
SLAC-PUB-2073 
January 1978 
(T) 

LATTICE FIELD THEORIES: NON-PERTURBATIVE 

METHODS OF ANALYSIS* 

M. Weinstein 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

(Lectures presented at the Banff Summer Institute on 
Particles and Fields, Banff, Alberta, Canada, 

25 August - 5 Septemberi 1977.) 

*Work supported by the Department of Energy. 



-l- 

Introduction 

In the past few days we have heard several beautiful lectures describing 
-cI 

the way in which people hope to extract interesting physical information from 

quantum field theories by studying their semi-classical versions. Being in the 

mountains it seems appropriate to describe these attempts as an attack on the 

semi-classical face of quantum field theory. Since all mountains have more than 

one face, I would like to describe in my next few lectures attempts which have 

been made to launch a direct attack on the quantum face (Fig. 1); hence these 

lectures are in a sense complementary to the preceding ones. 

To be precise I will first show how one can, from the very beginning, consider 

the problem of solving for the spectrum of states of any given continuum quantum 

field theory as a giant Schroedinger problem and then explain some non-perturbative 

methods for diagonalizing the Hamiltonian of the theory without recourse to semi- 

_ classical approximations. Along the way the notion of a lattice will appear as an 

artifice to handle the problems associated with the familiar infrared and ultra- 

violet divergencies of continuum q.f.t. and in fact, for all but gauge theories, 

I will show you how to go back and forth between specific lattice theories and 

continuum quantum field theories formulated with spatial and momentum cutoffs. 

This is an important thing to be able to do in principle, since it is by no means 

a priori clear that the situation is as shown in Fig. 1. It may be that the situa- 

tions shown in Fig. 1 where two groups are attacking different faces of the same 

mountain is a trick of perspective and a more Olympian view of the situation would 

reveal that, contrary to our prejudices, the situation is more like Fig. 2, where 

we see we are in fact scaling different mountains. As this dreadful possibility 

could be the case in reality we must from the outset define the rules of the game 

and list our eventual goals so that you will understand where we are going and how 

we hope to get there. 
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First, let us address the question of goals. Here is where we get to list 

all the good stuff everyone has in his shopping list. We would like to under- 

stand on thcbasis of Lagrangian field theory -- 

(1) my --as we have seen in the lecture of F. Gilman and G. Feldman--the 

naive quark model gives such a remarkably nice qualitative picture of hadron 

phenomenology. (Especially things which can be reduced to counting on our fingers 

kinds of questions.) 

(2) If the successes of the naive quark model point to the existence of 

bound quarks as elementary constituents of matter, where are they? (i.e. why 

haven't they been seen in final states to date?) 

(3) If color gauge theories are in fact the right place to look for a theory 

of hadrons-- is there any truth to the folklore that asymptotic freedom and con- 

finement are two sides of the same coin. 

Clearly, to be able to answer these questions in a really. convincing way 

within the framework of conventional field theory it is absolutely necessary to 

develop techniques which are powerful enough to allow us to 

(1) Find the hadrons as bound states of the fundamental degrees of freedom. 

(2) Calculate the ratio of the energy of a widely separated quark-antiquark 

pair to a typical bound state (e.g. the proton) in order to see if confinement does 

(or heresy--does not) occur in color gauge theories. 

Even without specifying how we hope to develop such techniques, we can see 

from the fact that we are asking for the answers to questions which clearly go 

beyond the scope of perturbation theory that there will be certain steps which 

must be taken as we proceed along the way to our eventual goals. First, since we 

will not be able to rely on the conventional tools of Feynman graph perturbation 

theory we will have to find a way of formulating field theory so as to be able 

to discuss the problem without having to confront either infinite volume or short 
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distance divergences. That is not to say that we will attempt to remove all 

divergencies from the continuum theory at the outset, but rather--the idea is 

to first i;pose sufficient cutoffs to render the theory finite. Then, in prin- 

ciple solve it exactly and then let all cutoffs go to infinity at the same time 

taking the bare parameters to the appropriate.values so as to achieve a non- 

trivial relativistic theory with a finite spectrum of states. Obviously, if the 

lessons of perturbation theory hold any water for the full theory, then the fact 

that the multiplicative renormalization scheme can be carried out tells us that 

the scheme we have described must be feasible--in principle. 

Hence, I will first describe how to impose sufficient cutoffs on a given 

continuum theory to render all computations finite. Next I will show how to 

recast the resulting cutoff continuum theory in terms of a unitarily equivalent 

lattice theory which will enable us to better understand the quantum mechanical 

nature of the problem facing us. Finally, I will formulate a.non-perturbative 

technique we propose to use to diagonalize any given lattice Hamiltonian. Clearly, 

from this point of view the problem of analyzing quantum field theories breaks into 

two distinct parts -- the first being the development of a formalism which allows 

us to recast any cutoff continuum field theory in the form of an equivalent lattice 

theory; the second being the development of techniques for solving any given lat- 

tice theory independently of how it was obtained. Except for today's lecture-- 

whose purpose is to exhibit techniques for going back and forth between lattice 

theories and corresponding continuum field theories--I will focus attention on the 

second problem. Moreover, since the problems are not truly connected, I will 

study our proposed non-perturbative techniques as applied to model lattice field 

theories for which some exact results are known. The reason for focusing on 

these special models--as you will see-- has nothing to do with the fact that our 
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method is especially suited to the analysis of these l-space-l-time dimensional 

models; but rather, we focus attention on these models in order to show that our 

methods are-not producing incorrect results. 

Before jumping into our technical discussion let me spend a few moments talk- 

ing about the general way our approach fits into the framework of the other non- . 

perturbative attacks on the problems of quantum field theory currently under way. 

Since I have been on the road so long in coming here I have to be forgiven for 

choosing to summarize the picture by the following road map (Fig. 3). This map-- 

as all good maps --is essentially self-explanatory and so I will limit myself to a 

few brief remarks. In the upper lefthand corner we see the figure representing 

what I have labeled the lattice path-integral formalism. This, of course, stands 

for the program pioneered by Wilson' and collaborators and I haven't much to say 

about it. I would note that the initial notion that it would provide a super- 

highway which led to the mysterious black box containing the secrets of quark- 

confinement and the explanation of the quark model ran into a brick wall. Since 

then this program has followed a more torturous path occasionally bogging down in 

muck and mire and at present it is obscured in a cloud of computer computation. 

On the upper righthand side of the map you see the figure standing for the analysis 

of Euclidean path integral in terms of stationary points or semi-classical states. 

We have certainly heard much about this scheme in the lovely lectures by G.'t 

Hooft and R. Jackiw2 --but I think it is fair to say that while the concepts one 

encounters are fascinating and have provided some insight into the U(l)-problem 

the hope that they would provide a super-highway to an understanding of quark 

confinement, etc., has also run into a brick wall. At present the interest in 

instantons, merons3 (the darling of the Princeton group working on this problem), 

and other exotic beasties is based upon the hope that they will lead to an under- 

standing of the physics of color-gauge theories; but I have not yet seen any 
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compelling reason to think this has yet happened. I have chosen--with no malice 

intended--to signify the current state of affairs by saying that the current pro- 

gram is tra?ersing the instanton roundabout but it is not yet out of the woods. 

At the bottom of the map you see the figures representing attacks upon the 

problem based upon Hamiltonian techniques. All such methods have in one way or 

another made useoflattice techniques. The lefthand super-highway labeled Pad6 ' 

from strong coupling stands for the study of lattice theories by the methods intro- 

duced by Kogut and Susskind4 --who by the way deserve tremendous credit for initiat- 

ing the program of converting the Wilson program to a Hamiltonian formalism. This 

program has received much attention in recent years, but the question of whether or 

not the method of continuing a strong coupling expansion of a lattice theory to 

weak coupling by Pad6 approximants will prove adequate to study the questions of 

interest is now shrouded in the fog of massive computer calculations. One can only 

await the results of these studies to judge their applicability to our world. 

Finally, I come to the much less well traveled path to which I will devote the 

next three lectures. This path, labeled variational renormalization group approach, 

signifies the program initiated at SLAC. 5 Our approach has been to proceed much less 

rapidly and study a series of simpler theories in order to achieve insight into the 

way our methods work, and--more importantly--know well they work. As with all other 

approaches we feel ours to be very promising and exciting but honesty forces me to 

say that we too are still.lost in a haze of computation. If for some reason you 

notice that this path seems closer than others. to the rainbow marking the "pot of 

gold" or in this case "black box" let me hasten to add this is probably a trick of 

personal perspective and as with all other theories it is the roads which are still 

under construction which will provide the true test of all the ideas put forward 

to date. As to what is in the black box, if folklore is right, presumably it is 
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the secret of confined quarks. However, one should not forget there is always 

the possibility that Fairbanks could be right and (Fig. 4) the box really holds 

a free, hucgry, colored quark. 

This completes the general remarks I will make and I would now like to pre- 

sent the plan of the discussion to follow, and then dive into the discussion of 

point 1. 

Plan of Lectures 

1. Introduction of Basic Concepts 

(a) Bosons 
I 

I 

Lattice versions 
(b) Fermions 

2. Introduce General Non-Perturbative Method of Calculation 

3. Method for Solving Any Lattice Theory for Ground State and Spectrum 

of Low Lying States 

(a> Ising model 

(b) Thirring model 

cc> U(l)-Goldstone model 

4. Discussion of a Simple Gauge Theory 

(a) Formulation of lattice gauge-field theory 

(b) Higgs Model in 1 + 1 dimensions 

Basically the plan of these lectures is as it is for obvious reasons. I 

wish to say a few words about why I have chosen to spend only the remainder of 

this first lecture introducing the notion of a lattice theory which is unitarily 

equivalent to a given cutoff continuum field theory, and then devoting the bulk 

of our time to specific lattice models. I feel this needs discussion because 

while I choose to focus upon the non-perturbative variational scheme we propose 

for studying any lattice theory, I do not wish to leave the impression that I 
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consider the full development of the methods for relating continuum and lattice 

theories, as well as variations upon these methods, as unimportant. Far from it. 

