculation. 

Then 

E(T) = -mKf cos(27re) e -2TAp . 2-L (5.17b) 

All the temperature dependence of E(T) lies in the factor exp(-2rAp). As T -SO, 

A 
P 

---) 0 (at the rate exp(-M/kT)) and we retrieve the zero temperature result. 

As T + co, we can replace exp ;p 
[ 4 

k2+M2, -11 by ,&/a in Eq. (5.16a) to obtain 

the leading asymptotic behavior of AD 

1 dk 
-3 k2+M2 

0 
kT 

-m 

So, in the high temperature limit 

E(T) - 

giving a string tension 

-mKf cos(2ne) e -*T/M. 2L 

(5.18) 

(5.19) 

Tension - 2mKf e -rkT/M sin2( 7rq (5.20) 
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So, as the temperature increases, the string tension falls to zero continuously. 

Formzlly speaking, the system becomes a plasma at infinite temperature. 
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VI. CONCLUSIONS AND DISCUSSION 4 

To conclude we would like to compare the results of our paper with various 

speculations concerning field theories in extreme environments in three dimensions. 

Consider first the possibility of pion condensation’ in high density nuclear matter. 

Pion condensation is the appearance of a macroscopic condensate of the pion field. 

Because the pion couples to nuclear matter through a p-wave, it is thought that 

the condensate is non-uniform with, in fact, a periodic spatial dependence. It 

is interesting to compare this phenomenon to the two species Schwinger model 

at finite density. The field $+ is a pseudo-scalar field which is massless in the 

absence of fermion masses and can be taken as an analog of the pion field. In 

the classical approximation the pseudo-scalar field was shown to have periodic 

spatial variation. Thus, at the classical level, pion condensation in the two 

species Schwinger model occurs at an arbitrary non-zero density. However, 

general theorems assure us that in one dimension this spatial inhomogeniety is 

destroyed by quantum fluctuations. 10 In three dimensions quantum fluctuations 

do not necessarily destroy the analogous ordered state. We have seen in the text 

that the development of periodic inhomogenieties in the field @+ is related to 

crystallization. It is interesting to speculate that in real nuclear matter the 

formation of a pion condensate induces a crystallization of the nuclear matter 

also. 

Another phase transition of interest involves the possible disappearance 

of confinement at high density. 3 One might speculate that Debye screening occurs 

in high density nuclear matter eliminating the color confining long-range potential. 

It is not known if this occurs in three dimensions but in one dimension we have 

seen that a sharp transition of this type does not occur at finite density. To our 
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knowledge no general theorem concerning one dimensional physics forbids 

phase transitions as a function of density. Nevertheless the confining forces 

‘betwe<n colored particles become sufficiently weak at high density that they 

probably can be ignored in considering, for example, the system’s equation of 

state. In other words, at large density free fermion physics should govern the 

equation of state 14 even though confinement may actually persist. 

As temperature increases we also did not find a sharp transition to an 

unconfined phase in the massive Schwinger model. But, in this case, our 

conclusion follows just from general theorems of one dimensional statistical 

mechanics. 10 The fact that the confining forces do, however, disappear as 

the temperature goes to infinity suggests that in higher dimensions Debye 

screening should occur at finite temperatures. Lattice calculations in three 

dimensions support this conjecture. 12 
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APPENDIX 

In this Appendix we shall sketch the calculation of the string tension in the 

-two s;ecies Schwinger model at large baryon density. We begin with the 

Hamiltonian of Eq. (4.17). 

38 =N + +(al’ij+)2 + & k2T$ - 2c~m2cos(Te)cos,/‘% (F+ + bz) dz m 1 
Eq. (4.17) contains a mass term &k2$f which will be set to zero at the end of 

the calculation. Non-zero k is introduced to avoid ambiguities in the intermediate 

stages of the computation. It is also best to normal order the Hamiltonian with 

respect to k. Then, using the normal ordering theorems reviewed in Section II 

and recalling that c! = c . Ja, we have 

3e = :&z + %(alT+)2 + +k2$ - 2fic mm COS(~E)COS& (T+ + bz): dz 

Here :: denotes normal ordering with respect to k. Since k is an auxiliary 

parameter it should not enter our final answers. Its disappearance from those 

answers constitues a partial check of our arithmetic. 

