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ABSTRACT 

In this paper we compute and interrelate various non-leptonic charmed 

meson decay matrix elements. With the assumption that the decay Hamiltonian 

is in the AI = 1 form, numerous decay rates are interrelated. The predictions 

are compared to the experiment whenever sufficient data is available. In 

other cases we compare our results to those of Quigg and Rosner. To estimate 

the value of the D-+&n decay amplitudes we make use of PCAC, and we attribute 

the enhancement of these amplitudes relative to D -'ET amplitudes to the final 

state interactions. We suggest an approximate treatment of the problem and 

show that, even though the parameter dependence is unavoidable, it is possible 

to obtain the desired enhancement. Some numerical and graphical results are 

presented. 
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1. INTRODUCTION 

A. -A Brief Review of the Current Experimental Status 

The presently known charmed particles Do and D+ have been 

the SLAC-LBL group as peaks in &, %VTT, Knrr7[., invariant masses 

+- 1 e e annihilation. Evidence for the charmed-strange meson FS 

but it is not yet conclusive.2 

discovered by 

coming from 

is accumulating, 

Experimentally D'+K-n+, D"&T+K-, D'+K-n+n+-rr-, D ++y&+ + -++ ,D-+KT~ 

are the only established decay modes of Do and D +3 
. It is also known that the 

leptonic and semileptonic decays occur about 10 to 20% of the time, but the 

exact decay modes have not yet been determined. 4 

In an analysis carried out by the'SLAC-LBL group consistency of the data 

with the O-spin assignment is reported. 5 The same analysis also confirmed 

the l-spin assignment for the D Of< and D+'. The study of the Dalitz plot by 

-++ the same group has shown that the spin-parity of the final state in DfK 'rr V 

decay is not compatible with Jp = l-, or 2 + . On the other hand, clearly, three 

pseudo-scalars cannot be in Jp = O+. Since Df?n+ decay has a final state 

of spin-parity 0 +, 1-, 2+, . . . it is obvious that unless D is of spin 3 or 

+ -o+ higher, the existence of both modes D -+K n , 
-++ 

D+-+K v n implies parity 

violation, and establishes that the decay must be weak. The corresponding 

analysis of the Dalitz plot for the D"-+?~+~- decay has not yet been done, 

but the most reasonable assumption that DS and D 0 are iso-doublets would 

suffice to extend the same conclusion to Do decays as well. 

The question of i5" - D* mixing has not been settled yet. If one assumes 

that the fourth flavor carried by Do and D 
+ 

is the same flavor originally 

conjectured by Bjorken and Glashow, one expects that DfK-nr+Trf should go but 
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D+-+K+7;f'rr- must be forbidden. 6 Furthermore the decays that do not involve a 

z must be suppressed by the Cabibbo angle. The experimental evidence supports 

both of fhese predictions, and limits the possible weak 2 - 

small; however, the data is not very accurate and conclusive 

Do mixing to be 

2 yet. 
- 

The analysis of the Dalitz plots has also established that the K%, or 

ip contributions to the &IT final state are negligible. 7 In the Dalitz plots 

no other intermediate resonant states are observed. The present data are not 

sufficient to determine the variation in the Dalitz plot accurately, but the 

obvious feature is that such a variation must be fairly smooth. 

Even though the parity violation is well established, the present data, 

including the leptonic or semileptonic decays, is insufficient to determine 

the form of the interaction. It is consistent with V-A, but not good enough 

to rule out other possibilities. 

The final piece of experimental evidence relevant to our paper is the 

enhancement of the three and four body non-leptonic final states over the 

two body non-leptonic final states. As given by G. J. Feldman, the relative 

decay rates are listed in Table l.8 

B. The Method 

In this paper we will attempt to interrelate various non-leptonic low 

multiplicity decays of the charmed mesons. 

Because the Dalitz plots seem to be fairly smooth, the simple asssumption 

that the decay matrix element is constant over the Dalitz plot is naturally 

the first thing to try. This matrix element was first estimated by Gaillard, 

9 10 11 
Lee, and Rosner, J. D. Jackson, and Quigg and Rosner, based on a simple 

statistical model. As the mass of the D particle approaches .infinity, and 

as the mul.tiplicity of the final state grows (N > 4), their approach may be 
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the best approximation. Nevertheless since the D mass is not all that high, 

their predictions for low multiplicities (N 5 4) may not be correct. In 

this pap:r we will follow an alternate method for the two and three body final 

states using the standard LSZ reduction technique and the hypothesis of Par- 

tially Conserved Axial Current (PCAC). 

One may object that the success of the PCAC hypothesis is limited to 

the low energy phenomena, and yet in the decay of D particles the final pro- 

ducts are fairly energetic. However, PCAC need not be interpreted as an 

approximation to physics for zero momentum. Alternately, we can assume that 

PCAC is an exact operator equation between the pseudoscalar field and the 

divergence of the axial current. In this case, all the results obtained by 

the application of this hypothesis to the standard reduction of scalar matrix 

elements must be interpreted as exact results. However, the actual computa- 

tion can only be carried out for zero momentum, which lies outside the physi- 

cal region. We will call these zero momentum points the PCAC points. The 

task is then to extrapolate the matrix element computed at the PCAC points 

to the physical region. There is no proven and universally accepted way of 

doing this, and without approximations and plausibility arguments the task 

may be -imp~,ssible. For low energy phenomena, of course, the matrix element 

has to be extrapolated to a small nearby region for which a simple linear 

approximation may work very well, as was the case with K-+rr~n decays. 12 

Such a linear approxincition is a.g;tin the first thing to try even though 

for the decay of D particles it is not expected to produce correct results 

considering the range of extrapolation. The actual calculations showed that 

the result is about four times smaller in amplitude than the experimental 

va.Lue. To extrapolate the matrix element to the physical region more 
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realistically the final state interactions must be included. As will be shown 

in Section II it is possible to employ the final state interactions to obtain 

the desced enhancement of the matrix element over the physical region without 

introducing any resonant intermediate states, which seem to be absent cxperi- 

mentally. 

In this paper actual numerical results will be obtained for various 

decays, and wherever the experimental data is available the comparison will 

be made. Due to the lack of sufficient data for most of the decays that has 

0 one or more Tr in the final state, the comparison with the experiment will 

not be possible for most of the predicted decay modes. For these cases we 

will compare our results to that of Quigg and Rosner. For several particular 

decay ratios our prediction will be different by more than 100%. 