In fact, it-is my belief that when one really wishes to turn the tools I will 

describe upon the problem of analyzing the behavior of a specific continuum theory, 

or when one wishes to know the relationship between Feynman graph perturbation 

theory and calculations based upon the methods to be described, or when one wishes 

to ask which continuum theory a given lattice theory corresponds to in the 

limit in which one removes all cutoffs, the fullest exploitation of the tricks 

I will describe only briefly in the context of free field theory will be as impor- 

tant as the variational techniques I will talk about for diagonalizing any given 

lattice Hamiltonian. I am choosing to give these questions short shrift only 

because of the time constraints imposed upon me by the format of this lecture series 

and because I wish to limit discussion to those aspects of the general problem which 

have been most fully explored. I hope, however, that you will bear in mind that 

we have only begun to scratch the surface of what can be done by means of these 

techniques and will be encouraged to try your own hand at pushing them much further 

than we have done to date. 

One further remark is in order, and that is that I probably will run out of 

time before I get togauge theories and so probably I will only be able to make a 

few general remarks about the state of the art as of now--and refer you to a forth- 

coming series of papers on the subject. 6 

By way of giving credit where credit is due, I wish to state that the work to 

follow has been done in collaboration with S. Drell, S. Yankielowicz, Ben Svetitsky 

and H. Quinn. 



LECTURE 1. FREE SCALAR FIELD 

Let usJegin our discussion of the way in which one can introduce cutoffs 

into a free scalar field theory and then transform it to an equivalent lattice 

theory. Our starting point is the usual Lagrangian 

(1.1) 

and for the sake of notational simplicity alone let us specialize to P = 0,l (i.e. 

a theory is 1 space + 1 time dimension). From this one forms the Hamiltonian by 

defining 

and, assuming the theory is defined in a volume L, we obtain 

+L 
2 

H- 
/ 

dx ( nTT(x) 2 2 + al$(X> ( 2 1 2 + $ o(x)2 1 

(1.2) 

(1.3) 
-L 
2 

At this point we define the quantum version of the classical theory specified in 

(l.l)-(1.3) by defining the equal time commutator of T(X) and 4(y). It is here 

that we will choose to introduce a fundamental length in the theory and so cut off 

all short distance divergences. We do this'by defining the modified commutator 

[~(x),$(~)l = -i 6 A (x - Y> (1.4) 

where 

yx - y) - A sin t 7TA(x - 1) 
(2N+l)sin[T~~~~) 

(1.5) 

and where h is a small parameter (e.g. 1010 GeV) and L is defined to be 

L = (2N + 1)/A (1.6) 
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Clearly, relation (1.4) implies that the fields T(X) and $J(x) are overcom- 

plete, and that there must exist a subset of the operators satisfying canonical 

commutatio; relations such that IT(X) and 4(x) can be written as functions of the 

smaller set of operators. There are many ways to see that this must be true; one 

way is to Fourier transform (1.4) and study the fields TT~ and @kt. However, the 

simplest way to discover the relevant independent set of variables is to observe 

that 

Q(x - y> = A6 . 
JlSj2 

(1.7) 

when x = jl/A and Y = j2/A for arbitrary integers jl, j2 l 

If we define 

4(j) z $(x = j/A) 

it is then easy to show that 

(1.8) 

+N ik x 
P 

where 

and where 

-ikpj /A 

ok = 
e 

- 4W 
P /2N+l 

(1.9) 

(1.10) 

(1.11) 

Using these formulae the Hamiltonian (1.3) can be rewritten in terms of the inde- 

pendent degrees of freedom as 



(1.12) 

where we have defined dimensionless fields, mass parameters, etc., by 

w> = m(j)lA , (1.13) 

G2 = p2/A2 , (1.14) 

and 

+N 

D(j) f L 
c 

ikpj/h (kp)2 

I? (2N+l) e (1.15) 
II p=-N 

N.B. the function D(j) has a particularly simple form in the limit N + m, namely: 

7r2/3 if j=O 

D(j) = 

(-l)j/j2 if j#O 

(1.16) 

Obviously, since we are dealing with a quadratic Hamiltonian (1.13) and 

since D(jl-j,) is a function of only the difference of jl and j 
2 this Hamiltonian 

can be diagonalized by going to k-space. If we do this we find 

HZA 1 
where 

(1.18) 

If we now introduce creation and annihilation operators in the usual way, we see 

that 
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N 

H=A 4 (1.19) 

This form of H is quite instructive since we see that by introducing a fundamental 

-length as in (1.4)-(1.5) we have done nothing more or less than defining a maxi- 

mum momentum cutoff on the free field theory. Our spectrum as a function of k is 

totally relativistic except that it terminates at kmax = 2?~rN/(2N + 1). It is 

worth comparing this result to the more common way of latticizing the free scalar 

field where one defines a lattice Hamiltonian 

(1.20) 

where 4 
JiJ+l = kN l 

The k-space form of this Hamiltonian gives 

H =A nn ii2 + 4 

N 

=A 2 + 4 sin2(cp/2) 

which approximates a relativistic spectrum only for f << 1. A comparison of 

the two spectra is shown in Fig. 5 and one sees that for momenta much smaller 

than the lattice mass there is no important difference between-the two approaches 

insofar as the low momentum spectrum is concerned. There is however a huge dif- 

ference in point of view since our Hamiltonian is related in a definite way to 

a given continuum theory and so we know how to go back and forth between the two 

languages at will. The first important difference between the two approaches 

at the level of the low energy spectrum will occur when we next study the free 

fermion theory. 
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Free Fermion Field Theory 

We begin our discussion of the free fermion theory with the continuum 

Hamiltoni?% 
L 

? 

H= + BM>$(x> 

2 

(1.22) 

and once again modify the equal time commutation relations to read 

~+w,Q(r) = 6*(x - Y> (1.23) 

As before, we note that this implies that the fields ++(x) and q(y) are over- 

complete and we go to the independent fields 

112 
$(x = j/A) , (1.24) 

in terms of which one can write 

N 

$(x) = Al'2 
z 

if? Ax 
e ' % 

P 
p=-N 

where 

N 

5-r e 
c 

-iEpj 

kP 
S(j) . 

j=-N 

(1.25) 

(1.26) 

Using (1.24)-(1.26) we rewrite H as 

H-A $+(jl) f 6'(j, - j2)?2j2) + $+(j > Bsj (j > (1.27) 

j 

where a = M/A and 

6J$jl 
A 

- j,) = z c ii; e 
ii;p(jl-j2) 

42N+l p ' 
(1.28) 

which, in the limit N + 00, becomes 
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- 1 0 ifj=O 

&i(j) = 

(-).-j/j if j # 0 

If we rewrite this in k-space we find 

(1.29) 

N . 

H=A + ml s;i (1.30) 
P 

which can be diagonalized to yield a theory of free fermions with an energy . 

momentum dispersion formula given by 

E2 (E,) = A2(E; + R2) (1.31) 

which is clearly relativistic except that it cuts off at kmax = 2~r11/(2N + 1). 

If we compare this to the definition of V$(j) given by the usual nearest neighbor 

formula 

oVl<j> g SCj + 1) - $(j) 

with 

we find that the k-space form of (1.33) is 

H=“&( a sin(Rp) + f3R $k 

p=-N ' 

) p 
which, when diagonalized, yields an energy momentum dispersion formula 

+ R2 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

Since IlkpI 5 TT we see, as shown in Fig. 6, that this formulation of lattice 

fermions introduces a serious problem in that it leads to a doubling at the number 

of fermionic states having any given energy. Since this is disastrous for the 

free field case this is not what we wish to have happen at all; moreover, in 
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higher dimensions one gets (2) d times as many states at a given energy as the 

continuum theory would predict. Several methods other than the one we have 

- described-have been introduced by Wilson and Kogut and Susskind in order 

to avoid this problem; however, they all suffer from the undesirable feature 

that they destroy continuous chiral symmetry of massless fermion theory so long 

as the cutoff (of lattice spacing a = l/A) is held finite. The method we have 

proposed has the virtue of being simply related to the continuum theory, is as 

relativistic as possible and yields a chirally symmetric free massless fermion 

theory. 

Summary of Lecture 1 

Let us close this lecture with a summary of the points we have covered. 

First, I have shown you one way in which one can transcribe a cutoff quantum 

field theory as a specific lattice theory. This had the advantage that one 

knows precisely, for any given transcription procedure, how to smear the fields 

O(j) or q(j) so as to obtain continuum fields satisfying d-function commutation 

relations in the limit A + 00. Clearly, the same goes for all operators made out 

of polynomials in these fields and so one could, by exploiting this information, 

study the A + 0~ limit of operator product expansions, equations of motion, etc. 

Secondly, we have shown that this transcription procedure handles fermions and 

bosons in the same way, breaks no symmetries (e.g. chiral invariance) and main- 

tains approximate Lorentz invariance of the free field theory. Moreover, 

although we have not discussed this point, one could construct the operators 

0 uv*(x)and Lorentz generators and study in an operator way how good Lorentz 

invariance is for low-lying states. Finally, I wish to remind you that although 

we only carried out the transcription procedure for the free field case, there 

is no difficulty in carrying out the same procedure for interacting theories. 
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With this discussion behind us we will now forget about the question of 

where we got any particular lattice theory and concentrate on the way in which 

one deals with any given theory without asking whether it was obtained from 

a continuum theory by our procedure or one of its myriad variations. We do this 

because, even though the quantum mechanical aspects of our problem are more 

easily appreciated for a lattice theory than a continuum theory, there is no 

reason to believe that solving a very large degree of freedom Schroedinger prob- 

lem will be any more tractable than summing infinite numbers of Feynman graphs. 

The purpose of the next three lectures is to try and convince you that reliable 

non-perturbative methods for rendering the problem manageable do exist. 
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LECTURE 2. ISING MODEL IN A TRANSVERSE MAGNETIC FIELD 

In thiS, lecture and the lectures to follow I will focus on the question of 

how to do a variational calculation for the ground state and first few low-lying 

states of any given lattice field theory. Although the method of analysis is 

quite generally applicable I will choose to develop it within the framework of 

specific examples for the obvious pedagogic reasons. I will begin with an analy- 

sis of a model which can be called a one-dimensional Ising model in the presence 

of a transverse magnetic field. Before diving into calculations let us spend a 

few moments discussing the motivation for studying this model. 

