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ABSTRACT 

We investigate the spectrum of radial excitations of the bag model. . Breathing 

excitations of the surface of the bag couple to the radially-excited states of quarks 

in the bag, resulting in a spectrum of states which interpolates between the 

energy levels of the fixed-cavity approximation. We discuss this effect in detail 

for a bag containing bosons. We apply our results to fermionic systems and find 

that the radial excitations of baryons contain an NPll(1410) Roper resonance can- 

didate as a natural consequence of the effects of breathing modes. 
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1. INTRODUCTION 

It is generally believed that hadrons consist of confined colored quarks and 

vector gluons. The bag model1 is an explicitly relativistic confined quark model 

which in its static cavity approximation2 has had great success in reproducing 

the spectrum and other properties of the light hadrons. 3 In this approximation 

the quarks are treated as modes of a static spherical cavity which interact among 

themselves only via the exchange of massless vector gluons, the radius of the 

cavity being chosen to minimize the energy of the state. 

The cavity approximation to the bag has been applied to the orbitally-excited 

states of baryons 4 , where it was found to give rise to too many states. In an 

SU(6) of flavor and spin, the P-wave states of the cavity form both a (56) and a 

(70). This is in poor agreement with experiment, as all of the negative-parity 

baryon resonances below about 1800 MeV can be accommodated in a single (70). 

However, the cavity approximation to the bag model is just that - an approx- 

imation. In a more general formulation of the bag model one would find that the 

motion of the boundary is coupled to the motion of the quarks, and that as the 

quarks move, so does the surface of the bag. One can allow the surface of the 

- bag to undergo small P-wave deformations away from a static equilibrium shape 

and solve the resulting coupled system. This calculation has been carried out in 

Ref. (5) for bosonic systems and in Ref. (6) for fermionic bags. Then one finds 

that some excited states of a fixed cavity are in fact translation modes of the 

deformed cavity - and are hence spurious states in the spectrum of mass eigen-,- 

values of the system. In the baryon spectrum, these states form a L = 1 (56). 

When they are projected out of the allowed Hilbert space of states, a spectrum 

of P-wave states is obtained which is in much better qualitative agreement with 

experiment. 7 
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In this note we will use the techniques just outlined to investigate the lowest 

radially excited states of the bag model. Our results are superficially similar 

to the case of orbital excitations but have important and interesting differences. 

We find that if we allow the surface of the bag to undergo small radial “breathing” 

oscillations about an equilibrium spherical shape, these modes will couple to 

states where the fields inside the bag are excited, through the field boundary con- 

ditions. Diagonalizing the Hamiltonian for these systems, one finds a tower of 

excitations, the lowest one of which is lower in energy than the lowest excited 

cavity eigenstate. In the P-wave case this mode is a translation mode of zero 

energy (measured with respect to the ground state). In the radial excitation case, 

this mode cannot have zero energy: that would correspond to the ground state 

blowing up like a balloon, manifestly at odds with energy conservation. The state 

is, however, pushed to fairly low energy, as the system “relaxes” by exciting 

surf ace modes. 

This energy shift has important phenomenological consequences for baryon 

spectroscopy. The Roper resonance NPll(l470) is a strong candidate for a radial 

recurrence of the nucleon, as indicated by photoproduction and Melosh-type anal- 

yses. 8 The cavity approximation to the bag predicts both SU(6)r (56, 0’) and - 

(70, 0’) radial excitations, both centered at around 1700 MeV. The resulting 

nucleon states are much too heavy to be good candidates for the Roper, and the 

ordering of states is generally in poor agreement with experiment. 

The inclusion of surface fluctuations dramatically alters this picture. The 

surface modes can only couple to states in the same flavor-spin multiplets as the 

ground state. Hence they can affect only the (56). They reduce its energy by about 

200 MeV with respect to the (70) while leaving the latter unchanged - yielding an 

NPll resonance at about 1410 MeV together with the rest of its multiplet slightly 
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higher in energy, and a slightly heavier still (70). The resulting picture is in good 

qualitative and fair quantitative agreement with experiment. 

We will begin the actual calculations by considering the problem of radial 

excitations of a boson bag. We have not been able to compute the energy shift for 

a fermion bag, but we can investigate the phenomenology of that system with our 

bosonic results. The qualitative form of the results dll be the same in either 

case: allowing the surface to move softens the spectrum of some of the excited 

states of the cavity. We will then present the details of our phenomenological in- 

vestigation of baryon spectroscopy. 