At the end we provide two appendices. The first one is for the computa- 

tion of the matrix elements in detail, the next one is for-the computation of 

the Omnes functions relevant to our problem. 13 Most of the numerical part 

of the work for this paper was done on the IBM/370 computer at SLAC. The 

numerical integrations were carried out by the use of the Fortran integration 

routine SHEP. 
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II. MATRIX ELEMENTS FOR D AND F DECAYS 

A. The General Assumptions 

In the rest of this paper we will assume that the charm selection rule 

AS = AC holds for all weak charm decays, and '6" - Do mixing is small or 

vanishing. As mentioned in the introduction, the experimental evidence for 

this assumption is good but not conclusive. We will further assume that Do 

and D+ form an isospin doublet and both are assigned .Jp = O- spin-parity. 

We will also assume that 

Hw(0) = 0 1 (1) 

where H w is the weak Hamiltonian density, and Q, and Qi are the weak scalar 

and pseudo-scalar charges associated with the vector and axial currents 

respectively. The subscript "a" is the group index. For most purposes this 

assumption is equivalent to the V-A form of the interaction Hamiltonian. 

The PCAC hypothesis will be stated as 

ajJA:(x) = f(a)m;a)+(a) (x) (2) 

where 1-1 is the Lorentz index, At the axial vector current, and the pseudo- 

scalar field, where m 
(a) 

is its mass, and f (a) 
is the decay constant defined 

by 

We will also assume that the final pseudo-scalars in the D decays are 

all in relative L = 0 states of orbital angular momentum. Due to the angular 

momentum barrier, we expect this assumption to be true in the majority of 

the decays. The lack of k*n and Kp final states supports our assumption. 

We must mention that there is evidence that D-+&n decay may be the dominant 



&rnr source. 
7 

The application of the standard reduction technique and PCAC 
- 

will then imply the existence of D-+Kp decay, which is very suppressed. A 

possibl: explanation is to assume that pn in the final state come from the 

decay of a more massive particle. Experimentally A2 is ruled out to a good 

confidence level, but Al and others may account for the data.7 We emphasize, 

however, that the s-wave approximation is probably the weakest of all our 

assumptions. It is conceivable that some unknown dynamical mechanism may 

enhance the higher partial amplitudes. 

With the above assumption then, whenever applicable we will symmetrize 

the final state with respect to all the pions in it, since the pions must 

be in relative I = 0, 2 isospin states and not in I = 1. Some of our results 

will crucially depend on this symmetrization, and if for some reason the 

p-waves are enhanced, some of the relative decay rates we obtained may change 

drastically. 

B. Reduction of the 3-Body Matrix Element 

Define 

where i, j, 1 are group (SU(3)) indices, and q = p-kl--k2--k3, which we 

allow to be non-zero until the end. The standard LSZ reduction yields 

A ij1(kl,k2,k3; q) = -i(ki-m:l)) 
/ 

d4xe 
ik3'x 

(&k,h 

which'with the help of PCAC becomes 

i k2 
At? +kl,k2,k3; q) = ( 3 

- m:l) 

f(l)m:l) 

(7ii(kl)nj(k2) 
I 

[Q;(O), Hww(0)l D(P)) 
I 

I D(P)) 

+ ik3'fi4x eik3‘x 

+ Possible Schwinger 
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The reason for writing this equation in full is to emphasize that we consider 

it exact. Then we take the k3 -0 limit and use Eq. (1) to get 
-c. 

A? ij1(kl,k2,0; q) = -%- 
f(l> 

(&,hj (k2) 1 [Q1,HwWl ID(P)) (3) 

The individual matrix elements for each one of the possible five decays of 

D+ and Do are given by Eq. (Al) in Appendix A. 

Because we assume that the pions are in I = 0, 2 iso-spin states, we 

have to symmetrize the matrix element with respect to the final pions. Then 

we define the symmetrized matrix elements ,/I/: 

Jtl(kl,k2,k3; q) if the pions are identical. 

,N(kl,k2,k3; q)= 

(A(kl,k2,k3; s) +Jtl(kl,k2,k3; q))/& otherwise. 

Since the pions are treated symmetrically, taking both of them out of 

the matrix element and letting their momenta go to zero will not produce any 

2 non-trivial relations because we can take m Z 0. Tr This point will be ciearly 

explained in the next section. Again a full account of the PCAC relations 

when both pions are taken out of the matrix element are given in Appendix A. 

Even though the kaon PCAC relations are not considered as reliable as 

those of pions, the case for which the kaon is taken out of the matrix element 

is also worked out in Appendix A. At the end, we will make use of these as 

well as the pion PCAC relations. 

The equations (A2) and (A4) in Appendix A are particularly important. 

They state that 

Jv +(kl,k2,0; q) = -/y&'+-(kl,k2,0; q) (4) 

If we make the roughest assumption now, that the value of the matrix element 

computed at the p-ion PCAC points is approximately equal to the value of the 
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matrix element over the actual Dalitz plot, using Eq. (4) we reach the follow- 

ing two conclusions, both of which are in disagreement with experiment: 
* 

The first prediction is that the D++K-T+~' rate must be twice as large 

as that of D"-+~o~rf~rr-. The experimental number is clearly not 2 but about 

0.85 + 0.30. 
8 -0 + - rate to - Secondly we predict that the ratio of the D"+K n 71 

that of D"+K-nf must be less than 0.4 compared to the experimental value 
8 

1.75 + 0.70. - It is clear, therefore, that some mechanism of enhancement is 

needed. 

The simplest way of achieving such an enhancement is by means of one or 

more intermediate resonant states. Experimental evidence, however, clearly 

negates this possibility. On the other hand, the final state interactions 

can conceivably produce such an enhancement without going through a resonance. 

Unfortunately, there is no unique, relativistic formulation of the final state 

interactions for three particles. We will assume the following simple approxi- 

mate form for the matrix element 
- 

JW+k2,k3 ; 9) " R;1K:r(s12,t3) + R$$s13,t2) + R;71(s23,t1) (5) 

where the R amplitudes will be separated to their isospin parts R I2 
11' I1 

being the total isospin of lower two particles and I2 being the isospin of the 

Km system, and s ij = (ki+ kj)2for i f j, and t i = qBki, i, j = 1, 2, 3. 

Each amplitude R has the form 

I2 
RI 

I2 
(s, t> = NI (s, 

1 1 
t)/DI (s) (6) 

1 

where the numerator is presumably a smooth function of s and t, and the 

denominator is the corresponding Omn6s function. (See Appendix B.) This 

form of the amplitude is not strictly correct. Above all, it violates 
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unitarity. However, in various situations it provides a fair approximation 

to the actual scattering amplitude, and it is the only form that is easy to 

manipulaFe without trying to solve several coupled integro-differential 

equations. 13 In the actual application to our problem we will approximate 

the numerator as a simple linear polynomial, and hope that it provides a 

reasonable approximation over the energy range we are concerned with. The 

coefficients of the linear polynomials for each different amplitude will be 

treated as unknowns to be determined by the value of the amplitude computed 

at PCAC points. 