Why Study a Lattice Ising Model? 

The lattice Ising model is particularly interesting for several reasons. 

First, it is an example of a theory which undergoes a phase transition for a 

critical value of coupling constant. In this case when I use the word phase 

transition I am not talking about temperature dependence of a system, but about 

a change in the symmetry properties of the ground state of the system. Thus, 

for the Ising model we will discuss, we will see that at a critical value of 

transverse field the groundstate of the theory changes from being two-fold 

degenerate to being unique. Moreover, we will see that this corresponds to a 

certain discrete symmetry of the theory going from being a spontaneously broken 

symmetry to a normal symmetry as the coupling increases through its critical 

value. It is this ability to see a theory go from a spontaneously broken phase 

to a normal symmetry phase which makes this model so interesting, since if our 

present understanding of approximate hadronic symmetries has any validity we 

believe that the successes of the PCAC hypothesis (e.g. Adler self-consistency 

conditions, Adler-Weisberger relations,pion low energy theorems, K,t3-predictions, 

etc.) point to the fact that the hadronic theory possesses a spontaneously broken 
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or Goldstone symmetry. Since the reason why this sort of symmetry breaking takes 

place is a mystery, it becomes important to have a method for calculating in a 

theory in order to see if this sort of effect exists for any range of couplings. 

Having established the necessity of being able to find phase transitions when 

they occur as a requisite for a good non-perturbative calculational scheme, we 

turn to the next question, i.e., why study an artificial model like the Ising 

model in a transverse field rather than the manifestly more interesting a-model. 

The answer to this is that the Ising model can be solved exactly and so we can 

know precisely how well our variational methods are doing. Unfortunately, the 

same cannot be said for the a-model and so it would be hard to know whether or 

not our analysis of this theory for strong or intermediate coupling ‘held water. 

Thus, we conclude that the Ising model to be studied is interesting in that it 

is an example of an exactly soluble model with a phase transition and hence it 

can serve as a benchmark against which to test our methods. Hopefully, since 

our methods are based on techniques which easily generalize to other theories in 

higher dimensions, and make no use of the special features of the theory which 

make it exactly soluble, the exercise is one step along the road of developing 

familiarity with and confidence in the variational scheme to be described. So 

much for motivation. Let's now go on to analyze the model in question. 

The Ising Model in a Transverse Magnetic Field 

The model we are interested in analyzing is defined by the Hamiltonian 

H =c[T az(j) 
j 

- A0 ax(j) ax(j + 1) 1 (2.1) 

where o 
Z 

and ox are two Pauli matrices, 

cJz = (; _01) ; *x = (y ;) 
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and E 0' *o are two free parameters. Clearly, up to an overall scale factor the 

Hamiltonian really only depends upon the ratio y. = colAo. 

- Exact.Resulf;s 

Since this model is exactly soluble it behooves us to spend a few moments 

summarizing those important features of the theory we will try to reproduce. 

First, for all values of y. the theory is invariant under the discrete symmetry 

which takes az(j) * az(j) and ax(j) + -ax(j) and which is generated by 

inxcJz (j > 

U=e j 
.(2.2) 

as can be seen by noting that 

U+ ~z(jhJ = az(j) u+u = Gz(j) 

whereas 

U+GxCj) u = e 
-iTraz(j) 

ax(j) e +iro,(j > 

(2.3) 

(2.4) 

= cos(a)ox(j) + i sin(7r)ay(j) 

= -ax(j) 

The operator U is the discrete symmetry transformation which is spontaneously 

broken, and since the operator ax(j) has non-trivial transformation properties 

under U it is the fact that its vacuum expectation can become non-zero which 

implies the existence of adoubly degenerate ground state. To be precise, it is 

known that for y. 5 2 

(1) the model has a doubly degenerat ground state, or in other words there 

exist two states which we shall denote by 1 +> and 1 -> s.t. U 1 +> = I - > and 

uI+>= 1 -> for which 
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(2) < f. lax(j)1 +> (2.5) 

- and moxeovex, 

(3) it is known that the theory has an excitation spectrum whose energy 

momentum dispersion is given by 

Ei;p' j/(m * (2.6) 

Now for y. > 2 it is known that the ground state, 1 $ 0 >, of the theory becomes 

unique and is an eigenstate of U such that U 1 +. > = 1 $, > . The mass gap and 

energy-momentum dispersion relation are the same as for y. 5 2 and obviously 

-01 Ox I $-p=<G, I u+oxu l JI,r=-<J1, I ox l $,> (2.7) 

implies < q. 1 ox 1 $, > = 0. 

One can also calculate the ground state energy density as a function of y 

and the second derivative, -a 2 E /ay 2 
is 0' 

will be of interest to us at a later point. 

Some Trivial Considerations 

Although I will make no attempt to explain the machinations one must go 

through to prove these exact results-- since they involve doing a Jordan-Wigner 

transformation, identifying a conservation law of the theory and diagonalizing 

the resulting quadratic fermion Hamiltonians-- I do want to spend a few moments 

discussing the limits ~~ = 0, A0 arbitrary and A0 = 0, &O arbitrary so that the 

basic notions of spontaneous symmetry breaking for this model will be clear. 

Let us begin with the case co = 0, i.e. 

N 

H co=0 = c 
[-Aoax(j)ox(j + 1) 1 

j z-N 
(2.8) 
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Clearly, since all the operators a,(j) commute with H E =. diagonalizing 
0 

H c Co'0 amounts to writing down all the eigenstates of ax(j). If we denote the 

eigenstate of ox(j) of eigenvalue +l (-1) by an arrow to the right (left) as 

shown in Fig.(7a), then it follows from (2.8) that the two states I$+,> and I+-,>, 

shown in Fig. (7a) are degenerate. Note that since U as defined in (2.2) takes 

ux to -ox it maps the state I-t>. into I+->. and vice versa, hence uI$+l> = I*+,> 
J J - 

and so the ground state of the E 
0 

= 0 system is twofold degenerate as promised. 

The states shown in Fig. (7b) are two of the lowest-lying excitations of the system. 

It is essentially a matter of choice which of the two ground states of the sys- 

tem, or linear combination of the ground states, one chooses to base a theory on; 

and a definite prescription can be arrived at only from other considerations. The 

way one usually decides this issue is to add a small external field in the CT 
X 

direction; i.e. one adds a term 

N 

V(J) = -J 
x 

ax(j > 
j=-N 

(2.9) 

to H 
eo=O l 

One then studies the ground state of the system as J * 0. Obviously, 

the energy of I$+,> is given by EO-J(2N) and 1$-l> by E. + J(2N); hence for all 

J >O ]~,+l> is the groundstate of the system. Other arguments are based upon the 

desire to have cluster decomposition, but we will not go into that now. 

Let us now consider the limit Ao=O, ~~ arbitrary. In this case the 

Hamiltonian is 

N 

HAo=O = >: 
&O 
2 az(j) 

j=-N 

(2.10) 

As in the previous case, since az(j) commutes with HA =c) we can label all 
0 

eigenstates of HAoZQ by giving the eigenvalues of oz(j). If we let I+> 
j 

and 
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I C>j denote the states such that oz I+>j = I+>. and ozl+>. = -I+>., then the 
J J J 

groundstate of the theory is the unique state shown in Fig. (8a) and a typical 

lowest-lyin"g excitation is shown in Fig. (8b). 

Approximate Solution by Recursive Methods 

Having set the stage let us now introduce the general method by which we 

. hope to analyze this and all other lattice field theories. As we have noted, the 

method we wish to use should be non-perturbative and should not rely upon any 

special features of the l-dimensional problem. The method we have turned to is 

the Rayleigh-Ritz variational procedure, and our innovation is to devise a scheme 

for constructing a trial wave function for the groundstate, since guessing the 

correct form of an infinite parameter wave function is beyond our mortal powers. 

Our constructive technique is an iterative one based upon a procedure of 

thinning degrees of freedom. To be precise, it is based upon the observation that 

if one has an orthonormal set of states IJ~~> then the problem of minimizing the 

expectation value 

where 

I$(ct)> : CCY. I$.> 
jJJ 

is equivalent to diagonalizing the "truncated" Hamiltonian 

(2.11) 

(2.12) 

HTR 
ij = <'hi IHI Qj ' 

Our procedure will be to begin with a complete set of orthonormal states and 

thin out this set of states by throwing some away. Thus, we reduce the problem 

to that of finding a good variational wave function over states generated by 

this smaller set of independent states. This, however, can be shown to be equiva- 

lent to diagonalizing a new Hamiltonian of the same form but having different 

coefficients. We carry out this procedure of thinning out the remaining set of 
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states and generating a new effective Hamiltonian until our new Hamiltonian takes 

a form which can be solved. At each stage we base our decision of which states 

- to keep an&which to discard on a simple physically intuitive algorithm. 

In order to\ make the ideas more clear let us abandon generalities and dive 

into our analysis. I will begin with a discussion of the thinning procedure 

based upon a very simple algorithm and then discuss the results of a slightly 

more sophisticated analysis. 

Let us begin by introducing the notation j = 2p + r; r = 0,l and rewriting 

H as 

H= 
=[ 

&O 

cl 
2 az(j> - Aoax(j)ax(.j + 1) 1 

92~) + 92~ + 1) - Aoax(2p)ax(2p + 1) 

- Ao c ax(2P + 1)4(P + 1)) 

P 

(2.13) 

By this device we divide the lattice into blocks labeled by the integer 'p' 

containing two sites each, and at the same time we divide it into two terms--the 

first containing operators referring to a single block and the second containing 

products of operators in neighboring blocks. 

Having done this, we now turn for inspiration to a study of the Hamiltonian 

describing any single block 'p'; i.e. we study any one 

- Aoox(2p)ox(2p + 1) (2.14) 

If we label the states which correspond to the different possible values of 

as(2p) and os(2p + 1) as I++>, I++>, IN> and I++> respectively then we see that 
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hpl+C> = -Ed/++' - AojW , 

hplt4> = -A 
0 -h 

hpjf)> = -A0 

4+> , 

+4> , 
(2.15) 

hpl++' = ~~ll.'E' - a,lW . 
. 

