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ABSTRACT 

Consistent values for the fundamental dimensional coupling con- 

stants of hadrons to their valence quarks are determined from large 

momentum transfer elastic scattering, photoproduction, form factors, 

and momentum distributions. We then show that the constituent inter- 

change model hard scattering subprocesses Mq-Mq and Bq-Bq (and 

their crossing variants) are of sufficient magnitude to account for the 

i ’ normalization as well as the kinematic behavior in pT, angle ,. and s 

1 of single particle large transverse momentum inclusive cross sections. 

-4 The cross-over point where pT scale-invariant qq - qq and gluon terms 

may dominate the cross section is computed. Jet cross sections and 

charge correlations are also discussed. We also give analytic formulae 

for inclusive cross sections in general hard scattering models. Spectator 

and dimensional counting rules are given which determine the scaling be- 

I 
havior in pT, e =d2/s, and ocrn. 

- -., 
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I. INTRODUCTION 

In the last few years the phenomena of high transverse momentum physics 

have become an important tool in unravelling the internal structure and basic 

interaction mechanisms of hadrons. At the quark level, two competing mechanisms 

have been intensively studied: quark-quark scattering and constituent interchange 

mechanisms involving quark-hadron vertices only, such as qM - qM. Both mech- 

anisms are capable of producing particles at high transverse momentum. The 

.90° inclusive cross sections are predicted to be of the form =* l-XT 

-4 eF 
pT w - 49 

dc ET” 
-8 eF’ 

pT 
qM - qM 

dp 
s9 -- 

-12 eF” 
pT 

qB - qB 
‘Ft -BB 

L 

if one assumes an underlying scale invariant theory. For pT smaller than 8 

GeV/c, the Fermilab I,2 and IsR3’ 4 -4 data indicate that the pT behavior is not 

present, whereas, the pT -8 behavior and values of Ft predicted by the constit- 

uent interchange model (CIM) appear to describe the cross sections for meson 

production. (F or example, the quoted fit to the Chicago-Princeton data ’ for 

pp-7r+Xat 8 cm = 90’ gives pT -8.2 E9.0; the CIM prediction is pT -8&g 

from quark-meson scattering.) The first discussions of inclusive production of 

mesons at large transverse momentum were given by Berman and Jacob, and 

Berman, Bjorken, and Kogut’ who argued that scaling in electromagnetic proc- 
-4 esses must lead eventually to scale-invariant pT behavior at fixed xT, The 

CIM model, 6 ’ 7 on the other hand, was developed in order to explain exclusive 

s tattering. at low energies. When applied to inclusive scattering, it predicts 

that the numerically dominant terms from quark-meson scattering should behave 
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-8 
as PT - This result was based on a fundamental scale invariant quark-quark 

mteraction which will eventually produce a p-: behavior unless it is very stroagly 

suppressed. In this paper, we shall reconcile these mechanisms by studying the 

relative normalizations of CIM diagrams and the quark-quark-gluon co,ntributions. 

The absence of p$ terms in the meson yields has led quark scattering ad- 

vocates to consider two modifications to the scale-invariant qq -qq cross section, 

chosen so as to yield approximate l/p; behavior. One approach is to assume 

scale-breaking in the structure functions and the quark-quark amplitude. 8 
Alter- 

natively, scaling can be preserved in the distribution functions, and the quark- 

quark cross section can be chosen to fit the data (g la Feynman and Field). ’ These 

approaches share several difficulties: 

(a) Elastic fixed angle cross sections at large pT cannot be described using 

the same basic qq - qq subprocess employed for inclusive predictions (see 

ref. 7 for details). 

(b) In QCD models the standard value for the gluon coupling constant (as- 0.3) 

gives a cross section an order of magnitude below the data for pT 2 5 GeV. 

In the F-F model the quark-quark cross section is fit to the form 

d o/dt (qq - qq) = C/st3, where C N 6 x lo3 GeV4 which seems uncomfortably 

large. We note that the form l/St3 or l/sd is exactly that predicted for the 

qM- qM subprocess, and is in fact characteristic of spin l/2 exchange, not 

vector exchange. 

(c) In the F-F model the pG12 behavior for proton production’ is not accounted 

for. One can appeal to “leading particle” effects, but then one is somewhat 

embarrassed by having to omit them in estimating meson yields from pion 

beams. 

(d) In models with quark (or gluon) fragmentation into the observed hadron, 
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the away side jet is forced to carry transverse momentum of order 20% in 

excess of the trigger pT. Reconciling this with experiment may require very 

large transverse momentum fluctuations in the hadronic wave functions. 

(e) Models based on quark-quark scattering generally predict no correlations 

between the charge of the trigger particle and the charge of particles in the 

away side jet. However, striking correlations for high pT K- and c triggers 

have been observed by the British-French-Scandinavian group at the ISR. 10 

We also note that there is no theoretical justification of employing a factorized 

form for scale-violations in the AFT type model, and the actual predictions for a 

model such as QCD are not known unambiguously. 

1.n principle there could be scale-breaking corrections of the asymptotic free- 

dom type to the dimensional counting rules and the CIM forms for the quark- 

hadron amp1 it udes . However, the basic scaling prediction for the proton form 

factor t2 Fp(t) - const appears to hold within - 5% accuracy for 4 < It/ < 36 

Ge?, suggesting that amplitudes involving color single hadron vertices may not 

have strong QCD corrections. 11 Consequently our analysis here will be restricted 

to a strictly scale-free theory. 

As we shall review here, the dynamical forms and the quark counting predic- 

tions based on CIM subprocesses are in good agreement with experiment for all 

produced particle types. The uncertainty in the CIM approach has always been 

in the absolute magnitude of the various contributioas. We will show that the 

normalization of the experimental inclusive cross sections is in reasonable agree- 

ment with theoretical expectations based on form factors, structure functions, 

and 90’ elastic scattering measurements at low e.nergies. We shall predict which 

subprocesses should dominate production of a given particle in a given kinemat- 

ical regime. Our normalizations will be seen to be inherently uncertain by factors 



5 

of 2 or 3; however, predictions for certain cross section ratios have much less 

uncertainty. 