II. RADIAL EXCITATIONS OF BO!3ONIC SYSTEMS 

A general treatment of the motion of the bag in the limit of small boundary 

oscillatio.ns is presented in Refs. 5-6. We indicate here only the most relevant 

steps for the derivation of the spectral equation governing the radial, spherically 

symmetric oscillations of a bosonic bag. 

The static cavity is conveniently parametrized in terms of a pair of conjugate 

variables: Q, the total charge of the system, and ,0 , the phase of the bosonic 

field $ (r, t) inside the bag. Precisely, $(r,t) is expanded as 

4 (r,t) =g-“@) 
( 

al(t)& 
r 

Sin 9+ 

+ c 
n 3.2 

@ At) $2 sin E 
R ) 

(2.1) 

where @ l(t) is real, @ .(t), n 2 2, generally complex, and R is the radius of the 

bag. In the static cavity solution 

1 JQ 9 l(t) = constant = 2- 

1 R = constant = - 
4 

B-1/4 ~1/~ 

(2.2) 
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B being the bag constant. To study the small oscillations of the system one re- 

places @l(t) and R(t) with new coordinates 

2i- 4,(t) = @l(t) - &$ 

_ r(t) =’ R(t) - \& B -l/4 Q1/4 
(2.3) 

and expands then the Hamilton H up to second order in all canonical variables ex- 

cept the charge Q, which is considered the large variable of the expansion. (0 

is a cyclic variable and does not appear in H. ) 

In this way one finds 

(2.4) 

H appears as the Hamiltonian of a collection of oscillators, with momenta p,* 

and coordinates x nf’ These variables are related by a linear canonical trans- 

formation to the field inside the bag and its conjugate momentum. The excitation 

of an (n, +) oscillator corresponds to the promotion of a quantum of the field to a 

higher radial mode inside the fixed cavity, whereas the excitation of an (n, -) os- 

cillator represents the creat.ion of a pair of quanta of opposite charge, so as to 

leave the total charge Q of the system unchanged. 

As noticed in Ref. 5, the system is a constrained system, and the r variable 

in H cannot be considered as an ordinary coordinate. Because the boundary of the 

bag carries no kinetic energy, the momentum p conjugate to r is related to the 

field momentum by an equation of constraint, which in the limit of small oscilla- 

tions linearizes to 
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p z B-1/4 
Q 1’4p- 5 a&zi 

n = 1 a Pn- = 0 (2.5) 

The dynamical effect of the constraint is most easily found as follows. By a 

linear canonical transformation one takes P itself as a new momentum variable. 

This requires a change in the canonical coordinates 

X n*+ f; a% =x n* t 2&i (-)” 2B l/4 Q -l/4 
n 

(2.6) 

and the Hamiltonian becomes 

Hz 4215i 
3 

B1i4 Q3/4 + 4-5 ?r B1/4 ~-l/4 x 

-2 r B1i4 Qd4 

El ml-)" gnt + n$2 Jn-T (-y 1 
I 

(2.7) 

n- 
1 

where a cut-off has been temporarily introduced to remove a formal divergence. 

The constraint P = 0 implies the consistency condition 

which gives 

(2-Y 

. 

B1/4 
Q 

-l/4 r = 
2 m(-)” in+ + n~2J--ix(-)n G,- 

n = 1 
(2.9) 

4 (N + 1) 

Substituting back into H one finally finds 

H= 44 x 
3 

,31/4 Q114 + $2 ~ B1i4 Qd4 x 

(2.10) 
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( f J-iGi-(-)” 2, + 2 JTT(-)” in-)2 \ 
a=1 n=2 - 

4 (Ntl) 
I 

It is apparent that the net effect of the motion of the boundary is to produce a 

collective coupling among the modes of the field. 

H is diagonalized easily by looking for solutions to the equations of motion of 

the form 

A 
X ni 

= Cn * e -iwt 

The equation xn ~ = { H, { H, xn f \ 1 gives immediately 

-w2C = -n2C + n LLZF(-)~ c 
n* n* 2 (N+l) 

with 

c = 5 Jzi(-)” c, t 
n=l 

; &T (-)n c 
n = 2 n- 

If C j 0, evaluating C n* from Eq. (2.12) and inserting it into Eq. (2.13), one 

finds the spectral equation 

1= 5 
n=l n2 -l> - N 

Notice that the cut-off can be removed, and Eq. (2.14)) in the limit N 3 m, 

becomes simply 

- 7T w cot (7rw) = 1, 

(2.11) 

(2.12) 

(2.13) 

(2. i4j 

(2.15) 

which is solved by a sequence of eigenfrequencies o,n, n = 1, 2, . . . approaching 
1 n-- 2 asn-+co. Numerically one finds 