The four eigenstates of h 
P 

are shown in Table I, where we have also given their 

eigenvalues and the difference in energy between the lowest state in each block 

and the 3 excited states within a block. 

Our thinning procedure will be to define the two states per block I+> and 
P 

I 4>p where Iep f (I++> + 

1 P 
4> = (I++> + 

aoI++>)/7TX$ , 

H>) /J? (2.16) 

and then observe that the orthonormal set formed by taking all possible products 

of these two states over all blocks 'p'. That these states should be able to pro- 

vide a reasonably good approximation for the groundstate of the theory is intui- 

tively obvious, since the states we have thrown away have higher energy. 

Having decided upon which two states (out of the possible four states per 

block) to keep, our next step is to compute the truncated Hamiltonian. This is 

easily done. Note that 

H= - Aoox(2p + l)ox (UP + 2,) 1 (2.17) 

and since the way h 
P 

acts on a given product state is given in Table I, we need 

only see how the terms -A0ax(2p +l)ox 2(p + 1) act. 

The way ax(2p) acts upon such a state I+> or 
P 

I+> 
P 

is given by 

ax(2P) I +‘p = (IN> + aglC+>)/m (2.18) 
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and so 

p<+lax(2P)l+>p = p<fl~x(2P)lf>p = 0 

and 

p+x(2P)lS'p = p4ax(2P)lf’p = 
(1 + ao> 

J2(1 + a; 
. 

Similarly, ax(2p + 1) has the matrix elements 

p<+lox(2p + l)I+>p = p+x(2P + l)j+'p = 0 

and 

p<flax(2p + l)lWp = p<tlcrx(2p + l)l+'p = 
1 + a0 

JZ(1 + a& 

(2.19) 

(2.20) 

(2.21) 

Hence, combining (2.17)-(2.21) we find that we can write H 
TR in terms of 2 x 2 

matrices referring to each block 'p', i.e. 

clnp 
5 

+ 2 U,(P) - Alox(~)ox(~ + 1) 1 
where 

' Cl=-7 A0 + JE;, + A; 

cl = J E= + AZ - A 0 0 

(2.22) 

(2.23) 

A1 = 
A00 + a012 

2(1 + a:) 

This effective Hamiltonian embodies all the information contained in our choice 

of a family of trial wave functions and, by construction, it follows that diagonal- 

izing HTF) will provide an upper bound upon the true groundstate energy. If either 

= 0 or A1 
TR 

5 
= 0 we could diagonalize H(l) exactly. If El << Al or A1 << Rowe 

could use perturbation theory to study the structure of the theory. However, in 

general neither case will apply and our only recourse will be to apply the same 
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thinning procedure to the theory defined by H TR 
(1)' 

In this way we generate a 

TR sequence HT;), Ht3), etc. and exactly diagonalizing any one of them will yield 

an upper b%nd of the groundstate energy. The process is carried out until H TR 
(d 

takes a simple diagonalizable form or until H TR 
(n+l> 

= H;n") at which point further 

iteration will avail us little. . 

To be specific, we could follow the general procedure just outlined and 

generate from 

HTR = 
c (n) p 

a new Hamiltonian 

& 
dnlp + 2 a,(p) - A,~,(P)~~(P + 1) 

I 

HTR (n+l> = p 
cl 

E n+l 
dn+l lp + 2 oz(p) - An+lox(~)ox(~ + 1) 

where 

sn+l = E,(l - a:) 
( 

- A,(1 - an)' 
1 

/(l + a:) 

A 
An (1 + anI2 

n+l = 2 (1 + a:) ' 

C 
[ 

q1 - ai) + An(l + anI2 
=- 

n+l 20 + ai) 1 , 
d n+l = C n+l +2dn , 

a n 
qxy-& 

(2.24) 

(2.25) 

(2.26) 

Clearly, this recursion relation for the coefficients d 
n+l' C n+l' A 

n+l and E 
n+l 

can be easily studied numerically and I will now summarize the results of such a 
a 

study. Actually, for this simple recursion relation it is very helpful to observe 

that the ratio E n+l'An+l is given in terms of the ratio E~/A~ alone. If we let 
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'n = E~/A~ we can learn almost everything about the way in which (2.26) will 

iterate if we plot the function 

R^(Y,) = Y,+~ = Y 
2(1 - 

= 
2) (1 + anI 

n 22 
(1 + an> 

[y,(l + anI + a - 11 - Y n n (2.27) 

shown in Fig. 9, which tells us how the ratio E A 
I .n n changes with each iteration. 

Clearly, for any starting value of 'y' such that R(y) < 0 we have--after one 

iteration--a value of E n+l'An+l which is smaller than it was; similarly, for 

R(y) > 0 we are driven to a still larger value of y. Thus Fig. 9 tells us that 

for Y < yc successive iterations drive us to a limiting form of the H TR for which n 

E n + EoD > 0 and An + 0 as n + CQ. So, the theory for y < y, is a theory with a 

degenerate groundstate. Fory>ycwearedriventoA +C\oo>OandE +O. n n 

Hence for y > y, the theory has a unique groundstate. The special point y = y, 

is a critical point at which the symmetry properties of the theory change. Since 

R(YJ = 0 we see that the ratio of en/An is unchanged with successive iterations 

TR and more complete study (2.26) shows that Hn+l = p H TR wherep cl. This tells cn C 

us that the Hamiltonian reproduces itself up to a scale factor, and thus at the 

critical point the physics of all length scales is the same--as the folklore would 

have it. 

Location of the value y, = 2.55... for which R(yc) = 

and recalling that the exact value of y, is 2 we see that 

doesn't do too badly. 

A More Sophisticated Algorithm 

0 is easily accomplished 

this primitive algorithm 

Going back to (2.26) we see that the algorithm we have adopted depended upon 

two distinct choices. First, we assumed that we would keep only two states per 

box at each iteration. Second we chose a,(y,) to be given by the naive algorithm 

that we should diagonalize the Z-site Hamiltonian at each stage. A more sophisti- 

cated algorithm is to let a,(y,) be an undetermined function of y and then carry 
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out that iteration for 80 or so steps for a class of functions parametrized by 

one or more variables and then vary over these parameters so as to minimize the 

groundstate^energy density I = lim(dn/Zn). In this way, except for specifying 
n- 

its general form, the recursion relation itself is undetermined and one varies 

over a system of possible "renormalization group transformations" to obtain the 

best possible upper bound on the groundstate energy density. We will now dis- 

buss the results of such a calculation for the l-parameter family of functions 

a,(y) = tan-'[$l - tanh(py))] . (2.28) 

Figure 10 shows a plot which compares the values of Ed obtained from the exact 

solution to the problem (solid line) with the result of our one-parameter varia- 

tional calculation (dashed line) over the only part of the range of y for which 

the difference is at all significant. Figure (11) plots the exact form of <ax> 

as a function of y. (eq. (2.5)) g a ainst that of our approximate calculation. 

As you can see the value of the critical point becomes slightly worse, yFr z 2.7, 

but the dashed curve provides a better than one percent fit to (1 - -. 19 

fromO(y(yyr- 1x10 
( 

(y/y,)') 

-5 

) 
. This again is not bad for such a crude approximation. 

Finally, Fig. (12) shows that this crude calculation is capable of revealing a struc- 

ture surprisingly similar to the logarithmic singularity in -3'~~/3y' possessed by 

the exact solution for am. This is quite a subtle non-perturbative property of 

the theory and the fact that one is reproducing this phenomenon is quite striking. 

Summary 

To.conclude this lecture let me summarize what we have seen. First we have 

shown that even a very naive calculation exhibits the fact that a phase transition 

exists. Second, we have seen that even the slight change of going to a variational 

calculation allows us to do a remarkably accurate calculation of the groundstate 

energy over the entire range of & o and Ao. Third, we see that the general behavior 
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of the order parameter <ax>(y) is done reasonably well even with a crude calcu- 

lation. Finally, although I have not discussed it, one can show that one also 

does ti similar job in predicting the spectrum of excited states for all values 

of E~/A~. 
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LECTURE 3. LATTICE THIRRING MODEL 

In today's lecture I want to present an analysis of what I shall call a 

lattice veg-Sion of-the Thirring model. The method of analysis will be exactly 

the same as that used to analyze the Ising model in a transverse magnetic field 

except now we will be dealing with a theory of fermions. Before presenting the 

analysis let us first discuss the reasons I have chosen to discuss this model as 

a second example of the variational renormalization group method presented in the 

last lecture. 

why? 

There are several reasons why this model is a very attractive one to study. 

To begin with it is the first serious model with fermions, and there is something 

more physical about fermions than about lattice spins. The next good reason for 

studying this model is that, as we saw in the first lecture, fermionic theories 

are the first one to require the use of the non-nearest (or long-range) gradient 

operator. Since there has been great skepticism about whether or not it is possible 

to carry out calculations with this form of the gradient, it is worth demonstrating 

that it is easily worked with. Third, this is a model whose continuum version is 

solvable and exhibits ;; peculiar behavior for the fermion wave-function renormaliza- 

tion, Zz W , in that it vanishes for a finite value of g. We will see that this 

feature also occurs in the lattice theory and that because we know how to go back 

and forth between the would-be continuum operators of the theory and lattice fields 

we know how to establish the fact that it is the same phenomenon. Fourth, in our 

list of reasons, is that this is an example of a theory with explicit chiral invar- 

iance and our analysis will show how the iteration procedure works in such a setting. 

Finally, the lattice model of the theory exhibits an interesting non-perturbative 

phenomenon in that for values of g for which Zz(g) = 0 the theory exhibits a kind 

of confinement. 

- .f’-M m,..- - -._ --.. ~ --- ._ 
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The Thirring Model 

(3-U 

where 

I 

0 for j = 0 

&i(j) = 

(-l)j/j for j # 0 

a= (; J) ; 6 =(: 01) 

(3.2) 

(3.3) 

and JI 

j 

is a two component fermi field satisfying anticommutation relations 

&. IL 
'$2 

(3.4) 

Our method of analysis is the same as before. First we will dissect the 

lattice into blocks of three sites. We will then solve the three site problem 

exactly and truncate the space of states to the subspace generated by products 

of the lowest Q = 0, Q = 2 1 states per block. 