In a purely scale invariant theory, the dominance of the CIM diagrams over 

w - qq contributions in the thoroughly explored experimental regime, pT < 8 

GeV/c is in fact expected if the conventional value of as 2 0.3 is used (see Sec- 

tion IX). In part, this is because the trigger hadron can be formed directly in 

the hard scattering CIM subprocess. Quark-quark and gluon scattering is pre- 

dicted to become dominant for pT 7 8 - 10 GeV/c and will be an important con- 

tribution to jet-trigger experiments at much lower values of pT. 

Briefly, the organization of the paper will be as follows: 

Section II. A short summary and catalogue of experimental results for 

elastic and inelastic high transverse momentum cross sections and a dis- 

cussion of trigger bias will be given. 

Section III. A review of structure functions and related sum rules; general 

formulae for elastic and inclusive cross sections; and the various contributing 

CIM subprocess forms will be presented. Also coupling constants are pre- 

cisely defined. 

Sect ion IV. The determination of certain important coupling constants 

from elastic scattering measurements is made. 

Section V. The determination of the above coupling constants from the be- 

havior of structure functions is made and their consistency with the results 

of Section IV is .noted. 

Section VI. Inclusive cross sections for a proton beam are described in -- 

detail for many different particle yields. Antiproton beams are briefly 

discussed. 

Section VII. Inclusive cross sections for a pion beam are discussed. -- 
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Section VIII. The Inclusive-Exclusive Connection is examined. 

Section IX. Inclusive cross sections based on quark-quark scattering are 

computed. 

Section X. Jet-Jet Cross Sections are discussed. 

Sections XI and XII. A general discussion, a few remarks, and some conclu- 

sions are given. 

A check of our analytical approximation is made in Appendix A. A detailed 

discussion of the definition of .the quark-hadron coupling constants and their de- 

termination from the asymptotic behavior of the meson and nucleon form factors 

is given in Appendix B. 

II. CATALOGUE OF EXPERIMENTAL RESULTS 

We will parametrize fixed angle (90’ center of mass) exclusive two-body 

cross sections at large s in the form 

da 
dt goo = Es 

-n 
(2.1) 

A review of the relevant data is given in reference 7. 

We employ throughout the paper pure GeV units. Inclusive large pT cross sec- 

tions at 90’ center of mass from FNAL 192 and the ISR3’4 can be fit to the form 

(E=1-2pT/fi = l-XT) 

da -N 
E 3 

XT > 0.2 
(2.2) 

dP 
9o” 

2 < PT < 8 @V/c 

Table I summarizes the values for I, N, F, and E, n for the various well-known 

cross sections of interest. For N and F we have chosen the nearest integer 

values, and then fit the normalization constant I. 



Table I 

(GeV Units) 

Reaction 

PP - PP 

**p - 7r*p 

7r-p - Ton 

yp - 7r+n 

Reaction 

PP - r +,o,- x 

PP - K+X 

PP - PX 

n*p - nOX 

E 

1.2 x log 

2.0 x lo5 

2.5 x lo4 

2.6 ~10~ 

I 

(9,8,7) 

5 

500 

3.5 

n - 

10 

8 

8 

7 

E F. - 

4 9 

4 9 

6 7 

4 7 

The reactions pp - K-X or i X near 90’ are characterized by the following be- * 

havior 

Eyp (PP”K-X) ~ l.. e3.5 

Eda (pp + K+X) 
d3p 

Ed;u (PP+& 
“N o 3 E6.9*2.4 2 1*4h1’3 P 

+- (PP-+PX) * ( 1 PT 

d P 

(2.3) 

(2.4) 

The y/a0 ratio in pp collisions is reported to be as high as 30s0 l2 The 

n*p - To form quoted in Table I uses the measured ratio r+ P + r’/PP 4 To 

from Donaldson et al. 2 

In the case of the inclusive cross section, it is important to establish percent- 

age of trigger particles which are “prompt, ‘I as opposed to those which arise 
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indirectly from a decaying high pT resonance or virtual state. This percentage 

roughly determined phenomenologically by examining the x E distribution 

(PT)opposite 
XE = (P ) , 

T trigger 
(2.5) 

where xE measures the distribution in transversemomentum of a hadron pro- 

duced in the hemisphere opposite the trigger pion. If the trigger r is “prompt” 

then the maximum value of xE is 1, whereas when it is the product of a resonance 

(or fragmentation process) then (x~)~~ > l-the parent system (and hence the 

balancing away side system) must carry more pT than the trigger pion. The 

data13 appears consisteat with a mean value 

((xE)ma) - 1.1 

using 

i 

1 prompt 

(xE)maX - 1.1 2-body resonance 

1.2 3-body resonance 

(calculated using the local exponent approach of Ellis et al. ), l4 we obtain con- 

ditions for the fraction of events that are prompt, 2-, and 3-body: 

fP + f2 + f3 = l 

and 

f + l.lf2 + l.2f3 = 1.1 . 
P 

Assuming that f2 - f3, we estimate for pions 

f -l/3. 
P (2.6) 

Allowing for transverse momentum fluctuations of the initial participants in the 
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high pT subprocesses results in a slight decrease in f . 
P 

This type of ratio 

(which is important for the estimate of jet cross sections as discussed in Sec- 

tion XI) is expected theoretically if prompt spin 1 mesons (p, K*, 0 *. ) are pro- 

duced (with the statistical weight) three times as frequently as prompt pions. 

This yield is consistent with the experimental ratio i5a 

P/n - 1 

if f= 
P 

- l/3 and fp 
P 

- 1, which might be expected since the pps are expected 

to be produced indirectly by far ,fewer low mass resoaances. The normaliza- 

tion calculations in the CIM will be shown to be consistent with the prompt /total 

ratio of the order of 50 + 20% (see Section VI). 

The above estimate for fp is for a 7~ trigger. Fewer K9s are produced in- 

directly (especially by 2-body decay), so we anticipate a somewhat smaller 

total/prompt ratio for K9s. These ratios can certainly be determined by same- 

side correlation measurements. This will remove the necessity of making such 

rough estimates of fp and thus will provide more stringent tests of models. 