The string tension will be calculated in perturbation theory in the parameter 

m. It is easy to see that the lowest order contributions vanish identically, 

AE(l) = - 2$!- c rnJXK cos (~5) < 
/ 

: cosJ-%(;++bz) : dz> 

= -2fic mJiVF cos(7re) . cosfi i$+ : cos& bz 

because the factors cosfi bz and sin,/?% bz cause the integral over all of space 

to average to zero. The second order contribution to the ground state energy is 
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AE(2) At = 8 c2m2Mkc~~2(~~ * 
iJ 

cos(6 bz)cos(abz’) 

- <T : cos& q+(z, t) : cos& T+(zI , t;.) : > dzdz’ dtdt’ 

+ 
I 

sin(&bz)sin(&bz;)<T : sin&q+(z, t) :: sin&q+(z;‘, t’ ) :> dzdz’ dtdtr 
i 

(A-3) 

where At is the time interval over which the perturbation is turned on. Counting 

arguments similar to those appearing in the string tension calculation of Section VI 

can be used to compute the vacuum expectation values in Eq. (A. 3) 

<T : co&$+(z,t) :: cos,/%j+(z’ , t’) :> = cash 29~ G(z’ -z, t’ -t;k) 
[1 1 (A.41 

<T : sin&r~+(z, t) :: sin,/%r$+(Z’ , t’) : > = sinh 
[ 
2n G(zr -z, t’ -t; k) 1 

where G is the boson propagator with the mass k. We are interested in the 

long distance contributions to the integrals in Eq. (A, 3). Then the Euclidean 

propagator can be approximated by 

G(z-z’ , t-t’ ;k) - +;; &I k (J .(t-t1)2 + {z -z1)2 1 (44.5) 

Now we have 

AE(2) At z 2c2m2Mk cos2(+) * 
/ 

dzdt dz’ dt’ 

cosm b(z+z’ ) + cos& b(z-z’ ) 1 . 
k,/(z-z’ 1’ + (t-t’)2 

+kJm 1 
) - cos&%b(z+zl‘) 

I[ 

. 
kJ* 

J-7771) - k (z-z’ 2 + t-t’ 2 
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which is identical to 

AE(2)Lxt fz 4c2m2Mkc0s2(7rE) * I dzdt dz’ dt’ 

+ k/m . cos&b(z+z’) 

It is convenient to define variables 

z =z+z’ + - , t*=t+v - - 

so then 

A.E(2)A t = c2m2Mk cos2( 76) * / 
dz+dt+dz dt - - 

cosfibz 

i . 

- + k z + t . 

kJz2+ 

--p---T 

- - - - 

(A. 7) 

(A. 8) 

(A. 9) 

The second term gives zero since the average of coszbz+ is zero. To 

evaluate the first term do the integrals over z+ and t+. They-give the factor 

4. At. 2L. Next the z integral is done 

00 
I 

cos&bz 

o JzF 

- dz- = KO(Ji;;ht-) 

- - 

where Kg is a modified Bessel function. So, finally 

AEt2) Z [16c2m2M cos2(7re) r Kg (,/%btjdt- 1. 2L 
0 

and changing integration variables 

A,(~)% 16 cm2 $ COST 
fi 

(A. 10a) 

(A lob) 
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Dividing by 2L and subtracting the E=O version of this equation we have the string 

tension 

Tension zz const. * m 2 ; [cos”(*E, -11 (A. 11) 

which displays confinement (the tension vanishes whenever E equals an integer) 

and vanishes in the infinite density limit. 

1. 

2. 

3. 

4. 

5. 

6. 

FIGURE CAPTIONS 

A graphical solution to Eq. (3.10). The abscissa is @=F-y and the curves 

show the two terms of Eq. (3.10) for different values of y. 

Lowest order graph contributing to the vacuum expectation value of F+. 

The dashed line is a boson propagator. 

Ground state baryon density vs. chemical potential. The dashed line applies 

to the theory of free massive fermions. The broken dark curves depict 

the cases 1 and 2 of the two species Schwinger model. . 

Feynman graph depicting the vacuum expectation value of the square of a 

boson field. 

Feynman graph for <@ 2m> . 

The contour F enclosing the singularities in the finite temperature version 

of Fig. 4. 
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