In order to simplify the discussionlet us begin by showing how the 

approach will work in the special case g = 0, i.e. the free massless fermion 

field in 1 + 1 dimensions. This special case is interesting because it is 

exactly soluble by going to momentum space and so one might expect this naive 

truncation procedure to be at its worst. As we will see it does surprisingly 

well. 

Free Field: g = 0 Limit 

If we denote the separate components of the two component field by 

(3.5) 
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(3.4) becomes 

” (bjl’b3,) = (djlpdiz) = ‘j,,j, (3.6) 

all other commutators being zero. Substituting this in (3.1), we rewrite H as: 

H= iS'(jl - j2)(b? b. - dfd. 
Jl ‘2 Jl 32 

> 1 
Before breaking the problem up into 3-site blocks let us list some useful 

symmetries of the Hamiltonian. First, inspection of H shows that one can only 

absorb a b(d) at one point and create a b+(d+) at some other point, hence H 

never changes the total number of b's or d's in a state. If we define 

= d+d nd(j) j j 

we can define two conserved operators, the electric charge 

y.,(j) - nd(j) 

(3.8) 

(3.9) 

and the chiral or axial charge 

Q5 =l$Z (y$) + nd(j) - 1) =Cq,(j) . 
j 

This notation is chosen so that for a single site 'j' we can introduce the 

state IOj> s.t. 

bj IOj’ = djlOj' = 0 (3.10) 

and then define the other three possible states for a site 'j' to have the 

quantum numbers given in Table II. 

Useful discrete symmetries are C, P and the anti-linear operator defined 

by 
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C bj -' C = b+ 
3 ' 

C dj C-l = d; , 

C Q C-l = -Q , 

C Q, C -1 = -Q, 3 

P bj 
-1 P t d+ -j ' 

Pd P -1 
j 

= b+ -j ' 

P Q P-l =Q , 

P Q5 P-l = -Q, , 

and 

@ bj a-' = dj 

@ dj a-' = bj 

@ Q a-' = -Q 

@ Q, 0' = 9, 

with the phase convention 

and 

CIOj> = ilkj> 

PIOj> = I+j' 

(3.11) 

(3.12) 

(3.13) 

01 
H Oj>=lO> 

j 
. (3.14) 

With these preliminaries behind us let us now define j = 3p + r, r = -1, 

0, +l and rewrite H as 
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i6'(r - r') + 
3p+rb3p+r' 

+ 
- d3p+rd3p+r' 

)I 
(3.15) 

+ g,[z, i&'(3(p - p') + r - r’)(b:p+rbjp’+r’ - d;p+rd3p'+r')] 
, 

The first set of terms, p = p', constitute the single block Hamiltonian and 

the p # p' terms give the block-block recoupling terms. Hence, let us 

restrict attention to a single block 'p' and diagonalize 

h = c i6'(r - r') + 
P r#r' 3p+rb3p+r' (3.16) 

Since there are four states per site, i.e. IO>, b+]O>, d+/O> and 

b+d+lO>, we see that there are 43 = 64 states per block, and so to diagonalize 

hp we must at first blush diagonalize a 64 x 64 matrix. It's not so bad, 

though. If we look at sectors of definite Q, Q,, C or P or CP the problem 

vastly simplifies. For example, in Tables 3 and 4 we see the states of Q = 0 

and Q = +l divided according to their Q, eigenvalues. Since the states of 

Q5 
= 23 are the only Q = 0 states of this quantum number they are eigenstates 

of h 
P' 

Since C maps a Q = 0, Q, = +l state into a state of Q = 0, Q, = -1 

one need only diagonalize the 9 x 9 submatrix corresponding to the Q = 0, 

Q, = -1 sector in order to find the lowest Q = 0 eigenstates. There are, of 

course, two degenerate states at each energy since there is one of Q, = +l 

obtained by applying C to the Q, = -1 eigenstates. Next we observe that iCP 

transforms the nine states of Q = 0, Q, = -1 among themselves and so one can 

reduce the problem to studying h restricted to states of definite iCP. This 
P 

simplifies the problem to diagonalizing a 6 x 6 and 3 x 3 matrix. Actually, 

having reduced the problem this far we can now straightforwardly diagonalize 

the 6 x 6 and 3 x 3 problems. The same arguments can be used to simplify the 
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Q = +l problem. Although it is not really necessary for me to do so, in 

- order to pzove it can be done, let me exhibit for you the exact form of the 

lowest energy state of Q = 0, Q5 = -land Q = +l, Q5 = 0; i.e. 

$j (3 f 4i)l - 0 +> I OP' 
=$(3- 4i)l + 0 --> + 

- $ (3 + i)(l + - O> + 

+$i lo+o>+;(l+_ 
( 

o+->) - $ (3 - i)(lO - +> + I -+ O>) 

0 o> + lo 0 k>) 
1 

(3..17) 

and 

I +> 
'P = $j (4 - 3i)l ++o>--L 18 (4+3i)IO++> 

+$(1- 3i) I+ Ok> + 102 +> 
( 1 

- $1 + 3i)I? 0 +>+l++O> 
( ) 

-> + I- + +>> 
lop>’ I+p>, we can define 

and Ikp> = -iCIOp>, and go on to computing the form H takes when 

+$ I+- 
( 

+> + $ (I+ + 

Having found explicit forms for 

(3.18) 

I -p’ = cl+p> 
truncated 

to the system of states spanned by products of these 4 states per box over 

all boxes. Since the eigenvalues of h 
P 

corresponding to these 4 states are 

EO = -3, hp can be replaced by -3 times the unit operator. Hence, the problem 

of computing the truncated form of H reduces to computing the truncated forms 

. + 
of operators like b3p+r, d+ 3p*r' etc* 

To compute (b+ 3p+r) 
TR , etc., it helps to observe that when the b+ operates 

on a state it raises the charge of that state by one unit and raises the Q, 

of'a state by one unit also. On the other hand d+ raises 'the Q, by a unit 

but lowers Q by one unit. Hence, the only possible non-zero matrix elements 

+ 
Of b3p+r and d 

+ 3p+r between the states lop>, I+p>, I-p>, and I+,> are 
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<+ ]b+ IO > = ur 
P 3p+r p 

A* lb+ I- > = tr 
P 3p+r P 

, 

, 

, 

. 

(3.19) 
<- 

P Id;p+rIop’ = vr 

<It 
P I dip+, I +p’ = wr 

and it follows from the symmetries C, P and H that 0 

t*, ; v 
* 

u = r r =w r and ur = v -r l 

(3.20) 

This information can be all summarized in operator form by introducing 

anti-commuting operators B ;t, B D+ and Dp defined by 
P' P 

<+plB;lOp> = 1 

< $D;jOp> = 1, 

(3.21) 

etc. 

and writing 

(b:p+rjTR = B;(u, QEp +u;Q;j , 

(d:p+rj 
TR = D+(u* Q2 + ur Q;) , 

P r 5P 

(3.22) 

with 

Q5P 
= (B; BP + D; Dp - 'j 

and 

B = (B; BP - D; DP) . (3.23) 

Note that if ur and vr are real, then since Q2 + Q2 
P 5P 

is the identity 

operator, (3.22) becomes 



- 36 - 

(b;erjTR = ur B; , 

+(d&+$R = ur D; . 

(3.24) 

Substituting the general expression (3.21) into (3.15), we arrive at the 

form of H;;), and then this process can be carried out iteratively. Actually, 

TR 
for the free field Hamiltonian it is easy to show that ur is real and so H(1j 

becomes, using (3.24), 

$5 = -3(2N; ')fi+z [i($ 6'(3(~ - qj + r - r'j ur url)* 

1 

(3.25) 

which has exactly the same form as the original Hamiltonian if we define a new 

6' function to be 

1 

%I (P - 9) g 
c ( 

6' 3(p - qj + r - r' ur ur, . (3.26) 

r,r<-1 - 

If one carries out this iteration in detail we get an upper bound on the 

groundstate energy of a free massless fermion theory which is (in units of the 

cutoff AZ) 

EyProx =(-1.217.. .)L 

which is to be compared to the exact answer which is 

exact E. =-? rL 

(3.27) 

(3.28) 

The agreement here is to 20 percent which is not bad considering the naive 

truncation procedure we have adopted. It is simple to show that one can do 

considerably better by making only slight changes in the procedure, but we 

will not bother discussing that here. 
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This discussion sets up the notation of the general calculation. Let us 

now turn to a discussion of the g + 0 case. 

Full Thirr&g Model 

Returning to the full Hamiltonian, (3.1), let us now summarize what hap- 

pens if one carries out exactly the same procedure except for go # 0. In this 

case u r is no longer real and one must use the more complicated form (3.22) to 

compute HE). After the first iteration the Hamiltonian takes the following 

general form which is then reproduced in each succeeding iteration, i.e.: 

c iX, (P1 - p2)(B+ B - D+ D ) 

p1’p2 p1 P2 Pl p2 

& (B; BP + D; Dp - 1)2 + Enlp 

- p2)(B+ Q2 Q2 B 
+2 2 

Pl Pl p2 p2 - DPlQ5PlQ~P2DP2) 

(3.28) 

+ ZI(Pl - p2)(B+ Q2 Q2 B 
+ 2 2 

P1 5Pl 5P2 P2 
-D Q Q D 

PlPlP2 p2 
1‘ 
I 

and Tables 5, 6 and 7 show how the various parameters gn, X,(p) and Z,(p) 

change with succeeding iterations for different values of go. 