III, STRUCTURE FUNCTIONS AND CROSS SECTIONS 

In this section we will present general formulae applicable to the particular 

reactions discussed in later sections. We will use the standard form of the hard 

scattering models, where kT integrations have already been performed. 5’7 The 

large pT cross section is then given by a convolution of structure functions 

G ./Atx) and Gj-,/B(X)s with the sum of all contributing hard scattering subPro- 

cesses a + b - c + d. 

A. Structure Functions 

. We begin by distinguishing between the full probability function GaiA(x) (for 

finding a particle or system, a, with light cone fraction x = (pi+pi)/(pi+ pi) 
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(PZ = 09 Pi > 0) in particle A) and its valence part G I,,(x) arising from the 

simplest valence Fock space component (2 or 3) quarks of A. Note that the 

complete structure function G has the usual x 40) a,A Regge behavior, whereas 

the valence components vanish at x - 0. In this paper we define valence quarks to 

refer to quarks belonging to the minimal Fock state component, and which give the 

leading behavior as x - 1. We refer to the higher Fock components as the sea. 
We constrain the G’s to satisfy the spectator counting rules6 as x -1 (see 

Section XI) and to have a reasonable shape for small x (i. e. , some flattening 

off in xG). A form (Fig. 1) with these properties which yields simple integrals 

in later calculations is 

xG a/A(X) = (1 + ga) fa/A Nd4 (1 -xlga 

= (1 + ga, fa,A N(h) (1 -GaJga 

x>; a 

x< $2 a ’ (3-l) 

where 

ga =- 2n(EA) - 1 

and n( “a A) is the minimum number of quarks in the spectator system. 

We emphasize that the form (3.1) is only to be used in integrands and does not repre- 

sent the true shape of the structure functions. The quantity f 
a/A 

is the fraction of- 

total momentum carried by a in A 

1 
f a/A = 

I 
dx XGa,A (x) 

0 

and 

N (a/A) = 

(3.2) 

(3.3) 

As an example, reasonable values for u or d quarks in a proton are ga = 3 and 
A 
X a = 0.25. N(a/A) adjusts for the shane dependence of the structure function 

relative to a pure (1 -x) power and approaches 1 as f; a - 0. Throughout the 

paper if l’atr refers to a quark, it will be a quark of a given color. By way of 
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reference, the distributions measured in deep inelastic electron scattering are 

color sums 

v w2 (x) = 
c 

; xG u/ptx) + OD** 
colors 

= 3 o $xG x + o... 
U/P( ) 

For simplicity, we take G 
u/P cc Gd/p’ but different distributions could be as- 

sumed. 
15b 

We will give general formulae for inclusive cross sectioas in terms of the 

Parametrization (3.1); to give absolutely normalized numerical results we 

adopt the set of “standard” values given in Table II. Again we emphasize that 

these values are to be used with the simplified form (3.1) inside integrals; the 

parameters are chosen to yield reasonable integral properties consistent with 

usual structure functions. These are taken from experiment when possible and 

otherwise estimated in Section V by utilizing the convolution formula 

1 
9 

Ga/A x 0=x J 
n 

X 

n/A (‘) ’ (3.4) 

Note that to avoid double counting one of the G’s, must be “irreducible,” i. e. , a 

valence distribution function, and the sum, c , is restricted to non-overlapping 

intermediate Particle states (n) having no quarks in common. A simple integra- 

tion yields 

f 
a/A = n c v fV a/n fn/a (3.5) 

The value of Ga in (3.1) which controls the flattening of xG(x) is in general ex- 

pected to be less than the Position of the “quasi-elastic” Peak in x for the valence 

component of interest. This tends to take into account the contributions of the 
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Table II 

Distribution Function Parameters (per color) 

xG .,Alx) = (1 + g,) fa,A W/A) (l-xjga tx > ga) 

a/A ga 
A 
X a f 

a/A W/A) 

u/P 

d/p 

S/P 

( W/P 

M/P 

K-/P 

B/P 

3 

3 

7 

1 

5 

9 

3 

1 

1 

3 

c ’ f M/p = ’ ’ c ; 
M 

B/P 
= . 18 

B 

c fM,p=.4 c fB/~ 
z.72 c f 

M 
M/r g.8 

B M 

c f 
q/P 

= .17 c f- 
q=u,d s 

q/P 
= .03 

.2 

.2 

0 

.6 

. 3 

0 

. 3 

. 3 

. 3 4 

.4 

fV V 
u/P 

= 2 fd,p = .04 

c f(2qvP = * 3 

. 1 1.22 

.067 1.22 

.Ol 1 

.l 1.6 

.l 2.4 

. 024 1 

. 12 1.6 

.083 1.1 

. 083 1.1 

.l 2.1 

fV fV q,M = gM = ,033 

cfq,* =&,T = .083 

4 
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higher Fock states. This is illustrated in Fig. 1. For example for G 
u/p’ the 

most likely valence value of x is l/3 a.nd we choose 2 a = 0.25. The resulting 

form for G 
u/P 

is close in character to the data. For G 
B/p’ a baryon such as 

A or n must arise from at least the five quark wave function component of the 

proton and hence the most likely “valence” value of x is 3/5. We choose ga = 0.4 

for this case. Our final results depend only weakly on the values chosen for xa. 

B. Elementary Exclusive Cross Sections and Coupling Definitions 

In a scale invariant theory all exclusive differential cross sections at large 

momentum transfers in the fixed angle regime can be written as a sum of terms 

of the form 

do 
a- 

= ngsT+U-N (-t)-T (-u)-” , (3.6) 

where %J contains the relevant coupling constants. This Parametrization is 

appropriate for general processes involving quarks, gluons and hadrons. 

There are two critical coupling constants for quark-hadron scattering which 

we now define. These are appropriate ones when at least one of the quarks in- 

volved is off-shell: 

(i) The coupling of a meson to its simplest valence two-quark component. 

We define a standard coupling, g/<3, of the n+ to a u and d quark of one color. 