Unfortunately, as it stands, the problem cannot be solved without 

additional assumptions. Assuming that the Hamiltonian takes the most general 

form introduces too many amplitudes (hence too many coefficients to be deter- 

mined in the numerator). At this point we found it impossible to continue 

without introducing the extra assumption that the Hamiltonian is mainly of 

AI = 1, AT3 = 1 type; the AI = 2, AI3 = 1. part of it is either very small 

or vanishing. 

This is not an "ad hoc" assumption at all. It can be justified by the 

current-current form of the Hamiltonian. 

If the Hamiltonian density is of the current-current form, the AI = 2 

part of the Hamiltonian vanishes identically. The current-current form of 

the Hamiltonian may not be strictly correct; nevertheless, in a lot of cases 

we know that it provides a good approximation. We also have to emphasize that 

the AI = 2 part of the Pamiltonian may be negligible even if the form of 

the Hamiltonian is not current-current type. PCAC itself is very suggestive 

for the AT = 1 assumption. (See Appendix A.) 

We use the AI = 1 hypothesis to write 
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[I+, Hw(O>l = 0 (7) 

By manipulating the isospin raising and lowering operators we get 
-h 

(Z%+/H~\D+) = -(Z%+][H~, I+]]D') + (K-IT+~H~]DO) 

+h- (?~")HwIDo) 

which implies then 

T of - T -+ _ ,/F Too = 0 

where the notation refers to the charges of the final particles starting with 

the charge of z. (See Eq. (Al) in Appendix A.) 

Having limited the form of the amplitude we can proceed immediately to 
- 

compute the D-+KJvT matrix elements. However, we would like to postpone this 

for a while and study the immediate consequences of the AI = I assumption. 

As we will see, this one turns out to be a very powerful assumption in its 

predictive power. 

C. Immediate Consequences of AI = 1 Assumption 

In the following section we treat (K-, ii") and (Do, D+) as isospin anti- 

doublets rather than doublets. This way our phase convention matches that 

of standard W(N). The same convention also requires (IT-,~',IT+) be an iso- 

triplet with the following signs for the raising and lowering operators: 

I++, = -&jlTO), I-lTrO) = JYIIT-), I+I.ii-) = /"I.irO), and I+]IT' = --JYIT+). 

For the group SU(2) alone, admittedly, this is a highly unorthodox convention 

because a doublet is unitarily equivalent to an anti-doublet-; however, it is 

easier to manipulate when extensions to SU(3) and SU(4) are made, for which 

N-plets and anti-N-plets are no longer equivalent. 

i) Starting from 

(~&T+IT+ ( HwI+/D+) = 0 



-12- 

and manipulating the I' operators and using Eq. (7) we get 

4 
#'rflT"IHw/~+) + (i&'nf/HwID+) 

I - (K-IT+T+\H~/~+) 

which implies 

Jv Ofo(kl,k2,k3; q) = - +'+(kl,k2,k3; q) (9) 

where the amplitude is symmetrized with respect to both the pions and labeled 

by the charges of the final particles starting from ??. 

The manipulation of It operators with other amplitudes immediately pro- 

duces two more similar relations 

JL.-+'(kl,k2,k3; q) = +'++(kl>k2~kg; q) (10) 

dz/ "'(kl,k2,k3; &do+-(kl,k2,kj; q) - d-*(kl,k2,k3; q) I 
(11) 

We no longer have five different amplitudes; we can express the three 

amplitudes containing a final IT 
0 in terms of the other two. 

ii) We can use the same method for the four particle final states as 

well. There are seven D-+&r-rr decays, five of which can be eliminated in 

terms of only two of them. The results are 

J/-+00 
= 3d-u- 

c.N 0+-o 1 (JpO++ - JP+) =- 
2 

Jp 0000 = + + /&/p-+- - Jv-++) 
f 

where again the labels in the amplitudes refer to the charges of the final 

particles starting from F. 
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iii) The application of this assumption and technique to the D-+%lT 

decays gives 
41 

(13) 

with obvious notation. 
- 

iv) Similar to the case of D-+KT'~T decays, the application of the Al = 1 

hypothesis eliminates the three of the five D-+&RF amplitudes in terms of 

two of them 

(14) 

- 
v) F+-+K(nT) decays are Cabibbo suppressed, and we do not discuss them 

here. F++~+TO is not allowed by isospin. So we start with F+~v~R for the 

F decays. In this case, starting from 

(T~'IT+~'\HI+\F+) = 0 

we obtain 

dv -j- ++- =2Jt/ 
F-+'~~TTT F+4 Tr+*"Tro 

The two F-+?Tvv~~ decays can be related similarly 

,/?:& + +ooo =Jr+ ++o- = 0 
F -+‘m ‘n ‘rr ‘rr F -+11'n 'TT n 

(15) 

(16) 

where to get the correct factor, symmetrization with respect -to all pions 

was carried out. Note that the above decays have to vanish as s-wave ampli- 

tudes, but they can proceed through p-wave or higher channels. 
- 

vi) For the three possible F+K K V we find the relation 
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(K"&r+) HwjF+) = (K+K-7:IHwlF+) + fi (K??n"IHwIF+) 

and-for the five allowed F-+K &I decays we get 

oo+o o-u 
dv = - +v 

dv 
+-+o = 1 

2JI/ 
o-u 

(17) 

(18) 

c/v 
fooo 

where now, the labels of the amplitudes refer to the charges starting from 

K, then followed by ?? and pions. 

vii) The two possible F-+~)IT~v decays are of course related the same way 

as the F-+nrn decays: 

(19) 

At present, experimental data is not available to check most of these 

predictions. Various decay ratios are summarized in Table 3. 