Before discussing the tables in detail let us note that we should expect 

something very peculiar to happen for go >> 1. This is the case because for 

go >> 1 we expect the single site part of H (3.1) to dominate and so we can 

first study the individual term h., where 
J 

h. = 
J 

+ n,(j) - 1 2 (3.29) 

It is obvious from (3.29) that the neutral states IOj> and Ikj> are degenerate 

and have energy, -g, whereas the charged states have energy, 0. Hence, the cost 
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of creating two separated charges from a distribution of tightly bound pairs 

I is 2g and so we would expect that the excitation spectrum of the theory (in 
- 

the limit A large) not tohave separated fermions but to have massless bound 

state excitations. In an earlier paper, Drell, Yankielowicz and I7 showed 

that for go >> 0 this problem could be converted to almost a Heisenberg anti- 

ferromagnetic and that our conclusions about massless bound states could be 

proven to be correct if the interactions in this system were of nearest neigh- 

bor form. In this case the Heisenberg anti-ferromagnet problem is exactly 

soluble, the solution having been given by Bethe in 1931, and it is indeed mass- 

less. I mention this because, as can be seen from Tables 5-7, for go smaller 

than gc = 1, the iterative calculation converges to a theory with lim g = 0 n n- 

and '(n) (p) going over, up to a scale factor, to a function of 'p' which is 

quite similar to g'(p). Hence, for g < gc we conclude that we are dealing 

with a theory whose behavior is similar to a theory with massless fermions 

and both scalar and fermion excitations of zero mass exist. On the other 

hand, for g > gc we see that lim gn 
n-too 

= g,>O and XJp) goes over to a nearest 

neighbor form. This says that after a finite number of iterations we are 

in the situation of studying a theory which is equivalent to the one studied 

in Ref. (7), and so we know that it describes massless bound configurations, 

and essentially non-propagating fermion excitations of mass $, (in units of 

the inverse lattice spacing A). 

This basically completes the general description of the way in which the 

iterative variational calculation proceeds. While there is much which can be 

said about other aspects of the theory, I would like to conclude our discussion 

of this model by asking if the existence of a gc has any counterpart in the 
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solvable continuum theory, and if we can see how our gc will correspond to 

the continuum behavior. I would also like to make a few simple remarks about 

how one c&d go beyond what I will describe now and study approximations to 

continuum two point functions, the Schwinger term, etc. 

To address the first point, it is true that the continuum theory does 

exhibit a strange behavior; namely, depending upon the point splitting pro- 

cedure used to define the composite operators of the theory, one finds that 

there exists a finite coupling go =gc past which the continuum theory fails 

to exist. This occurs because for go > gc the continuum Hamiltonian written 

in terms of currents alone develops a negative coefficient--and since the 

solution is .based upon the assumption that the currents are Bose operators, 

the theory fails to have a groundstate. Clearly, this cannot happen in a 

fermion theory, since the sign of the Hamiltonian is irrelevant in a fermion 

theory-- changing the sign simply changes the way in which we-choose to define 

the filled sea of negative energy states. Since on the lattice we are dealing 

with a fermion theory, the currents are not true bosons in that they remember 

there is an exclusion principle and so for all values of go the groundstate of 

the theory must exist. Question: Is our lattice gc related to the continuum 

s c, and one can understand what it is about the lattice theory which makes 

the passage to a continuum model as A + 0~ for g > gc impossible? The answer 

to this question would seem to be that there is indeed a tight correspondence 

between the change in behavior of the lattice theory and the strange behavior 

of the continuum theory. To see this we study the combination of lattice 

fields which go over to the continuum operator Jl(x) as A * 03; i.e., we study 
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and compute the matrix element 

<ol 
/ 

dx $Atx>I+’ z z2(go) 
l/2 

. 

by means of the obvious iteration procedure defined by (3.22). To normalize 

this calculation to the free field limit (go = 0) calculated the same way, we 

directly compute dZ2(go)/Z2(0) and the result is shown in Fig. (13). As you 

can see for g o 5 gc, JZ2(go)/Z2(0) is finite, whereas for go 2 gc the ratio is 

zero. If one goes back to the continuum theory, this is exactly what happens 

for g = g 
C’ 

At this point, I leave you to draw your own conclusions as to how tight 

the relation between the behavior of the lattice model and continuum theor- 

really is. To really nail it down, we should work out things like 

<O j$;(x)@,(o) 1 O>, the Schwinger term, and operator equations of motion. We 

have not studied this in any detail, although we have computed the Schwinger 

term and obtained entirely reasonable results. I refer you to Ref. (7) 

since time does not permit further discussion of this point. I would like 

to conclude with a brief explanation of what is happening for g > gc and why 

one cannot conventionally define the continuum Thirring model beyond this 

point by taking the limit A+-mand multiplicatively renormalizing H. In a sense 

I have just made the relevant point: what is breaking down for g > gc is 

the usual program of multiplicative renormalization. This is so because the 

usual multiplicative renormalization scheme requires that one rescale the 

coupling constant and q(x) in constant in such a way as to render the spectrum 
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finite a& at the same time so as to make <Ol,dx@(x)I+> be unity. As we have 

seen, for go > gc this second condition is impossible even for finite value 

of Ai Thfi happens because for go > gc the fermions suddenly acquire a mass 

proportional to the cutoff and so leave the set of physical states. While 

states of zero mass do exist for go > gc, they correspond to tightly bound 

states. Thus, while a finite relativistic theory exists for go > gc, it can- 

not be obtained by multiplicatively renormalizing H in the manner prescribed 

by perturbation theory-- although it is true that such a scheme can be carried 

out if H is rewritten in terms of composite "magnon" creating operators of 

the Heisenberg anti-ferromagnet, In some sense, this shows that this lattice 

model exhibits a version of confinement in that, although the theory is simply 

described by fermionic operators, there are no physical states of the theory 

created by these operators. 

summary 

To close, I would like to highlight the important messages I would like 

you to get from this analysis. First, computing with our definition of the 

gradient operation is easy. Second, this variational analysis makes complete 

sense and does surprisingly well for the free field theory and seems to make 

sense for the go # 0 version of the Thirring model. Third, the existence of 

the critical coupling gc past which the multiplicative renormalization program 

breaks down is an example of the way in which perfectly sensible theories may 

be derivable from lattice theories, even when they cannot even be formulated 

sensibly within the framework of the usual perturbative approach to renormal- 

ization. 



- 42 - 

LECTURE 4. U(l)-GOLDSTONE MODEL 

.By tb.is last lecture it has become painfully clear that due to lack of 

time I will not get to the one lattice gauge theory I had hoped to discuss-- 

i.e. the lattice Higgs model. Rather than try and rush to include a discussion 

of this model, I will conclude this set of lectures with a discusssion of the 

theory which one gauges in order to obtain the Higgs model, namely, the U(l)- 

Goldstone model. However, I will try to keep the discussion of this model as 

brief as possible --without becoming totally cryptic--so as to leave time for 

a few remarks about what we do know about the Higgs model and Abelian gauge 

theories in general. 

Introduction to the U(1) Model 

The model we will discuss is the model of a complex scalar field which 

was first studied as the simplest example of the sponteneous breaking of a 

continuous symmetry. The theory is based upon the Lagrangian 

9 = (a#*)(a,$) - A(20A$ - f2)2 

where 

or alternatively, upon the Hamiltonian 

H= + al$*al$ + x(24*$ - f2)2 

where we define 

n*=ae; 
9 0 % 

= ao+* . 

(4.1) 

(4.2) 

Rather than discussing this continuum theory, let us directly transcribe it 

to a lattice theory and then discuss that. The lattice form we will use will 
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have a nearest neighbor form for the gradient since, as we saw in the first 

lecture, this makes no important difference for the scalar field and it sim- 

plifies th^e pedagogical part of our discussion. The lattice Hamiltonian we 

adopt is 

H=C 
j 

where 

(4.3) 

9 = $ (Oj + ixj) 

Having transcribed the continuum theory to a lattice theory, let us be 

sure that the important features of the continuum model have not been lost, 

at least at the classical level, or at the level of perturbation theory. The 

purpose of the discussion to follow is to reassure those familiar with the 

continuum Goldstone model that nothing is different, and to introduce those 

of you who have never studied the problem to the concepts and the level of 

discussion of these points which one usually encounters. 

First, let us discuss the classical limit of this theory. This corre- 

sponding to ignoring the II *II 
~j Oj 

term in (4.3) and treating the remaining terms 

as an expression for the "energy" associated with a function 4.. Since the 
3 

classical part of (4.3) is a sum of squares, it is a manifestly positive func- 

tion of 0 
3 

; thus, the functions which minimize H are those for which each of 

these terms separately equal zero. This means that ($j+l - $j)- = 0 or 

9 
= 9, independent of 'j', and that 

* 
2@o$o- f 2 =o. (4.4) 

c-. _ 



- 44 - 

i.0 If we write $. = roe , then (4.4) implies that ro= f/& and so there 

f ie is a one-parameter family of functions $,(e) = - e 
zi 

which have zero energy. 

In terms of the variables 0. and x,, 
J J 

this result is simply that both o. and 
J 

xj are independent of 'j' and that o. = f cos0 and x0 = f sine. This situa- 

tion, where there is a.continuum of degenerate groundstate configurations, 

is what is meant by saying that the U(1) model exhibits spontaneous symmetry 

breaking, since a U(1) transformation rotates one of the degenerate states 

into another and so no single "groundstate" is rotationally invariant. 

Turning from the classical picture, let us turn to the usual perturbation 

discussion of the quantum field theory. For this discussion it is convenient 

to go to the variables U. and x.. 
J J 

Substituting 0. 
J 

= -L (crj + ixj) into (4.3), 
45 

H= + I IT2 
j 2 x. 

+ +u 
J 

2 j+l - Uj)2 + +x 2 j+l - Xj12 

(4.5) 

This Hamiltonian is usually analyzed by observing that in discussing perturba- 

tion theory one wants to do an expansion in small vibrations about a stable 

minimum.of the classical potential. In this case, because any one of the 

field configurations o. = f case and x0 = f sine are minima, we have to specify 

which one of these field configurations one is expanding about; however, the 

belief--backed up by analyses of models in 3 + 1 dimensions to any finite 

order in perturbation theory-- is that one gets the same theory (in the sense 

of unitary equivalence) no matter which point we expand about. Assuming that 

this might be the case, let us choose to expand about a0 = f, x0 = 0. In 

other words, let us define a small vibration field 0' by 
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u =u'+f 

- and rewrite H as 

(4.6) 

H= 
=I 

+$I2 + 
2 xj 

+(u;+l - cy2 + %x 
j j 

2 j+l - Xj’2 

(4.7) 
2 2 

2 + rni,U' + 
m f 
-&- u' (a' 2 m 2 + x2) + CT' (a' + x2)2 

8f2 I 

where m 2 
U' 

Z 8xf2. 