The l/6 gives the correct normalization upon summing over colors. In &CD, 

g is proportional to the wave function at the “origin” 

8,” g fYL g; no> = - 
(W4 

d4WW , (3.7) 

where Y is the full Bethe-Salpeter momentum space wave function and gs is the 

colored gluon-spin l/2 quark coupling. A careful discussion of the definition of 
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g and Y (0)) including the effects of spin, is given in Appendix B. 

(ii) We also define the constant h/o for the coupling of the proton to its 

valence state, d + (uu), for applications where the (uu) system has a finite range 

of invariant mass. The coupling is defined for a d quark with one specific color. 

For simplicity we shall assume SU(3) symmetry for the couplings through- 

out this paper, although we expect that some breaking may be present. 

The two most important cross section prototypes for CIM applications are: 

(i) The process u?r+ - u?r+ where u has a given color. The crosssection 

is given in Table III. The only contribution from the valence state is the (ut) 

topology diagram where the 3 quark gives a pole in the u channel. The spin- 

averaged cross section is characterized by N = 4, T = 0, U = 3, and 9 = i 
121” 3 4n ,! 

for the spin average cross section. 

(ii) The process dp - dp, for which all Born diagrams in a renormalizable . 
-12 theory yield N = 6, i. e. , pT behavior. In the CIM it is assumed that the most 

important diagrams are those in which the gluon exchanges are internal to the 

hadron wave functions. Two examples are shown in Fig. 2. Diagrams in which 

gluons are exchanged between quarks of different hadrons are not enhanced by 

the strong binding effects of the wave functions. The first diagram, Fig. 2a, 

which we adopt as our standard form, yields (for spin l/2 quarks) 

e (dp-dp) oc 1 s2 + t2 . 
S2 t2 u4 

(3.6) 

In the diagram of Fig. 2b the upper vertex is not uniquely associated with either 

the initial or the final proton and for simplicity we discard it; its cross section 

co,ntributio.n 

od- s2 +u 2 

S2 t2 u2 
(3.9) 
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ELEMENTARY 

Subprocess 

M M 
qM-qM (ut) x 

9 q 

M M 

qM-qM (st) > ( 
9 9 

Mq -yq’(ut) 

Y9 -Mq’ (ut) 

B B 
dp-dp (ut) x 

9 9 

TABLE III 

CIM SUB PROCESSES (Spin and Color Averaged) 

&z=-rrcD p&2 
dt s2 

0 

2aaM 

aaM 

a; 

%I2 

A 
U3 

u 
S.3 

$ 

L 
t( 

,2+,2) xs-xs 12 

( 1 u s 

+2+ p)(ly2 

s2+t2 
t2u4 

Su bprocess 

!l-.--E 
da- p; c 

q B 

4 B 
ad- pi x c 

9 I3 

ijp-ppij gg 
s 

c--i 
dp-pd 4 

B q 

q(2q) - MB 

(2q)M - Bq 

9 M 
C 

(2s) B 

M 0 

x 
(2d 9 

0 

“28 

aE 

a28 

2 
‘IB 

LA2 

s2+u2 
s2t4. 

s2+ t2 
s2 u4 

t2+u2 
u2s4 

s2+u2 
-3F 

1 
t5 

II -7, 
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is sufficiently similar to that from Fig. 2a that our results are not sensitive to 

this assumption. The other processes of Table III involving baryons are deter- 

mined by crossing from the Fig. 2a results. These quark spin l/2 results for 

dp- dp lead to an angular distribution for elastic pp -pp scattering which is 

in excellent agreement with experiment as will be demonstrated below. Defining 

standard values 

I 
o!B= (3.10) 

we give in Table III the cross section forms for all elementary processes of 

interest for quarks interacting with J ’ = O- mesons and J P 1- = 2 baryons . 

One should take special note that the yq - Mq cross form given in the table in- 

corporates three additional diagrams, other than the one drawn, as required by 

gauge invariance . All cross sections are those for quarks or diquark systems 

of one given color. The spin l/2 quark spin 1 vector gluon structure of QCD is 

reflected in the tabulated results. For instance the qM - qM cross section in 

a scalar quark +4 model is proportional to 1/s2u2 instead of 1/su3 as found for 

spin l/2 quarks., 

C. Exclusive and Inclusive Hadronic Cross Sections 

Exclusive Processes 

The exclusive scattering process AB - CD (see Fig. 3a) can be considered 

as the scattering of A - C off of a quark constituent of the target B. Since the 

constituent in general has some fraction, x, of the target momentum, the basic 

subprocess occurs at a reduced energy and one readily shows from this quark 

interchange diagram that 

$AB - CD) = FsD(t)NEoh &; (Aq-Cg;s’=<x> s,V=t,u*=<x>u) 

+ permutations (A, C - B,D) (3.11) 
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where the mean value theorem has been used to replace x by <x > . Note that 

FBD(t) is the full transition form factor of the target (summed over attachme.nts 

to quarks of all colors) whereas de/dt is, as always, the cross section for a 

quark of one given color. Ncoh is the number of coherently interfering diagrams 

which contribute. Using the standard form for d$dt, Eq. (3.6)) defining n=4 +N, 

and taking FB(t) = (1 -t/4)-’ for a proton target, we obtain at large s 

ndo 
s dt, =E&(AB-CD)=ag<x> T-NN2 

cob 24+T+U(M.$ (3.12) 
9o” 

which is consistent with dimensional counting. 16 One expects that <x> 3 l/3 

should characterize scattering from a valence component of the proton target. 