We can compare some of our predictions to those of Quigg and Rosner 

based on the statistical model. 11 

++ i) We predict that the D++K-IT r rate will be four times larger than 

the D++~'~+IT' rate. Quigg and Rosner predict a ratio of about 65%. 

ii) We predict that the D"+K-~+ro rate will be 4 times smaller than 

the D++K-IT+~' rate. Experimental branching ratio for the D'+K-IT"IT' decay 

is too high p(12?6)] , but it is based on little data.3 Considering the 

poor statistics and the fact that it is only two standard deviations away 

from anything else, we consider the possibility that, with better statis- 

tics, a lower rate for this decay will be established in the future experi- 

ments. 
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" ' iii) We predict that the D+-+K'8 IT IT decay rate must be much smaller 

than other D-&TVV decays. This ratio in Quigg and Rosner's paper is in 

the ordzr of one. Also, similar to the previous case we estimate the rate 

for D++E"~+n+n- to be four times as large as that of D++I?'a+8'n", where 

their prediction states a 1.3 times larger rate for the D'%'T+T+T- decay. 

iv) In the case of F+ decays, the ratio of the rates of F++IT+T'T- 

and F++x+IT'v' decays is 4, while Quigg and Rosner predict a number like 

1.6. For the F++v+~~v'R~ , and F+%r+?r'~~?r decays we predict a vanishing 

rate, but their predictions for these channels are comparable to the other 

decay modes of F+. 

Clearly then, F+~~TRv and D++K-?T+lT+V' decays provide a very good test 

to see if and how much the p-wave and higher partial amplitudes are suppressed. 

A vanishing or small rate would support the s-wave dominance, while a p-wave 

enhancement would allow these modes to have comparable rates to the other 

modes of decay. 

D. D+?& Matrix Elements and the Enhancement Over the Dalitz Plot .~ 

The AI = 1 hypothesis eliminated three of the D+Ev~ amplitudes that 

have one or more IT' in the final state in terms of the experimentally observed 

decays D+--+K-v'~~' and D'-+'iior+r-. Therefore in this section we only worry 

about these two modes. 

Eq. (5) approximates the amplitude as the sum of three terms. Diagram- 

matically this can be represented as in Figure 1. Now we can neglect the 

AI = 2 contribution to the amplitudes, and separate the proper isospin parts 

to obtain 

A.-++ 
(kl,k2,k3; q) = - 

--3i2 
t,) + R1,2 (s13, t2) 

2 -~3/2 
-E R2 ('23' 5) 

(20) 
-3/2 

t3) + R3/2(S13' t2) 
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Jv"+- (kl>k2A3; q> = +(R$s,,,, t3> + R 

t3) + R 112 
1/2('13' (s23> tl) 

+ + (R;;;(s129 t3) + “;;;(s13> t2)) + -#;(s12,t3) 

+ R;;;(s13. t2$ (21) 

For the notation see Eq. (5) and (6). Note that F:it # R::G, Rz!i # R:$i, 

-2 
R3/2 + R;,2Y but of course they are related. To find the relation, imagine 

two (imaginary) intermediate states Y and U with I = 312 and I = l/2 respec- 

tively, as shown diagrammatically in Figure 2. We emphasize that we do not 

identify Y or U with any physical states. This must be considered no more 

than a gimmick to make it easy to picture the situation. Then we observe 

that 

(Y+IHwl~+) = -(Y+]H~I+/D~) 

=-fi (Y"/HwlDo) 

which gives us the desired relations 

,3’2(s 
312 

, t) = - ,fiR 3'2 (s 
31'2 , t) (22) 

E312 (s 
l/2 

,t)=-fiR 3'2(s, t> 
l/2 

(23) 

-3’2(s, t) = - J5 r3’2(s, t) R2 <2 (24) 

Now we are ready to impose the PCAC relations: 

We substitute Eqs. (20) through (24) into Eq. (4), and equate the parts with 

the same denominator (since the denominator is a known but an arbitrary func- 

tion of s ij' only those parts of the amplitude with the same denominator, 
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. I.e., the same Om&s 

ofs 1, ij and obtain 

function, can add up to zero for all possible values 

(25) 

(26) 

- R;;;(s12, 0) = - $ !'$(s12, 0) 

R3'2(s __ R1'2( 1 
1'2 12' O) = - 2Jz 1'2 92' O) 

R1’2 2 0) = - o (mT, 2 R;j2(n<, 0) 

We will only be interested in the matrix elements when the four momentum 

is conserved, that is q = 0. Substituting Eqs. (25) and (26) into (20) and 

(21) we obtain 

(27) 

-t ri 
V 5 CR;;; (s12, 3'2 0) f R3,2(513, 0)) (28) 

do+-(kl,k2,k3; 3'2 0) =, - 0Q2(y2, 3'2 0) + Rl,2(s13, 0)) + f 
3'2 

6 R2 (523, 0) 

- (R:{z(slp, 1 0) + -- +JLJRi'2(~23, 0)) (29) 
6 

Ri\i(s13, 0)) 

d-++(k k k 3'2 1, 2, 3; 0) = fi (R1,2(S12> 0) + R3'2(s 
1'2 13' 0) +2 f 2 ,3'2(s 

5 2 23' ') 

Now note that the two PCAC conditions (A2) and (A4) in Appendix A are 

not independent, and they produce a single constraint 

-f -- 5 i Too 

2 fn 
= (R312 2 

3'2(m~~' 0) + R;;;(m;, 0)) + & R;'2(i$ 0) 

- 
+ d5 (Rl,2(mg, 3/2 2 0) + Rl,2("k, 3/2 2 0)) (30) 

Also note that the equation (A8) derived in the Appendix A implies 

Ru2 
0 (0, 0) = - $ R;"(O, 0) 
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which we do not consider any different from Eq. (27). Our accuracy in this 

problem is far worse than rnt/G and we have to take m 2 z 0. Therefore the IT 

PCAC r&ation when both pions are taken out of the matrix element simultane- 

ously does not give us an extra constraint. Next we use the PCAC relations 

(All) and (A12) derived for the kaons in the Appendix A to get 

3'2 2 
R;;;(m$ 0) + h- Rl12(mK, 0) - '- R;12(4, 0) 

VG 

- 
- R;12(& 0) = _ $ + T-+ 

K 

3'2 2 
R3'2(mK' 0) + V% R:ii(rni, 0) + L Rz'2({. 0) 

47 

(31) 

(32) 

As promised earlier we approximate the numerator function by a linear 

polynomial 

and for the individual amplitudes we write 

=2 a1l 
s+c 

RI (s, 0) zz 5 

1 DI (d- 
1 

where we suppressed the upper index, for we no longer need it. This way we 

see that we have 8 coefficients to determine: a c 0' 0' al'29 '1'2' a3'2' '3'2' 

a2’ c2’ but we have only four equations (Eqs. (27), (30), (31), (32)). 

Unfortunately the problem is underdetermined. 