/ 
WI = o 64577. . . 

w; = 1.56391.. . 

w; z 2.53968.. . 
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Also, Eq. (2.12) can be solved with wdl = n, C = 0. We find therefore that in the 

limit of small radial oscillations, the bag is still described by a collection of os- 

cillators, but with characteristic frequencies given by the sequences w t and w I! n n 
The problem of analyzing the breathing modes of a bag containing fermions 

is much more difficult than the bosonic case, for several reasons. Recall that 

fermion fields obey linear (np is an inwardly-directed normal to the bag’s surface) 

and quadratic 

incl yp@ = $I (2.16) 

np i? ( ) F’b =2B (2.17) 

boundary conditions at the surface of the bag. The linear boundary condition 

involves -velocities and therefore cannot be imposed as a holonomic constraint 

on the degrees ‘of freedom ofthe system., Moreoveri~ the quadratic boundary con- 

dition relates the velocity of displacement of the surface of the bag to the gradients 

of the fields. But because Eq. (2.17) contains the velocities (and aot the acceler- 

ations) of the boundary coordinates, these cannot be taken as independent canonical 

variables and should be expressed in terms of the field degrees of freedom. 

Finally, fermions simply do not have any “large” quantum numbers which one can 

use to characterize a zero-order solution. 

These facts introduce complexities which we have not been able to master satis- 

factorially. We expect, however, that the physical effects of the motion of the 

boundary of a fermionic system will be analogous to those which occur in the 

bosonic case. This expectation is supported by the P- wave analyses of bosonic 

and fermionic systems of Ref. (5-6). Therefore we will proceed, adapting to the 

more realistic system of quarks and gluons our calculations in the bosonic sector. 
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III. BARYONIC PHENOMENOLOGY 

The lowest radial excitations of the bag are those with two quarks in the 

ground (1Sl,2) state and one quark excited to a (2S1,2) cavity eigenmode. Their 

wave functions are easily constructed by coupling together three-quark flavor, 

spin, and space wave functions to form totally symmetric combinations. Explicit 

forms of the wave functions may be found in Ref. 4. ’ These radial excitations 

form a (56) and a (70) in the SU(6) of flavor and spin. 

In the absence of gluon interactions, states of noastrange quarks are good 

SU(6) eigenstates. The wave function of any quark in an SU(6) eigenstate’is a 

linear combination of (1Sl12) and (2Q2). H owever, these states are not eigen- 

states of the Hamiltonian if one (or two) of the quarks are strange, since for any 

n, wn(strange) $ wn(non-strange). A and 2 radial recurrences are mixtures of 

pure (56) and (70) states in which the strange quark lies completely in a 1S or a 

2S cavity eigenstate. 

Gluon-exchange contributions to the Hamiltonian are shown in Fig. 1. They 

are two kinds: direct (Fig. la) and exchange (Fig. lb). contributions. The ex- 
n 

change contributions in the (lSI12 )L(lPI,2) calculation were found to be small and 

we expect them to be negligible here too. Therefore we keep only the direct inter-. 

action terms and write 

% AEg=; R c7.q 
i>-j 

Mij (miR, mjR) (3.1) 

where o! c is the color coupling constant, xi/R is the eigenvalue of momentum of 

quark i and Mij is given by Ref. 3. Gluon matrix elements between the various 

eigenstates may be obtained from Ref. 4. 

The diagonalization of the Hamiltonian which includes quark kinetic energies, 

gluon corrections, and the zero-point eaergy -Zo/R is shown in Fig. 2. The four 

4.: .’ .,. / ;x’ .m 
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parameters of the theory, B the bag constant, Zo, (Ye, and ms the strange quark 

mass, are fixed by the fit to the light hadrons of Ref. 3. As Bowler and Hey 10 

have noted, the NPll states are poor candidates for the Roper resonance: they 

are too heavy and too aearly degenerate. Moreover, the physical states are 

NPll (1543) = -1 
P- 

(156>- ]70>) 

(3.2) 
NPll (1646) = - ( \56>+ /70>) 

h 

the heavier one having a vanishing photoproduction matrix element. 10 As both the 

lighter experimentally-observed NPll states, the N(1470) and N(1780), are seen in 

photoproduction experiments, 11 the NPll bag states do not seem to be good candi- 

dates for the states of experiments. 