Inclusive Processes 

From Fig. 3a and 3b it is apparent that the direct inclusive process , 

AB + CX, in which the beam does not radiate prior to interacting with a con- 

stituent of the target, is obtained from the previously quoted exclusive scatter- 

ing formula by replacing the form factor by the relevant target structure func- 
( 

tion. A simple calculation then leads to the result 

:Ec + (AB-iCX) = 5 & 3L x CQB (x) * 

d PC b,d 

g (Ab--+Cd’, s) =xs, t’=t, u’= xu) . (3.13) 

The sum of b, d is over quark flavors and the explicit 3 results from the sum over 

colors. The structure function G and do,,dt are for quarks of one given color. The 

variables used to describe inclusive scattering subprocess cross section A + B + 

C + X are 

s+t+u=d+42 = ES, 
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where&is the total missing mass and 

x1 = - u/s=+ XR (I+ z) 

where 

x2 = - t/s = f XR (1 - z) 

E = l-xB , XH = ECm/Ecm& , 

(3. 14) 

and z (= cos 6) is the cosine of the center-of-mass scattering angle. The on 

mass-shell condition for particle C determines x in Eq. (3.13) to be 

x = x2/(1 -x1) . (3.15) 

For x > gb one may substitute the simple forms for G 
b/B 

and do,dt from (3.1) 

and (3.6) and obtain 

E da - = 3 BL 
’ d3pc 

(l+gb) fb,B N@/B) x;-~(~-x~)~-~-~-~~ K(gb, N) , 

b,d 

(3.16) 

where the dominant dynamical variation in E and pT is contained in 

K(F;N)= e F (pi + M2)-N , 

and the effective mass scale M is less than -1 GeV. 

The double bremsstrahlung process depicted in Fig. 4 is easily evaluated 

using the G functions and da/dt forms already discussed. The result can be 

written in the form 

dc 
EC-& = 3y I(a,b)K(F,N;J’;+F-) J(E,z) ‘. (3.18) 

C a$ 

Here we have employed (as appropriate for all our CIM applications) the presence 

of one quark-loop color sum. The sum is over the flavors of the interacting 
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constituents. In the above formula, 

Itasb) = g fa/Afb/B N(a/A) N (b/B) ZF++ F 
- r(2 + g,) r(2 + gb) 

r(2 + s + gb) * (3.19) 

The main dynamical behavior is contained in the K function 

K(F, N; F+, F-) E l “@; + M2)-N(l + XBZ) -F+(l - “Rz,-F (3.20) 

Note that the effective power of E = (l-x,$ changes as one approaches z = f: 1. 

For an extension of this result to final state decays, see Section IX, Eq. (9.7). 

In the above 

F=l+ga+gb 

F+=l+U+g,-N 

and 
F-=l+T+gb -N (3.21) 

We have found that the function J( E , z) is slowly varying in E and z for 

(Ga + Gb) and z ‘away from 1. In this region, it is given by 1 I 

dq (1 + ~)~a (1 
_ gb [l;-“:,““]-F+ 

r7) 

with 1 

Jo = dg(l+rilga (1-n) gb . 

(3.22) 



19 

Clearly J(O,z) = 1. In our estimates we set J= 1, giving errors at most of order 

20 percent for E < c except near the very forward or backward directions for 

highly asymmetric processes (ga >> gb) where the mean value approximations 

break down. The accuracy of this approximation is tested in Appendix A. The 

effective F power is found to decrease for XT < maxg a,b’ 
For later use it is also convenient to define a K function that is symmetric 

in z 

Ks(F, N;F+, F-) = ; K(F, N; F+, F-) + K(F, N;F-, F+) 1 - , (3. 23) 

which occurs in target-beam symmetric (proton-proton) reactions. 
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IV. DETERMINATION OF COUPLING CONSTANTS 

FROM FIXED ANGLE ELASTIC SCATTERING 

In this section we determine the coupling constants crM and aB from rela- 

tively low energy fixed-angle elastic scattering data. The values for aM and 

aB will be used later to compute the normalization of high pT inclusive cross 

sections for the CIM subprocesses. First, consider the predicted forms for 

photoproduction of pions and pion-nucleon and elastic scattering. Using the cross 

sections of Table III, with h - = l/3, hq = 2/3 for ‘Yu -+ r’d, we obtain from 
q 

Eq. (3.12) 
+ E&p- r n) = ~a! 01 M; <xx2 27 M,” (4.1) 

Elm - rp) = T a; <x>-~ 27 M; (4.2) 

The experimental data are consistent with7 with the predicted power laws in s. 

The normalization factors from Table I are 

Etnp - qy) = 2 x lo5 

E(yp + 
- 7T l-0 = 1.3 x lo-4 

E(w - ,TP) 

These determine aM/<xy , in two independent ways. The effective number of 

coherent diagrams contributing to rp - rp is between 1 and 2. A consistent 

solution for both (4.1) and (4.2) is 

clM/ <x>2m 30, (4.3) 

which for <x> rr_ l/4 gives OCR Z 2 GeV2. 

Now consider pp elastic scattering; there are 10 coherent diagrams as il- 

lustrated in Fig. 5. The dominant term for the basic qp - qp scattering process 
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is given in Table III and we obtain 

E(PP - PP) = *’ &B 4 2 2 <xy4 N; 21° M,” (4.4) 

Experimentally E (pp -pp)= 1.2 x 10’ (see Table I) and, using <x> 21/4, as be- 

fore, one finds 

cxB 2 10 GeV4. (4.5) 

The CIM prediction for the quark-proton subprocess can be checked by ex- 

amining the angular distribution of the pp elastic cross section about z =-case = 0. The 

cross section predicted by Eq. (3.11) can be characterized by the form 

doPP - PP 

/ 
daPP - PP 

dt 6% 4 dt (s, 0) z (l-22)-6 (4.6) 

which is in good agreement with the exPerimenta distribution 6,7 . The above 

form of do,dt yields an effective trajectory, c~(t), which approaches -1 as t becomes 

large.. l7 This can also be checked by a triple Regge analysis of pp -p + X at 

large t. We can also compute the ratio of the Fp to pp cross sections at 90’ by 

crossing the predicted pp form of Eq. (3.11). The CIM prediction for this ratio 

at 90’ is 

g (PP -PP)/ dg CPP -+P) r 85, (4.7) 

which should be compared to the experimental ratio 18 of roughly one hundred. 