Focusing attention on the quadratic part of (4.7), in order to define 

the propagators to be used in the perturbation expansion, we see that the 

u'-field is a massive free field of mass mu, = 2& P2 f and x is a massless 

field--i.e., it is the infamous Goldstone boson. The usual perturbation 

analysis is then usually done by holding rni, fixed, and expanding in powers 

of l/f. Hence, f * ~0 is the weak coupling region of the theory and 

is the region where one expects the notion that the groundstate of the quantum 

theory has <u> = f and a massless Goldstone boson to be good. In fact, in 

2 + 1 and 3 + 1 dimensional theories one believes that the perturbation pic- 

ture for f >> 1 is essentially correct; however, in the 1 + 1 dimensional 

theory things are different. This is because in one dimension a massless 

particle propagator causes infrared divergences so severe as to invalidate 

the entire perturbation analysis. One might of course conjecture that although 

@he perturbative analysis in 1 + 1 dimensions breaks down, perhaps the 

general picture of the classical analysis survives. This, however, is known 

to be false. There is an exact theorem for the continuum theory due to S. 

Coleman, 8 and an earlier version of the same theorem for any lattice theory 

due to Mermin and Wagner,' which says that in 1 + 1 dimensions the groundstate 
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of the theory cannot have <Q> # 0. This brings us to the question of why we 

are so interested in studying this model. 

Why the Ue) Model? 

As I pointed out in the first lecture, there is every reason to believe 

that the ability to compute spontaneous breaking of continuous symmetries is 

one of the important requirements to put on a purportedly non-perturbative 

method for analyzing field theories. On the other hand, another important 

requirement for such a calculational scheme is that it does not fool you and 

predict spontaneous symmetry breaking when it does not exist. For this reason 

the 1 + 1 dimensional U(l)-Goldstone model is of great interest to us, as-- 

despite the suggestions of the classical and overly naive perturbation theory 

analysis of the model-- there is no Goldstone boson. More precisely, for the 

1 + 1 dimensional theory it is impossible for <@= to be different from zero. 

Since we have already seen that our iterative calculational scheme does seem 

to predict phase transitions (or spontaneous symmetry breaking) when we know 

they do occur, we study this model to be sure that it does not predict them 

when they are known not to occur. 

Another important reason for studying this model is that it provides an 

example (other than the free scalar field, which I will not discuss due to 

lack of time) of how to handle a boson field theory. This is important, since 

up until now we have only discussed systems which have a finite number of 

states associated with each lattice site. For the boson field -there are an 

infinite number of states per site and so there is an interesting new feature 

of the iteration procedure to be investigated. 
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Finally, as I alluded to at the outset, gauging the U(l)-symmetry of 

_ this model gives the Higgs model, which has a rich structure in 1 + 1 dimen- 4 

sions, and I will have a few brief remarks to make about this at the end of 

this talk. 

Non-Perturbative Analysis . 

At this point of my talk we have discussed why the U(1) model is interest- 

ing and why it is necessary to go beyond perturbation theory in order to 

properly analyze what is going on. Let us now see how this can be done. To 

begin, let us recast (4.5) as a gigantic Schroedinger problem. This is easily 

done, since 

Pa I(J.1 
II J 

1 = Vx 
j 

,xj,l = -i6jj, t 

and so we can think of H as an operator on the space of square integrable 

functions of the 2(2N + 1) variables (U-N,X-N;U-N+l,X-N+l;.~W;UN,XN), 

i.e., we think of the problem of diagonalizing H as equivalent to solving 

the Schroedinger problem 

H’Ua_N~x-N.. .a,,~,) = EY(qN,x-N;. . l uN,xN> (4-g) 

where we use for H the form given in (4.5) with the substitutions 

*uj =(s-) ; nxj =(+$j (4.9) 

and we assume 

I du-Ne l Ix N Y*oJN,. . ,x,1 Y (q,, l ‘XN) = 1 l (4.10) 

Having made this observation, we will now rewrite H in its Schroedinger 

form, collect all "single-site" terms, and show that if we take the limit 

x + 00, f held fixed (i.e. we let rni -t m for fixed f), we greatly simplify the 
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problem to be analyzed without losing any essential features of the model. 

_ (To those familiar with the language, this limit corresponds to studying the 
-h 

non-linear version of the U-model instead of the linear version, and at least 

in 2 + 1 and 3 + 1 dimensions one knows that the Goldstone boson exists in 

both versions.) To be precise, let us rewrite (4.5) as 

H= -F----- CL 
1 a2 1 a2 

j au: 2 axi 

+ u; + x; + X(u5 + x; - f2)2 

-c 
j 

(‘j+l aj + Xj+l Xj' 

(4.11) 

Note that the terms 6, xi, u. u. and x. 
J+l J 

x. come from the gradient term. 
J+l J 

Let us now focus attention on any one of the terms 

hj = ( 1 a2 i a2 
-2a(J2-2g + u; + x; + x(0; + x; - f2j2 

j j 
). 

(4.12) 

and try to solve the single-site problem 

hj Wj,xj) = E’WJj,xj) . (4.13) 

Now (4.13) is nothing but a two-variable Schroedinger equation and is invariant 

with respect to rotations in the (Uj,Xj) plane. Hence, it is convenient to 

change variables and define 

‘3 = 4uj + xi ; .Oj = tahl(Uj/Xj) ; -T<O <-IT 
- j- 

(4.14) 

and rewrite h. as 
J 

hj=[-$~~~rj$y))--$f$+r~+ACr~-f212] (4.15) 

j j 
and observe that in order to solve the problem one can separate variables 

and define 
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Y(O) = C O,(r) emime 
m 

(4.16) 

In this c:e we see that the problem of finding eigenfunctions of h 
j 

reduces 

to solving the 'm' dependent Schroedinger problem 

Clearly, as X + ~0 the potential 

2 
v(rj) = - J!- + rj' + A(rj2 - f 22 

2ri 
) (4.18) 

has its minimum at r. 
J 

= f and has a curvature which goes like (fi hl'2f)2. 

Hence, one can readily convince oneself that a Gaussian of the form 

e 
-Y (rj - f)2/2 

, where y =: x1'2f/fi, provides a g ood groundstate wave function 

for any finite 'm', and so one can choose this for Gm(r) for all 'm' and 

compute the expectation of H in states of this form. Clearly, since the 

Gaussians get narrower and narrower as X * 03, this amounts to ignoring the 

i a term - -- a - in (4.17) and replacing 'r.' everywhere by f. We 
2rj ar. rj ar. 

J ( 1 J 
J 

therefore observe that in the limit A + 00, (4.17) becomes 

h(‘-) = 
j 

0 
independent const. ) +$(b$ (4.19) 

where h('-) 
j 

is defined, by construction, on a space of functions f(e) satis- 

fying periodic boundary conditions; i.e., up to a constant--which we can 

ignore--hj is the Hamiltonian of a rotor of moment of inertia 1/f2. Going 

back to (4.11) and making the corresponding substitutions 
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U. 
J 

= f cos(ej) ; x. = f sin(ej) 
J 

(4.20) 

- we can rewrite (4.11) in the limit A -t 00 as: 

,(x--) = F [ -$ (+ 6’ - f2 cOS(ej+l - ‘j’] (4.21) 

. 

where H is defined as a self-adjoint operator on the space of square integrable 

functions y(e_,,..., 8,) satisfying periodic boundary conditions in each 

variable -TT < 8 < IT. 
- j- 

The previous argument tells us that in the A -t 0~ or Mu -t 03 limit of the 

U(l)-Goldstone the theory goes over to a system of planar rotors of moment of 

inertia 1/f2, coupled to one another by an amount proportional to the difference 

between the directions in which they point. This same model is also a beloved 

model of "statistical mechanics" who cryptically call it the x-y model. 

Have We Lost Anything? 

Before discussing this model and the structure of the resulting theory as 

a function of 'f', let us observe that the theory specified by (4.21) has the 

same features, at the classical level, that the original theory had. Once 

again, the classical approximation is to drop the 2 terms . If we do 

this, it is clear that the classical theory has a l-parameter family of ground- 

states labeled by a parameter Uo, namely the configuration 8. - 8. = 0, 
J+l J 

or8 =e 
j 0' 

Having argued that the classical level of the theory is unchanged, let us 

now argue that the "small vibration analysis" of the quantum theory suggests 

that we are studying, for large f, the theory of a weakly interacting massless 

field. The easiest way to do this is to let 

5 j 
=f0 ; -rf < 8 < ITf 

- j- 
(4.22) 
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and rewrite H as 

,H = F[L(L$ - f2 cos(q+l - 8;' (4.23) 

If we now assume that e! = 8'. 
3 

+ 6j and expand H in terms of the small vibra- 

tion field 6., we obtain 
3 

2 
H= -f2(2N)+ c + (8 

j 
j+l 1 

(4.24) 

which as f +'a goes over to the Hamiltonian of a free massless field. This, 

of course, is what we saw for the original U(1) model, i.e. that perturbation 

theory corresponded to an expansion in f -1 about the theory of a massless 

scalar field. 

Hence, we see that our specialization to the X -t a, f held fixed limit 

of the U(1) model (or the x-y model) loses none of the important features we 

wished to study. Our goal will be to show that our calculation for f << 1 

agrees with the Mermin-Wagner (or lattice versions of Coleman's theorem) in 

that it predicts that 

<eiej> =_ 1 p$j>=o , 
i.e., it is not e 

ieC 
, as we would expect from the classical argument. 

Discussing the Lattice Model Variationally 

Time will not permit me to give all the details of the iterative calcula- 

tion for this model, nor is it very interesting to you to check my arithmetic. 
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I will spend the remainder of my time trying to give you a feeling for what 

we did and how a typical iteration looks. 

