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ABSTRACT 

We point out an error in the proof of Nishijima et al. that the Bethe-Salpeter 

wave function for composite particles, lying on Regge trajectories, is finite. 

We describe a simple counter-example drawn from non-relativistic quantum 

mechanics and cite others from field theory. 
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In recent years it has become apparent that knowledge of the behavior of Bethe- 

Salpeter (BS) wave functions at short distances is important in the analysis of pro- 

cesses involving high transverse momentum. 1 In particular it is important to de- 

termine whether or not the wave functions are finite at the origin. Nishijima 

et al. 2 argue that the BS wave function can be infinite at x = 0 only if the composite 

particle is a fixed pole. This contradicts results obtained by Appelquist et al.3 

using the renormalization group. Their analysis suggests that the finiteness of 

the wave function depends crucially upon the anomalous dimensions of the field 

theory, at least when the theory is asymptotically free at short distances. The 

particular field theory they consider ($3 in 6 dimensions) actually has divergent 

wave functions for particles lying on Regge trajectories. Here we describe a cru- 

cial flaw in the proof of Nishijima et al. which renders their conclusions suspect 

and resolves the conflict with renormalization group analyses. 

We first review the argument of Nishijima et al. 2 They consider the 3-point 

function describing the bound state-constituent-constituent vertex (on and off mass- 

shell). Adopting the HNZ constr.uction for bound state interpolating fields, this 

vertex function rn can be expressed in terms of the 4-point, constituent GreenOs 

function G and the BS wave function $n (assuming scalar constituents): 

. 

rn (x, P) = ;To G f; &PI 

on (x) 
4 

P2 - M”, 
asP2+ ,n 2 

Here P is the total 4-momentum of the system and x, 5 are relative coordinates 

12 
of the constituents. The BS equation for G is then used to write an equation for 

rn: 
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A;’ A; lim 
r,(x, P) = 4-q) 

64 (x - 5) 
“; (6) + / d4y K (x, Y, P) rn (Y, W (2) 

Nishijima et al. argue that if $i (5) diverges as t-+ 0, the inhomogeneous term 

in (2) (i.e., lim ~3~ @-t3/4b*,(t)) vanishes and IYn satisfies an homogeneous equa- 

tion (the BS wave function equation). Assuming appropriate boundary conditions, 

solutions of the homogeneous equation exist only at discrete values of the total 

energy (the bound state energies) when p2 is below the coatinuum threshold. How- 

ever, I7 n, being a Green’s function, is well defined and non-trivial for all energies 

and in particular for energies below threshold and intermediate between bound 

state energies. This apparent contradiction suggests that the BS wave function 

must be finite at x = 0. 

In fact the root of this problem lies not in the behavior of the wave function, 

but rather in dropping the inhomogeneous term. When $* + co, the distribution n 

lim 64 (x - Q 

e-+0 +; (5) 

clearly vanishes for x # 0 but at x = 0 it is ill-defined. That it does not vanish 

there is evident if we convolute it with some function f(x) which is as divergent as 

% or more so: 

Equation (2) can be formally rewritten as 

. 
‘n = [‘z 1 - A; AF K ‘F ‘F 

64 (x - 5) 
(4; (5) 
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= lim J 
4 I 

5-, o d4x’ G(x, x’, P) w 
n 

As rn is well defined, the operator in brackets must be precisely as divergent 

as $g (5). Thus the inhomogeneous part of (2) does not vanish even though 

l/i$ may. The equatian must be solved first and then the limit 5 + 0 taken. 

The problem is illustrated by a simple counter-example drawn from non- 

relativistic quantum mechanics. Consider bound states described by a Hamiltonian 

H=Ho+V 

P2 H’ z- 
0 2M 

v =+2- 
2mr2 

o<a!, y<<l 

When Y = a2 the spectrum of this Hamiltonian is very similar to that of positro- 

xlium or of the hydrogen atom. The bound states lie on Regge trajectories and 

are not fixed poles, and yet all s-state wave functions diverge at the origin: 4 

(H-En) #n=0,(P2-x) li)n(r) =0 as r-0 
r2 

s qn (r)- r.’ as r-,0 

where s = 

As above, we define a Green’s function and s-state vertex function: 

(E - Ho) GF 7’ E) = S3i;’ -?) + V(r) G g TE) (3) 

(4) 

The short distance behavior of both G and Jh is determined by the kinetic and l/r2 

terms in H. It is energy independent and is identical in both functions. Thus 

I” is a finite non-trivial function of r for all E # En. Combining (3) and (4) 

we obtain 
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3 a 
(E - HoI rn( r E) = t + o lim d + V(r) rnF E) fn(t)* W 

- rn = 1 

- Ho) -l v 

lim 
/ 

d3r’ 
3-v - 

= 5’0 Gg?E) w 
n 

If, following Ref. 2, we drop the inhomogeneous term in (5a), we find that rn T, F) 

must grow exponentially as rdaofor any E( # En) below zero. This behavior is 

quite unphysical. Again the problem is resolved when we note that the operator 

in brackets ( =,G) in (5b) is as diverge.nt as en(E)* and thus it is incorrect to omit 

the inhomogeneous part of (5a). This argument is still more compelling if we 

introduce the spectral decomposition of S3F -T) into the inhomogeneous term: 

lim fJ3 G -T) = lim C -z ‘i([)* 
‘5’0 JI,(U 540 j ‘j”) $ (t)” n 

- = c ii 
# 0 

The constants c j are finite and non-zero when Zc, j describes an s-state (cn = 1). 

They vanish otherwise. 

This sort of behavior occurs in other systems. The Dirac equation with a 

Coulomb kernel has divergent wave functions. The BS equation, with a kernel 

containing all irreducible ladder and cross ladder Coulomb interactions, almost 

certainly has divergent wave functions because it reduces to the Dirac-Colamb 

equation when the mass of one constituent is made infinite. Models calculations 

by Guth and Soper, 5 for massive vector meson exchange in the ladder approxi- 

m ation, aleo exhibit a wave function which diverges at the origin. 
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In principle then, there seems to be no reason why the BS wave function for 

particles lying on Regge trajectories must be finite at the origin SO long as it can 

be normalized. It should be noted however when they diverge, wave functions in 

(U. V. ) asymptotically free theories seem to diverge only logarithmically. 3 Thus 

dimensional counting predictions for form factors, etc. ’ are modified only by 

logarithms. 
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