Since I = 3'2 phase shift is approximately zero, D 3'2(') 2 1, and 

R312(s 312 ' 0) amplitude does not get enhanced. Also note that the coefficient 

Of a3'2 and '3'2 relative to a 
1’2 and c1'2 is l/&, which makes it a little 

less important. Encouraged by these observations, we will approximate 
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This assumption, even though very plausible, is somewhat 

have not been able to justify it to our satisfaction. 

"ad hoc," for we 

This way, though, we are able to eliminate the variables a 
312 

and c~/~. 

Four of the rernaLning six variables can be eliminated in terms of any two of 

them. We choose to express everything in terms of co and c2. First we define 

the following quantities for shorthand: 

y = TO+/T-+, 
Do (0) D2 (4) 

?ipy Do C+ 

. 

Then we can write 

312 ifKRl,2(s, 0) = 
T--+ I--- 

Dl/2 (s) 1 oDl,2+) + 

f 
+Q2(m$) - Dl,2(+(4 - 3 $ (1 -'Y )) 

Tr II 

Clearly Co and C2, the two free parameters not yet fixed, will take values 

in the neighborhood of Do(g) and D2(4) respectively. Unfortunately, we do 
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not have any more constraints to determine them any better. Instead we 

chose to vary the values of Co and C 2 around the expected numbers and see 

how th& results depend on it. 

As explained in Appendix B, the I = 0 ITIT phase shift seems to approach 

2~ and the corresponding function Do(s) is determined up to another free 

parameter. By the help of the computer we studied the behavior of the fina 

answer on these three parameters. We found that the answer does depend on 

the parameters, and this dependence is rather sensitive. Variations by a 

factor of 4 in the rate occur as the parameters are allowed to vary over 

a reasonable range of different values. However, we were encouraged that 

by choosing the best value we could find for the variables we obtained 

with the following values 

c2 :: -0.4 

cO = 0.1 

and the Cm&s functions shown in Figures 3, 4, and 6. The ratios of the 

rates for other decays are summarized in Table 2. 

Certainly this answer is much more accurate than we have any right to 

expect. The weakest thing about it is, of course, its dependence on the 

choice of the parameters. The underdetermined nature of the problem has 

forced us to guess the value of the parameters, and we have shown that there 

exist values for which the right enhancement is produced and the ratio of 

the three body rates to that of two body is increased by a factor of four 

to six compared to the constant approximation. We admit that this is no 
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proof that the enhancement mentioned is actually produced by the mechanism 

we suggested. A similar analysis of'the other charmed decays, especially 

that o&F+, may provide examples that are not over determined (or just 

depending on one parameter only). After such analysis is completed and 

+ compared to the forthcoming data on F , we hope a better understanding of 

the problem can be achieved. 
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111. CONCLUSION 

We konclude that the AI = 1 assumption is a powerful one, and its pre- 

dictions are summarized in Table 3. The preliminary results based on little 

data indicate a possible disagreement. The experimental rate for the 

- + 0 D'+Kn 'rr seems to be too large compared to both our prediction and that of 

ReEerence 1.3 In any case, more data and better statistics are needed to 

establish this disagreement, if it exists. Such a disagreement may jeopardize 

the AI = 1 hypothesis. However, a more likely explanation for a possible 

disagreement would 'be the dynamical (by some yet unknown reason) enhancement 

of the p-wave amplitudes. We must also mention here that the current pre- 

liminary experimental rate is not only too high for our s-wave amplitudes, 

but also for the statistical model prediction by Quigg and Rosner, in which 

the p-wave amplitudes are certainly not suppressed. 

The question of the three body final state enhancement by means of the 

final state interactions may take a lot longer to settle. Certainly, if the 

Al = 1 assumption is supported by the data, the manipulation of the final 

+ 
state interactions becomes easier, and there is hope that F decays may help 

our understanding. If, however, the AI = 1 assumption turns out to be incor- 

rect, the enhancement by means of the final state interactions is still pos- 

sible and may still be correct; nevertheless, the problem contains very many 

parameters in this case, and the issue becomes hopelessly complicated and too 

parameter-dependent for us to deal with. 
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APPENDIX A 

A The PCAC Relations for D &VT Decays 

a) The Pion PCAC Relations 

Using Eq. (3) we obtain for all D-+~TVIT decays 

ififT& -+?kl,k2,0; q) = -T-+(kl, k2; q) + T"+(kl, k2; q> 

CM -+hl,0,k3; q) =A-*(kl,k3J'; q) 

iJjlfTL/tt '+'(kl,k2,0; q) = -& T"+(kl, k2; q) 

ififfl& o+"(kl,0,k3; q) = J? T"+(kl,k3; q) - To0(kl,k3; q) 

ifi frJtt '+-(kl,k2,0: q) = -T"+(kl,k2; q) + T-+(kl,k2; q) + 42 To0(kl,k2; q) 

i-/T f, & o+-(kl.0,k3; q) = -45 To0(kl,k3; q) (Al) 

I 

iJZ fnJtt -+O(kl,k2,0: q) = --& T-+(kl,k2; q) 

iv?? f,,r Jtt -+"(klAk3; q) = fi T-+(kl.k3; q> + Too(kl,k3; q) 

iJ7 fv&? "'(kl,k2,0; q) = -fi To0(kl,k2; q) 

r-AZ 000(k1,0,k3; q) = Jttooo(kl,k3; q) 

where 

T-+(k,,k2; q) : K-(kl) n+(k2)i Hw(0)i Do(p)) 

Too (kl, k2 ; q) 2 -i?(kl)n'(k )I Hw(0) 
2 I 

T"+(kl,k2; q) 3 (~"(kl)v+(k2)~Hw(0)1D+(p)) 
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Now we symmetrize these amplitudes with respect to the pions 

-'+?kl,k2,k3; q) =Jtl--%,,k2,k3; q) 

fid"+o(kl,k2,k3; s> =&"+o(kl,k2,k3; q) +&0+0(kl,k3,k2; q) 

&P"+-(kl,k2,k3; 4) =&d"+-(kl.k2,k3; q> +e,td"+-(kl,k3,k2; q) 

J?&-+'(kl,k2,k3; q) =Jfl-+"(kl,k2.k3; q) ;&-+'(kl,k3,k2; q) 

A' 000Ckl,k2,k3; 9) =~0000yk2'k3; 4) 