Models based on gluon exchange tend to give ratios of order 1. In the case of 

np - w, there are 8 rather than 10 coherent diagrams, which gives a predicted 

ratio at large angles (including a factor of two for pp) 

+j+p - np) 
R= do Y 0.32, 

x (PP -PP) 
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independent of s and 8,,. The data” for np + np and pp -+ pp fit the sSnf(ecm) 

form with n = 10.40 + 0.34 and n = 9.812 0.05 respectively and the ratio appears 

to be independent of angle. This data also gives R = 0.34 + 0.05 for 10 <s 

~24 GeV2, ecrn = 90’. Finally, we point out that the predicted form for 7rp and 

Kp elastic scattering can be crossed to the reaction cp --t r+7rW and pp + K-K+. The 

resultant normalization and angular distributions are in reasonable agreement 

with the data2” 21. 
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V. DETERMINATION OF COUPLING CONSTANTS 

AND MOMENTUM FRACTIONS FROM MOMENTUM DISTRIBUTIONS 

In this section we will use the valence distribution functions derived from deep 

inelastic scattering and efe- reactions to determine the quark-hadron coupling con- 

stants g and h . The valence part of the meson probability function is easily com- 

puted from the diagram of Fig. 6a with the result 
- 

Ga: Tt tx) = G &+(x) = / 
d2kT 5 x(1-x) [kT2+M2(xj-2 =+--$z , 

where 

M2(x) = (1-x)mz+ xmd2 -x(1-x) rni = m2 
‘4 

-x(1-x) rni 

We remind the reader that Gv u/71+ 
is the distribution per color of quarks of flavor 

type u. Taking rnt < rng , then M2(x) = rnt and is essentially constant, so that the 

peak of G’(x) is at x N l/2. The valence component of G is unimportant at small 

x < 0.5, but it becomes dominant because of the slow (l-x) fall-off at large x. The 

e+e- annihilation data for single pion production provides a direct measure of the 

quark color-average (i. e. , per color) distributions G ti,; and Gti,u. For x-O.8 

we expect that only the valence components are important, and that the crossing 

relation G $(x) - G&+ (x) is valid for x near 1. Using the x w 0.8 data from 

SPEAR22 we can estimate the coefficient of x(1-x) and obtain the upper bound, 

1 
dxx G&(x) <l/20 , 

in reasonable agreement with the more detailed fits of Ellis et al.23 -- By integrating 
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Eq. (5.1) we find 

19” 
( t aM = 3 4n - 

46= 2v 
mq fu/7+ - (5 * 3) 

For fv 
e+- 

= l/30 and m 
q 

- 500 MeV this yields aM = 1.25 GeV2, in approximate 

agreement with the previous estimate of Section IV. (Note that mq must be greater 

than mp/3 for stability of the proton in our simple model in which mq is the effective 

or dynamical mass of the quark. ) We will adopt aM = 2 GeV2 as our canonical 

value. 

A similar calculation may be performed for the nucleon structure function. 

Evaluating the valence diagram of Fig. 6b, we obtain 

G&V/B(X) =lw dD2J d2kT -$$& 

4M2 
4 

where, in this case, 

M2(x) = D2x + rnt (l-x) -x(1-x) rn; , 

x(1 -x) 3 

(x) 1 4 (5 * 4) 

(5.5) 

and D is the mass of the diquark system. Neglecting the D2 dependence of h 

yields 

Gs/B 
v (x) = $ - h2 I t1-x)3 

167r2 ’ 
[ 
(1+3x)M; -x(1-x)M;12 . 

(5.6) 

The weak x dependence of the denominator can be neglected and Gv 
q/B 

takes the 

approximate form at large x 

GTIB (x) = 20 f;,B (l-~)~ , (5.7) 
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V 
where fq/B 

is the fractional momentum carried by a valence quark of a given 

color. The above coefficient may be estimated from deep inelastic scattering data 
. 

for x IV 0.75 yielding f qyB” (3) 0.12 = 0.04. Note the similarity of this fraction 

to that determined in the meson case. The correct inclusion of the color factor is 

essential in obtaining similar valence momentum fractions for mesons and baryons. 

Using mq = 500 MeV, as before, and thus (1 + 3x) m2 - 

h2 
( ) 

q 
x( l-x) rni 7 0.4 GeV2, we 

determine aB = i 477. Z IO GeV4 in satisfactory agreement with the estimate 

obtained from elastic pp scattering; we adopt aB = 10 GeV4 as our canonical value. 

Alternatively, we can also use the asymptotic behavior of the meson and 

baryon form factors to determine aM and aB. This is discussed in detail in 

Appendix B. The extracted values are consistent with the ones estimated above. 

In addition to its valence 3 quark component, the proton also contains 5 quark 

(and higher) Fock state components which give rise to the sea quark distribution. 

In one extreme, the qqq q6 state can be considered as a qqq baryonic system plus 

a qi virtual meson-like state. Since the q and 4 interact over a long period of 

time, at least some part of Fock state will contain color-singlet mesonic resonances. 

We now turn to estimating the fraction of momentum carried by such non- 

overlapping mesons in the proton and by nonoverlapping baryons in the proton. 

These will be crucial for the calculations of high pT inclusive cross sections based 

on hadron-quark scattering subprocesses. Some, but presumably not all, of the 

sea quarks can be considered as constituents of these intermediate meson systems. 

Using the general folding formula, Eq. (3.4), we obtain the bound 

ZI ’ f-V 
M 

d/M fM/p ’ fd/p , (5.3) 
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where the M sum runs over those nonoverlapping mesons which contain an anti- 

quark of the given, a, type. Thus 

(5.9) 

Y where f;i,p and fd,M both are per-color momentum fractions. Deep inelastic 

neutrino scattering data indicates that 1 colors fd/p 
V - 3 f-+p< 0.03. For f-d,M 

we use our earlier-estimate of l/30, thus yielding C”f 
M/P 

2 0.3. We will use 

c lf 
M/P 

“N 0.1 
M 

as a typical value since all d)s need not come from the intermediate mesons. This 

value will be found to be consistent with the inclusive large pT data. For the f 
B/P 

case, the same arguments yield 

’ (5.10) 

where the nonoverlapping virtual baryons B containing the quark of type q (of a 

given color) in a nonvalence Fock state are summed over. Again we employ 

fq/P 
sea 2 0.01 and our earlier value < f T,B> - 0.04 (estimated from large x deep 

inelastic data) to obtain 1’ f 
B/P 

<” 0.25. Our nominal choice is 

c ‘f 
B/P 

= $ 0.25- 0.16 . 0 
B 

When computing the high pT inclusive cross sections one must sum over all 

the intermediate mesons which can interact in the hard scattering subprocesses 
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Mq + Mq. For example, in the proton Fock state (uud Ah), each of the virtual 

meson states uX , uX, dX , Ax will initiate a high pT Mq + Mq reaction. However, 

the restricted sum C’ f 
M/P 

is the fraction of momentum carried by only 1 of the 

above. We will incorporate this factor of 4 by defining the “unrestricted” sum 

/p- O-4 * 

Similarly, we estimate a similar factor of 4 for the unrestricted baryon momentum 

sum, and adopt the value 

\‘f 
L -B/P = 4L fB/p- On7 * 

B 

(5. 11) 

(5.12) 

Finally, we shall need the related quantities for a pion beam state. We esti- 

mate that 

c 4/7T -0.8 . 
M 

Notice that because the same quark momentum is counted more than once, the sum 

of (5.11) and (5.12) can be greater than one. 