However, this is not the whole story. Ln analogy with the boson calculation, 

we expect that the coupling of quark radial excitations to surface breathing modes 

will lower the energy of radially-excited states by an amount A . Since the 

breathing-mode states are excitations of the surface of the bag, and. do-not involve 

the quarks’ flavors or spins, their SU(6) structure is a (56). Thus, they can 

couple only to the radially-excited (56) and not to the (70). We are led naturally 

to the result that the radially-excited (56) should be driven down in energy, while . 

the (70) should remain centered at about 1700 MeV. 

We include this effect in our phenomenology by adding a new term to the effec- 

tive Hamiltonian: 

<56/ H breathe I.56 > = -A /R 

(3.3) 
<70( Hbreathe 170 > = 0 

<70tH breathe 156 ’ = ” 
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(Taking 4 to be a constant is equivalent to ignoring quark mass effects in the 

derivation of Section II. ) We may take .A from the boson calculation 

A = .3547Tr1.11 (3.4) 

which is remarkably close to the value which would be obtained if it were fit to 

the mass of the Roper resonance: 

A = 1.05. 

A calculation of the spectrum of radial recurrences in the bag with the former value 

for A is shown in Fig. 3. We also show the positions of presently-accepted : 

experimentally observed positive parity baryon resonances for which our states 

are candidates. 11 Table I gives the mixing angles of our states with respect to 

the SU(6) eigenstates of Ref. 4. 

We see that the fit is in good qualitative agreement with experiment. Our 

Roper resonance has a mass of 1410 MeV. The ordering of states is in agreement 

with observation; however, our higher NPll and both A states are a bit too light. 

The lightest APll and EPll are nearly pure (56). The heavier Aps and c’s are 

mixtures of SU(3) multiplets, due to the effects of the quarks9 kinetic energies, 

as we have explained above. The heaviest experimentally seen states of Fig. 3, 

in particular the A P31(1910), may be members of different, heavier SU(6) multi- - 

plets. That being the case, an additional, lighter A P31 is required of experiment 

by the model. 

Our solution to the radial recurrence problem is still incomplete, since we 

have not yet computed A for fermions. Nevertheless, the near equality of cal- 

culated and observed Roper masses is a strong encouragement that the general 

program is a success. 

We see that, as in the case of the P-wave baryon reso.nances, the inclusion of 

boundary fluctuations has resulted in a marked improvement in bag spectroscopic 
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calculations over the cavity approximation. We may draw two conclusions from 

our analysis. First, the static cavity approximation is a poor representation both 

of the spectrum of excited states of the bag model and of the spectrum of excited 

states of baryons. Allowing the shape of the confining region to fluctuate results 

in a new calculational approximatioa whose spectroscopy is in much better agree- 

ment with observation. Second, we expect that the sort of effects we have described 

here will be found in any system in which the confining mechanism has dynamical 

degrees of freedom. The spectrum of states of systems in which the confining 

degrees of freedom are excited may be quite different from the spectrum which 

arises only from the excitations of the confined quarks. 
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TABLE I 

Mixing matrices between fluctuating-surf ace bag eigenstates and SU(6) eigen- 

states, with A = 0.3547r. SU(6) eigenstates are further labelled by an SU(3) 

quantum number. 

NP13(1756) = I 70, g> 

NPll(1603) 1 
NPll(1410) 

.996 1 I -70 , 8> 
-.09 1.56, ” > 

AP33(1572) = (56, g> 

A P31(1652) = I .70, 10 > - 

APo3(191o) = 1.70, ,s >, 

hPOl(1796) .17 .83 -. 53 156, 8> 
APOl(1694) = .27 
A POl(1537) .95 -. 29 .14 1 470, 8> 

.48 .84 170, i-> _ 
cP13(1870) .25 
cP13(1685) 

= 
-. 97. 

-. 97 1 1.56, g> 
-.25 j-70, S> 

cPll(l788) .20 -.94. .28 I 56, 8> 
cPll(1739) = . 11 -. 26 -. 96 170, i6 > 
CPll(1579) 0 97 .23 .05 I 170, 8, 
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FIGURE CAPTIONS 

1. One gluon exchange contributions to the energy of (lSl,2)2(2Sl,2) cavity eigen- 

states. (a) Direct interaction, (b) Exchange interaction. 

2. Spectrum of (1Sl,2)2(2Sl,2) bag states in the static cavity approximation. 

States are labelled by their angular momentum and flavor. 

3. Spectrum of (1s 
w 

)2(2Sl,2) bag states with the inclusion of boundary fluctu- 

ations. States are labelled by their angular momentum and flavor. Shaded 

regions indicate the positions of established baryon resonances as given by 

Ref. 11; the number of asterisks indicates the trustworthiness of the statePs 

existence, as quoted by that reference. 
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