Then the PCAC relations can be written as 

ifi fRr'/zr -++(kl,k2,0; q) = -T-+(kl,k2; q) + T"+(kl,k2; q) (AZ) 

i& fir do+' (kl,k2,0; q) = - -%- Too(kl,k2; q) (A3) 
J-i- 

iJ? fndVo+- (kl,k2,0; q) = ,; (T-+(kl,k2; q) - T"+(kl,k2: q)) (A4) 

ifi f,&-"(kl,k2; 
1 

q) = .~r To0(kl,k2; q) (A5) 

iJY fV& 000(kl,k2,0; q) = -fi To0(kl,k2; q) (A6) 

b) The PCAC Relations for ‘Both Pions Taken Out Simultaneously 

The simultaneous treatment of both pions is more complicated than the 

previous case. The general framework can be found in Reference 14 or in more 

detail in Reference 15. We will merely state the general result applied to the 

decays of D mesons 
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Aij(kl,O,O; q) = - i 
2f(ilfki) 

k$), [Qj, [Qi.H$W) 

+(+k,) ,[Qi,[Q' ,Hw]],D(p$ 

- f (i)m~~d4x(~(kl) 1 T(oji(dHw(,)) (D(p)) 

- f(j)mX 2j4x(K(k,$ IT(Oii(x)f~w(0)) ID(p) 

I 

We will neglect the CT terms since they are proportional to the squared 

pion mass. Then for individual amplitudes we get 

ff+Z-+?+0,0; q) = (k’(k,) jHw(0) jD’(p)) 

f;&p+O (kl,O,O; q) = - & (~(kl)/Hw(0)/Do(~)) 

f;&'+-(kl,o,O; q) = - + (?(k$ jHw(0)(Do(p)) 

I 
+ -+"(kl,O,O; q) = -& @%,-I IHw(0) ID'(P)) 

f~~ooo(kl,O,O; q) = -(170(kl) jHw(0) ID'(p)) 

After symmetrization this can be written as 

c/v Ofo(kl,O,O; q) = - +'-++(kl,O,O; q) (A7) 

dv O+-(klAO; 4) = - $ &-*(kl,O,O; q) (A81 

3 -+'(kl,O,O; q) = +-*(k,,O,O; q) (A9) 

JV OOO(kl,O,O; q) = -&-++(k,,O,O; q) (AlO) 

As we see here, PCAC strongly suggests the AI = 1 hypothesis. Actually 

with the AI = 1 assumption, Eqs. (A7) and (A9) become trivial. 
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c) Kaon PCAC Relations 

As-in section (a), we immediately obtain 

ifK&Vof-(rl,k k 2, 3; q) = - + 
( 

T-+(k 2, 3; 4) + T-+(k k k 3' 2; 4) > 
(ALI) 

ifKJt' oo0(0,k2,k3; 1 
q) = 2 Too(k2,k3; q) + Too(k3,k2; q) 

> 
(A12) 

if,+& -++(0,k2,k3; 4) = -,-?j 
o+ 

(k2,k3; S) + T"+(k3,k2; q) 
> 

(Al.3) 

Yote that only two of these equations are independent. When substituted 

into Eqs. (28) and (29), they yield 

T -+ 
-T o+ + &" Too = Cl 

which is identical to Eq. (8). 
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APPENDIX B 

For a good review of this subject and an extensive list of references, 

see J. L. Basdcvant. 16 

a) OmnGs Functions 

Suppose we would like to find an analytic function A(s) in the complex 

s-plane cut along the real axis from s o to + co, such that 

i) The phase of A(s + ic) is a known function 8(s) as c -+ 0 
+ along the 

cut, 

ii) A(s) is real on an open .i.Jl t erVal on the real axis that lies to the 

left of the point so, 

iii) A(so) = 1 

iv) LimlA(s)l = 1. 
s- 

For real s, it turns out that the solution can be written as 

Q,W 00 
A(s) = (6(s! )~,+.&3~ 

I m s-s 
01 

(s'-s)2 + E2 

where QJS) is a polynomial of degree mCN with unit leading coefficient. 

Other coefficients in Q,(s) must be fixed such that A(so) = 1. For analyti- 

city we also have to have m = Lim(s)/n. Without this condition the problem 
S" 

cannot be solved. 

We will define 

D(s) = l/A(s) 

For K scattering Lim 6 1'2(s) = v, hence Dl,2(~) is fully determined. 
s- 

Same is true for I = 2 VTTT scattering and D2(s). For I = 0 ~FIT scattering, 
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however, Lim &O(s) = 2n and Q,(s) is not uniquely fixed by the requirement 
s- 

A(so) =^1. The I = 312 part of Kr scattering is trivial since 6 3'2(s) ", 0, 

hence D3,2 (s) :: 1. In all of these applications so is the invariant TMSS 

square at the threshold. 

b) Elastic and Inelastic Scattering: 

Consider the D-+%, D-+T~, and D--+KF amp in litudes. Separating the isosp 

parts and using unitarity we immediately obtain for the I = l/2 and I = 312 

D-t% decay amplitudes 

T3/2 exp(i6 3'2w) 

Therefore T 
l/2 and T3/2 are given by the inverse of the corresponding Omn6s 

functions. I = 2 D-+T~ gives similarly 

T2 z IT21exp(i62(s)) 

However, I = 0 ITIT or E final state is fairly inelastic, especially around S*. 

The transition ~n-+Ki(- can proceed strongly. In this case the transition 

amplitude is 

Writing 

T y = ITolei' 

T !E = ITAleid' 

we obtain 

rl _ e2i(@-&r) 
)( 

= 1 _ n2 
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which has solutions 

Therefore even in the inelastic case it is possible to define a modified 

Omn& function by redefining the phase shift. For our approximate treatment 
- 

of the D-+Kvn decay the usage of this effective phase shift will suffice, and 

we will not attempt to treat the inelastic problem with any more rigor than 

this. 

c) Three Body Final States 

'icult, and it is never used in this The general treatment is very diff 

paper. The treatment of the case where particles interact two at a time, 

but never all three together, can be reduced to the linear approximation in 

terms of two particle amplitudes we used. 

d) Actual On&s Functions for I = l/2 Kn, I = 2~71, and I = OTT 

Scattering 

Using the known phase shifts and the 7r7r inelasticity for I = 0, we pro- 

duced the graphs given in Figures 3 through 7 by means of numerical integra- 

tion. The best values for the enhancement of D-+~vT decays involve Figure 6 

for I = OTT scattering. In Figures 9 through 20 we plotted the variation of 

the full matrix element on the selected axes shown in Figure 9 to exhibit 

the enhancement without any resonant intermediate states. 
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which has solutions 

$I = 6:) T $ arc cos(q) 

Therefore even in the inelastic case it is possible to define a modified 

O-m&z function by redefining the phase shift. For our approximate treatment 

of the D+%II decay the usage of this effective phase shift will suffice, and 

we will not attempt to treat the inelastic problem with any more rigor than 

this. 

c) Three Body Final States 

_ The general treatment is very difficult, and it is never used in this 

paper. The treatment of the case where particles interact two at a time, 

but never all three together, can be reduced to the linear approximation in 

terms of two particle amplitudes we used. 

d) Actual Gmn&s F'unctions for I = l/2 Km, I = 2?fr, and I = OTT 

Scattering 

Using the known phase shifts and the ?TX inelasticity for I = 0, we pro- 

duced the graphs given in Figures 3 through 7 by means of numerical integra- 

tion. The best values for the enhancement of D-+&Tn decays involve Figure 6 

for I = O?T7T scattering. In Figures 9 through 20 we plotted the variation of 

the full matrix element on the selected axes shown in Figure 9 to exhibit 

the enhancement without any resonant intermediate states. 
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Table 1 

- 0-B in nb for Various D Decay Modes at Three Values of Ec m . . 