When we include all Fock components of the proton or meson primary states, 

the usual estimate for the momentum carried by the uud quarks--summed over 

color--is 

3c f =0.5 , 
q=uud q/p 

(5. 13) 

and similarly that 3f u/n+ = 3fa/a* = 0.25. In each case, this implies that quarks 

with valence flavors carry, when all Fock states are included, one-half of the 

primary hadron’s momentum. This then allows us to complete the entrees in our 

Table II of standard values. 
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VI. INCLUSIVE CROSS SECTIONS FOR BARYON BEAMS 

We have now determined all the ingredients required to predict the inclusive 

cross sections for specific meson, baryon, antibaryon and photon induced reac- 

tions. We shall employ the general inclusive formulae of Section III, especially 

(3.18). 

Meson Production 

The leading subprocesses which contribute to large pT inclusive reactions 

are those which have the minimum pT and E + 0 fall-off and the largest overall 

normalization. In the case of meson production in proton-proton collisions, the 

dominant contributions based on quark-hadron interactions arise from quark-meson 

scattering (qM* -+ qM) and the fusion process (qs + MM*), which lead to the leading 

scaling behavior pT -8 E9 
and PT 

-8 ell respectively for 8 cm- 90’ . The contribu- 

tions from the ut diagram Fig. 7a, and fusion diagram Fig. 7b yield 

E = @p -+m) = a; 3x fM*/p fqlp N(“*/p)N(q/p) 2 6 
d3p 

w K&%4&0) 

M*q 

3 2 
+ZcrM c 

f- q/p fq,p Wi’NWpP7 w KstW;‘L -1) 

q, %M, xx* 

3 2 
+ZoM c 

f- f q/p q,pN(s/‘W’Us/p)27~ KsUL 4;3,3) 

i, qeM, l%* 
(6.1) 

The antiquark of the produced meson in the qM * + qM subprocess may come from 

any secondary meson in the proton containing the correct antiquark flavor. This 

is precisely the restriction under which we derived the c f M*/p quoted in Table II. 

The allowed q’s to leading order are those which are in the valence state, e.g., 
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for M = K+ only q = u contributes with 3 f 
U/P 

= 0.1 x 3 = 0.3. 

In the qi -+ MM* term the q and G* sums are not independent since for a 

given q only certain M*‘s are present. We estimate 3 to 4 M*‘s corresponding to 

one spin 0 and roughly three spin 1 states of given quark composition. The result 

at 90°, for prompt 7r+, from the qM + qM plus fusion graphs is 

E da (PP 
d3p 

+,‘x) = K(9,4) +- 0.10 n(c*) e2 1 , (6.2) 

where n(%*) is the number of states in the %* sum (- 3 to 4). This equation in- 

eludes the contribution from the st topology diagram of Fig. 7c which has the 

angular distribution Ks(9, 4;1,0); at 90’ it contributes only l/4 of that of the dominant 

ut contribution. The corrections expected from the J(xT) factor are evaluated in Ap- 

pendix A. 

The cross section predicted above is for a prompt ?r+ produced directly by the 

subprocess; before comparing with experiment we must allow for resonance-decay 

processes. In Section II we used the xE distribution to estimate that N l/3 of the 

detected pions are “prompt. ” The data from the Chicago-Princeton group’gives 

a fit of the form pT -n (l-xT)F with n = 8.2 and F = 9.0, consistent with the predicted 

powers. Hence, the experimental rate is roughly 9K(9,4), compared to the predic- 

tion of 13.5 K(9,4). We note that at large xT - 1, the resonance decay contri- 

butions will increase the effective F power (by about 1 unit). However for xT - 2, 

the flattening of the structure functions (relative to a pure power) tends to com- 

pensate this small rise. See also Table V in Appendix A for a discussion of the 

general accuracy of the leading power analysis. 
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In the SU(3) symmetric limit the pp +K+X cross section for prompt mesons 

is the same as that for the prompt 7r+. However, more ?r+?s than K+‘s are likely 

to arise from resonance decay, and in addition some SU(3) breaking is expected, 

hence, we expect K+/r’< 1. The experimental rate is consistent with K’/,’ w 5/9. 

The rate for 7rW production is somewhat smaller than for r+ since G 
15b U/P I Gd/p 

appears to in- 

crease as x increases. The x’ and x- rates must be equal, however, at xT = 0, 

in the Feynman scaling limit, so the x+/r- ratio must decrease as xT decreases 
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to zero. As XT increases, however, it should rise and saturate to a constant -- 

value in the symmetric quark model. 

The dominant K- cross section for E+ 0 arises from the fusion term of 

Eq. (6.2) and thus, for n(M*) = 4, 

E Fp (pp -+ K-X)eS00.15 K(11,4) . (6.3) 

However, for moderate E it is vital to retain various contributions with 

higher E powers, for example E 13 , arising from the ut and st topology qK- + qK- 

graphs of Fig. 8. Each contributes a prompt cross section of approximately (at 90’) 

-0. 7K(13,4). (6.4) 

For Fig. 8b the K- distribution inside a proton is normalized by taking G ,-,,tx) = 

GK+/p(~) at x --$ 0 (see Table II). Related higher Fock space state graphs for K+, n+ 

production have already been included via the full G 
U/P 

quark distribution and G 
M/P 

meson distribution functions, which represent sums over all Fock space components 

starting with the minimal one. Our estimate for the K-/K+ ratio is thus 

do(pp-iK-), = o 03e2 1+4.6 e2 . -p? 
Ww-+K+). 1+ o.1e2 

o.03e2 (1-r 4.5 E2) . 