-To begin, let us consider some general physics associated with the 

Hamiltonian (4.4), or its resealed form (4.23). I would like to point out 

that as f decreases towards zero there is a big difference between (4.21) and 

the theory obtained by replacing cos(8 j+l - ej) by +,, - $12. This is 

true because if we study the theory 

H = F [~ (~~)' +~ ('j+l - 'j)2 

we see that we can always perform the canonical transformation 

5 ‘= q/f ; (*4) = f(&&) 

(4..25) 

(4.26) 

and rewrite H as a massless free field theory; hence the physics of (4.25) is 

independent of f. However, the physics of (4.21) is quite dependent upon f, 

as can be readily seen by studying H in the limit f >> 1. In this case if 

we define 

1 
"0=2 j 

la2 

c( 1 
-- 
i a0 

j 

and treat 

V= -f2 cos(8 j+l - ej) 

(4.2i) 

(4.28) 

as a perturbation, we see that the eigenstates of H 0 are wave functions cjf the 

form 

Y(e-,,...,e,) = I? 
j=-N 

(4.29) 
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with eigenenergies 

*(mj> =-$Cmj2 
2f j 

(4.30) 

Hence, the groundstate of Ho is the unique state 

w,,...,e,) = 1 (4.31) 

and the gap to the lowest excited state is l/2f2, which becomes large as f + 0. 

Clearly for 'f' sufficiently small the perturbation V has no way of wiping out 

a gap of order 1/2f 2 and so the theory is a theory of massive excitations. 

The question is, how come the small 'f' limit of(4.21) is a massive theory, 

whereas the theory of (4.25) is a massless theory independent of the value of 

f? The answer is that the arguments, m., 
J 

of (4.29) are integers because the 

+(ej) are defined to be periodic in the variables O.--and so for small enough 
J 

'f' the gap becomes large. Hence, it is the fact that the $(ej) know about 

boundaries of the defining region which allows the theory to go massive. 

This comment is important because the gist of our iterative solution 

will be to show that for f's greater than some constant f 
C’ 

the groundstate 

wave function never sees the fact that the Hamiltonian is periodic, i.e., that 

ej runs over a finite range. To be specific, let us define j = 2p + r, r = Or, 

and rewrite H as 

- f2 cos(e 2p+l - e2p) 

(4.32) 

- “F 
cos (e 2(p+l) - e2p+l) ' 

and let us define 
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h =- 
P 

1 

( 

a2 -- 

2f2 ae2 
2P 

+ a2 

ae2 1 2p+l 

f2 cog (e 2p+l - e2p) (4.33) 

in analogy to earlier iterations. As before, our next step is to analyze 

this l-block problem in detail, identify the eigenstates of the system, and 

truncate away those combinations of fields corresponding to "high mass modes." 

To analyze (4.33), it is suggestive to introduce the variables 

2JI, 
= (e2p + e2p+1) ’ 

2$P = (e2p - e2p+l) , 

and rewrite 

hP= -$-# -$(-$)- f2 cdWp) 

(4.34) 

(4.35) 

Expanding the cos (2$p) and fixing attention on quadratic terms suggests that 

the variable Cp, behaves like an oscillar of frequency w = 
9 

= 2'and mass m 
4 

f2 , 

and the variable $, acts like a rotor, in that -a 2 2 /a$ 
P 

is diagonalized by func- 

tions of the form e Wp . Actually, this apparent decoupling of the 2-site 

Hamiltonian is deceptive, since the requirement that h act on wave functions 
P 

w 2p,62p+l) which are periodic on the square -R 2 S2p 2 IT, -IT 2 82p+l 5 r 

requires that variables II, 
P 

and $p be coupled; since, for fixed JI, we have 

-lTL$ <Tr but 
P- -(+l+pl) L JI, L (~+#,I) (4.36) 

This recoupling of the variables through the boundary conditions requires 

that one carefully handle the Schroedinger problem. Having said that one 

must be careful, let me promise you that we have been. The key point is that 

for w 
@P 

= 2 we have the groundstate wave function e -%f++bt$) I2 = e-f2@; and 

for large f (f >> 1) it is clear that the system doesn't see the boundary to 
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any great degree. Moreover, it is clear that the mean value of op is in the 

range l/f, hence the JI, variable (up to terms on the order of l/f) can be 

considered to be a rotor with periodic boundary conditions on the interval 

(-7T,lT). The aim of this brief discussion is to show why a caref study shows 

that for large f, naively treating h 
P 

as the.Hamiltonian of an uncoupled rotor 

and oscillator is O.K. The next step is to couple two such blocks together 

through the typical coupling 

-f2 cos $ 
( 

p+l - JI, + (@p+, - 0,) 
1 ’ 

(4.37) 

show that it becomes a system of one rotor and three oscillators, and 

then truncate away states generated by having the two oscillators of highest 

mass out of their groundstate. This truncation brings us back to an effective 

Hamiltonian of a system which is one rotor and one oscillator. All that will 

have changed is the coefficients of the various terms. Let me briefly sketch 

how this goes by noting that at the nth iteration, the truncated Hamiltonian 

takes the generic form 

Hn = 

_ 8n 
cos J, ( p+l - *, + *n('P+l - ") 11 

(4.38) 

and if we define a superblock of 4-sites by letting p = 2R + s, s = O,l, then 

we get an effective superblock Hamiltonian 
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If we have Bn/at sufficiently large, then we can justify expanding the cosine 

and keeping only quadratic terms. This reduces the hR problem to a system of 

one rotor and three coupled oscillators; diagonalizing this and truncating 

away the two highest oscillators gives us C 
n+l' 2+1’ ‘n+l’ @i+l and ‘n+l l 

The results of one such iteration for two values of x0 = l/f are given in 

Tables 8 and 9. The variable Kn is defined by b,, = B 
n 

eWKnxC2@,. Although 

l/2 I will not prove it now, it is easy to convince oneself that lim(8, ) is the 
n- 

expectation value, in the variationally constructed groundstate, of - e 1 i@j 
f 

. 

From the fact that Kn goes to a constant after a few iterations, it follows 

that after a few iterations we can write 

B1/2 = ~1/2 e-(.368...)n/2f2 
n ., 

(4.40) 

Since the volume of the block under consideration gives as 2(2n), we have that 

Rn(v)_l 

n = &n(z) 

p = B’ e-(.368..)!Ln(v)/f2 
n 

(4.41) 

(4.42) 
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Hence, we find that as the volume of the world goes to infinity we predict 

that <eie (j ) > tends to zero as a constant times (l/V) (0.36821/f2) . This is 

the resulcpredicted from analyses based on a treatment of S(j) as a massless 

free field and is not easily reproduced from a first principles calculation. 

Summary . 

What we have shown in this discussion is that the same iterative procedure 

we have used to discuss theories describing systems having finite number of 

states at a site works well in describing bosonic systems which have an infinite 

number of states at a site--if we truncate so as to preserve a full field 

operator per site. Moreover, we have seen that the physical insight obtained 

from the Hamiltonian picture makes it trivial to see that the theory undergoes 

a transition to a massive phase for f sufficiently small and that it describes 

a massless theory for f << 1. Although we have not discussed the transition 

region in these lectures, the same iteration procedures--with greater care 

spent upon the recoupling of oscillators in a block through the boundary con- 

ditions-- could be used to calculate for all 'f' and study the nature of the 

transition. We have not chosen to do so, simply because little is known in 

the way of precise information about the behavior at the critical point, and 

we are using this model to test our method. This brings us to the final point: 

we have shown that the naive truncation procedure is powerful enough to predict 

a transition to a Goldstone phase when it occurs, and to predict that f<e 
iej, 

= <9(j)> = 0 in one dimension, where-- contrary to classical arguments--the 

transition to a Goldstone phase is known not to occur. 
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Closing Remarks 

Although I will have no time to speak about it, we are now actively 

studying ze application of these same methods to gauge theories. At present, 

we have focused attention on Abelian theories in all dimensions in order to 

find out whether or not the prescriptions given by Wilson and Kogut and 

Susskind correctly describe quantum electrodynamics for any range of couplings. 

This is an important question, since for Abelian theories can be formulated 

in a different manner than that given by Wilson and this formulation manifestly 

reproduces QED; hence, if the Wilson prescription winds up confining electrons 

for all couplings in 1 + 3 dimensions, one will worry whether or not confine- 

ment ---as discussed within the framework of lattice theories--has anything to 

do with properties (such as asymptotic freedom) associated with the continuum 

theory. 

To date, we have found that these methods can be straightforwardly 

extended to gauge theories once one properly understands the significance of 

local gauge invariance. In particular, Helen Quinn and I have used this 

method to analyze the 1 + l-dimensional Higgs model--obtained by gauging the 

U(1) Goldstone model just discussed. We have shown that from the Hamiltonian 

point of view one can trivially, in a strictly physical way, obtain all of 

the results of analyses based upon instantons. 

Up to this point we have seen no reason to believe that the same methods 

will not extend in a straightforward manner to non-Abelian gauge theories. 

However, that work is currently in progress and so we have no solid statements 

we would care to make about it at this time. 
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Table 2 

State 

I oj7 

\+j> E b;!Oj> 

t,7 = dttO> . . 
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J jj j7 
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-1 0 
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Table 3. Q=O sector 
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Table 4. Q=l sector 

Q5 State P Transform 
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Table 5. g=O 

I 
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Table 6. g=. 1 
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I I 
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Table 7. g=2 

geff Y norm(j=L.a ,5) 
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FIGURE CAPTIONS 

Two climbers attempting to scale what appears to be the same peak. 

A bird’s eye view may reveal that the peaks are, in fact, different. 

broad map of some well travelled theoretical routes to the black box 

which presumably holds the secret of confined quarks. 

Could there be a free and hungry colored quark in the black box? 

Dispersion relation for cut-off free scalar field theory (solid curve) and 

latticized free scalar field theory (dashed curve). 

The dispersion relation for the free fermion case. 

Simultaneous eigenstates of ax(j) and HE =o. 
0 

Simultaneous eigenstates of az (j) and Ha o=. . 

The graph of yn+l-yn (=R(Y,)) vs. y. 

Exact and variational calculation values of e. as a function of y. 

Exact and variational calculation values of ax > as a function of y. 

Exact and variational calculation values of -d2eo/dy2 as a function of y. 

The quantity dZ,(g)/Z,(O) is shown as a function of g. 
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