Mode E c m (GeW . . 

3.774 4.028 4.41.4 
-+ 

D"+K +- 71 0.27 + 0.05 0.57 0.11 - 2. 0.30 + 0.09 - 

~%r%- + c .c. 0.44 0.11 + 1.09 + 0.30 0.91 + 0.34 - - 
-+ 

,+Tr-ir+lT- 0.34 + 0.09 0.83 + 0.27 0.91 + 0.39 - - - 
-+- 

‘7T ‘iT -- co;-04 -- 

K+K- -- co.04 -- 

Total Do 1.15 + 0.15 2.49 + 0.42 2.42 - - _t 0.53 
observed modes 

D++z"7T+ + C.C. 0.15 + 0.05 <O . I.8 -- - 
-++ 

K+TGT- 0.34 + 0.05 9.40 + 0.10 0.33 + 0.12 - - - 

++- TrTrTr -- 0.03 -- 

Mode Branching Fraction (%> 

D'+K--rr+ 2.2 + 0.6 - 
-o+- KT.TI 3.5 + 1.1 - 

K-?T+GT+ 2.7 + 0.9 - 
+ -o+ D -+K'rr 1.5 + 0.6 - 

K-v+TT+ 3.5 + 0.9 - 
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Table 2 

ThcPredicted Rates for D+FITx Decays with C2 Z -0.4, Co Z 0.1, and 

the Omngs Functions Given in Figures 3, 4, and 6. 

All rates are normalized to the D"+K-rr+ rate. 

Decay Rate For Computed Relative Rate 

(D'+K-IT+) 

(D++K-K+IT+) 

(D'+&T+IT-) 

(D'+K-IT+IT') 
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Table 3 

The -60nstraints on Various Amplitudes Imposed by AI = 1 hypothesis 

Decay Mode Decay Rate 

D'+K-T+ 

+ -o+ D -tKn 

D"-+koITo 

D+G"lT+lTo 

D"+K-lT+~o 

D"+ko~o~o 

D'+K-'l;tTl 

D+-+&+n 

D"+i&rO~ 

D++K-?T+lT+r' 

la, - b,12/2 

L 

b2 

b2 

a2 

2/4 

2/4‘ 

- b212/4 

b312 

b312 

la3 - b312/2 

0 

la412 

2 

2/4 

2/4 
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Table 3 (cont.) 

Decay Mode Decay Rate 

Do-+ ~lT+,rr-7T” 

Do--+ ~7T07ToKo 

Ia4 

31a4 

F++K+K-Tr+ 

F++K"&+ 

F+-+K%T+IT- 

F+-+ K'K-IT ++ IT 

F+-+ K+K-.rr+'rr" 

F++K K 'rr 7~ o-o+0 

F++- K+&T'~' 

- b412/4 

- b412/8 

0 

0 

ld412 

ld412/4 

ld412/4 

116 c4 - d4j2/4 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

FIGURE CAPTIONS 

Approximate form of the three body amplitude assuming that the final particles 

interact two at a time, but not all three together. 

Equations (22) through (24) can be deduced by assuming the reaction proceeds 

through the imaginary intermediate states Y and U. 

Numerically computed Omn& function for 1=1/2 K7r scattering. The solid, 

dashed, and dotted curves correspond to Re(l/D(s)), Im(l/D(s)), and l//D(s)1 

respectively. 

Numerically computed Omn& function for I=2 rr scattering. The solid, dashed, 

and dotted curves correspond to Re(l/D(s)), Im (l/D(s)), and l/ID(s)1 respectively. 

Numerically computed Omn& function for I=0 IT~T scattering. The solid, 

dashed, and dotted curves correspond to Re(l/D(s)), Im(l/D(s)), and l/ID(s)] 

respectively. The coefficient of s in Q2(s) is A. 

Numerically computed Omn& function for I=0 or scattering. The solid, 

dashed, and dotted curves correspond to Re(l/D(s)), Im(l/D(s)), and l/ID(s)1 

respectively. The coefficient of s in Q2(s) is A. 

Numerically computed Om&s function for I=0 KT scattering. The solid, 

dashed, and dotted curves correspond to Re(l/D(s)), Im(l/D(s)), and l/ID(s)1 

respectively. The coefficient of s in Q2(s) is A. 

The allowed energy region for the D --t R 7r~ decay, where the axes correspond 

to the energies of the final pions. In the following figures the matrix elements 

are plotted along the zl and 22 axes shown in this figure to demonstrate that 

the enhancement is achieved without any resonant intermediate states. 

The matrix element for D++ K-r+? decay plotted along the zl axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 
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10. The matrix element for Do + K”n+7;- decay plotted along the zl axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

“and the dotted curve is for the absolute value. 

11. The matrix element for D’ + K-n+r’ decay plotted along the 22 axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 

12. The matrix element for Do ---) k”,“7r- decay plotted along the 22 axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 

13. The matrix element for D+-+ K-r’? decay plotted along the z 1 axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 

14. The matrix element for Do -+ K”?7r- decay plotted along the zl axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 

15. The matrix element for D+-, K-n+? decay plotted along the 22 axis. The 

16. 

17. 

18. 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 

The matrix element for Do + K”r’7r- decay plotted along the 22 axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 

The matrix element for D’ + K-n+*+ decay plotted along the z 1 axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 

The matrix element for Do ---) k”r”7r- decay plotted along the zl axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 
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19. The matrix element for D+ + K-?+n+ decay plotted along the 22 axis. The 
* 

solid curve is for the real part, the dashed curve is for the imaginary part, 

2nd the dotted curve is for the absolute value. 

20. The matrix element for Do + fi’lr+r’- decay plotted along the 22 axis. The 

solid curve is for the real part, the dashed curve is for the imaginary part, 

and the dotted curve is for the absolute value. 



312 
l/2 -312 

Q 
312 312 l/2 l/2 

Q 
2 9 Q, ; Q2 l/2? Q312 ; Q~/2t Q3/2 i 

1-78 

- 3/2 -312 
CR CR312 l/29 3333Al 

Fig. 1 



I= 3/2: V--, Y-, Y”, Y+ 

I= l/2: u-, u” 

K 

1333A2 

Fig. 2 



6 

4 

2 

0 

-6 

l-78 

lit D Function for 1=.1/2 KTI 

0-I .* . 
! 

-. 

3, 

l . 
0. 

0. 

! 
l **... . l *-•*....* -.********..........., --,----------- 

‘\. 

2 3 

‘.... 

4 
3333A3 

Fig. 3 



20 

IO 

-20 
l-78 
3333A4 

I I ’ I I’ I ’ 

D Function for 1=27m 
3 
Ii 
;f 
l * . . 

: I. . 
I 
. . . . 

0 I 2 3 4 

Fig. 4 



6 

4 

2 

‘0 

-2 

-4 

-6 

1-78 

D Function for I=0 TT, 
with A=- 1.6728 

- 

0 I 2 3 0 4 
3333A5 

Fig. 5 



I5 

IO 

5 

0 

-5 

-10 

-15 

I I I I I I I 

i 
5 :: i :. 0. 

: l . 
: : . . 

: . . 

D Function for I=OTT, 
with A= -0.8364 

I I I I I I I 
l-78 
3333A6 0 I 2 3 4 

Fig. 6 



20 

IO 

0 

IO 

-20 
l-78 

L 

3333A7 0 I 2 3 4 

. : . : . : : . 
I\ . . 
1 I ..- 

i . . . . . . . 
t 

\ 

. 
I 

D Function for I=Omq 
with A = -0. I568 

i i 
i i 

- 

Fig. 7 



08 . 

06 . 

0.4 

0.2 

0 
0 

12 - 77 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

‘L 2, 

< 

I 
I 
I 
I 
I 

0.2 0.4 

Fig. 8 

0.6 08 . 

3i33A8 



-0 

l-78 

L I I I I I I I I I 
.5 -‘\., 0 

*/I 0.5 
‘\ 

‘\ .’ 
‘1. 

.’ 
‘. 

.’ 
.’ 

‘. 
‘. 

.’ 

‘. 
./ 

? - /./AZ- I .6728 
? ./’ D(+) Matrix Element 
\. -? on zl Axis 

-6 - . 3333A9 

Fig. 9 



l-78 -6 L 

A=- I .6728 
D (0) Matrix Element 
on zl Axis 

3333AlO 

Fig. 10 



IO 

5 

0 

-5 

-10 
1-78 
3333All 

I I I 
A=- 1.6728 
D (+) Matrix Element 
on z2 Axis l “‘......... .-*- 

- . ..*.* 
l *......-•-• •..*I...**-~* 

. . . . . . . . . . . . . . . . . . . . . . .-.-•-•-•-•-• 
. ..-- . ..- 

-----.-•- l -.- 
l . 

l . 
-\ 

l . - l -.- 
l -.-. -._._.-.- 

I I 

-.- 

07 . 08 . 

Fig. 11 

09 . I .o 



6 

4 

2 

I I I 
- A=- 1.6728 
- D (0) Matri x Element 

on z2 Axis 
.- 

•~.~~I*ss~~~~~~~~ . 
0. 

.- .e .A’ 
.- .- .- - (0’ .’ 

0 

- 2 

-4 

-6 I 
1-78 
3333A12 07 . 08 . 09 . 

Fig. 12 



6- 

I I I I I I I I I I 

- 0.5 L*y 
/- 

.’ 0.5 
‘1 ‘\ 0. 0. / . 

‘A \ .” ‘\ .’ 
‘\ .’ 

l \ 
‘\ 

_ ..’ 

‘\.-*.’ 
.’ 

- A=-0.8364 
_ D(+) Matrix Element 

on zl Axis 
-6 - l-78 3333A13 

Fig. 13 



-0.5 

l-78 -4 

A=-0.8364 

D (0) Matrix Element 
on zl Axis 

3333A14 

Fig. 14 



I 

IO 

5 

0 

-5 

-10 
l-78 
3333A15 

I I 
A=-0.8364 

D (+I Matrix Element 
on z2 Axis 

.;.....- . . . . . . . . . . . . . ...******** ,....* l . ...*** 

. . . . . . . . . . . ..***~*..*‘* 
,.......*.*- 

. . ...‘. 

-*--._. -*-.-, 
-a-. -. 

-*.. -. -=-.- .-._.-.* 

I I I 

. . . . . 

-. 

07 . 08 . 09 . I .o 

Fig. 15 



5 

0 

-5 

-10 
1-78 
3333A16 

A= -0.8364 
D (0) Matrix Element 
on z2 Axis 

07 . 08 . 09 a 

Fig. 16 



l-78 

4 

I I I I I 
-0.5 

\ 
‘\ 

‘\ 
l A. \ 

‘\ 
‘\ 

l \ 
‘\ 

‘\ 
‘1 

-4 

.’ 
. 

~ 

.’ 
/ 

0.5 

.’ 
.’ 

A=-0.1568 

D (+I Matrix Element 
on zl Axis 

3333Al7 

Fig. 17 



l-78 -3 

I-- rig. 18 

0.5 

A=-O-1568 
atrix Element 

on zl Axis 
3333A18 



6 

4 

2 

0 

-2 

-4 

-6 
1-78 

I I 
- A=-0.1568 
- D (+I Matrix Element 

on z2 Axis . ..a*** . . . ..e.= 
l ..*.*----* ..-•* 

..a** . ..***- 
..-• 

..*** - ~~,..*.*-**- l ..--0• 

. ...*.***** . . . ..**-• 

07 . 08 . 09 . I .o 3333A19 

Fig 19 



IO 

5 

0 

-5 

IO 
l-78 
3333A20 

I I I 
A= -0.1568 
D (0) Matrix Element . .- l . . : .’ 0. on z2 Axis 

.** 0. 
.- l . . . . 

.** l -.. 

/-’ 

,. -Op. 
-* \ l -.- ‘- 

I 
l --*-.- •--‘*~t*~* . . . . . . . . . 

-.- 

i 

j 

- 

I I I 

07 . 0.8 . 0.9 

Fig. 20 