(6.5) 

Recall that the numerical approximations used are not valid for E --, 1. Experi- 

mentally, this ratio has the same shape as the above prediction but with’about 4 times 

the magnitude. One sees that the fusion term dominates only for xT > 0.6 . 

If the total/prompt ratio for K - is bigger than for K+,(6.5) would be closer to 

the experimentally observed ratio of total rates. We are not at liberty to increase 
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the fusion contribution since to decreasexf 
M/( P 

see Eq. (5.9)) and therefore, 

presumably, c f 
M/T 

and cf 
B/P 

(thereby decreasing the K’ but not the K- cross 

section) would destroy the meson beam normalizations of the next section and the 

baryon production predictions discussed below. Increasing f- 
q/p 

significantly would 

also not be consistent with deep inelastic neutrino data. 

We have, in the preceding meson yield calculations, ignored the quark-diquark 

fusion diagrams. We will now show that their contribution to meson production is 

small. For q(qq) -+ K+B* we have 

Edrr =L! a! 013f d3p 2 B M D ti/p c f(qq)/P W*) N(q/p) Wq/p) w K(5; 6) 

- 0.4 n(B*) K(5,6) . 

In order to make this estimate we have assumed that the parameter aD, obtained 

by integrating over the diquark internal momenta, is of order oM N 1 GeV2. 

For pT > 2 GeV/c this contribution is very small compared to the qM + qM contri- 

butions unless E is quite close to zero. However, it could be an important contribu- 

tion to double trigger experiments on a meson-baryon pair. We note that charge 

correlations between the trigger and fast away side particles can be an important - 

discrimant of the contributing subprocesses. We discuss this further in Section XI. 

Before leaving the discussion of meson yields let us apply our estimates to 

the production of high pT pions from antiproton beams. Using the general formula -- 

(3.18) one sees that only the second term of Eq. (6.1) has to be modified. Since 

the antiquark distribution in the antiproton is the same as quarks in a proton, one 

has to multiply the second term of Eq. (6.2) by the factor 

(33/24 7 c4) ‘f+ NG,5’/(fi,p N(~/P)) r l/e4 . 

The predicted ratio of meson yields from antiproton and proton beams then 
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becomes 

dc@p --t 7~z) = 1 + 0.02 n&) l m2 
da(pp dm) 1-t 0.02 n(M*) c2 

(6.6) 

r1+ 0.08 (C2 - E2, , 

using n(n/r*) = 4. For example, at xT = 0.3, the ratio is predicted to be 1.20. 

In quark scattering models, it should be unity, thus there is not much difference 

until -4 xT is large. In a model with fusion only, the ratio would be E , which is 4 

atxT = 0.3. 

Baryon Production 

The dominant contributions in the CIM for p+ p + p f X at high pT arise 

from the basic subprocesses Bq + pq and qi -+ pB*. The first process includes 

the direct contribution pq + pq in which the incident proton participates in the hard 

scattering subprocess, as in Fig. 9a. Using our general formulae, (3.16)) (3.18)) the 
\ 

inclusive cross section is 

E do d3p (PP’PX) =o; 3x 4f q/p N(q/p) x; 2 K(3,6) 
q 

+CY i3Cf f 
B q q/p B/P W/P) N(B/P) 23 9 Ks(7,6;2,0) 

, 

+01 ; 3c f 
qq fpq/p q/p 

f- W/p) N(~/P) 25 w Ks(1L6;-2,6) . 
, 

(6.7) 
Note that the two up quarks contribute coherently in the proton cross section. 

These are the contributions with leading E -+ 0 behavior. All valence quarks par- 

ticipate in p production; thus 3 C f 
q/P 

N 0.5. Also, from Section V, c f 
B/P 

- 0.72. 



33 

At 90’ the cross section prediction for prompt protons is then 

E&C 
d3p 

(pp + px) = 342 x; K(3,6) 

+ 394 K(7,6) + 4.2 n(B*) K(11,6) , (6.8) 

where, in common with the fusion process for mesons, we estimate n(B*) * 3-4. 

The last term is never large, and for xT = 1-c 2 0.4, the indirect term K(7,6) 

dominates. The direct (leading particle) term dominates the indirect qB--, qp 

term when “T > 0.5. Present data is reasonably fit by 500 K(7,6) implying a 

prompt to total ratio for protons of roughly 30 percent, the same as for pions. 

The q(qq) +M*p contribution is also easily estimated by slightly altering 

the earlier r+ production result. One finds 

-0.7 n(M*) K(5,6) . 

It is clear that this term is much smaller than the qB --t qp contributions for 

reasonable E . 

The prompt antiproton yield from the fusion q; + cB* term is 

E do (pp -.px)= 11 K(11,6) , 
d3p 

(6.9) 

with the total yield about 3 times larger. For xT < l/2, however, it is certainly 

necessary to include terms for G production with higher E powers. In particular, 

one obtains a large pT -12 e15 term from i;q + Gq scattering. The situation is as 

for K- production: the fusion term (6.9) only dominates for small E , i. e. , at the 

edge of phase space. 

” 
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Comparison of y and 7r” Yields 

From our previously developed general equations, one finds at 90’ 

EdU -& @P-,1/x)=+ol, (A- -LA J2 
qfWpfq/‘~ q 2 4’ 

N(M/P) N(q/p) 2 “y+g W93) , (6.10) 

where we identify 1; = -Aq and h , = AM 
4 

- A; by using the Mq-, yqr subprocess for 

prompt photons shown in Fig. 10a. Thus the photon cross section is predicted to 

scale as pT -6(1-xT)g at ecrn = 90’. Forno production, on the other hand, we have 

E z (PP-’ r”X) = + Q! ; 3; qfM,pfq,pN(M/P)N(q/P) 
2 

.26 w Ks(9,4;5,0) , (6i 11) 

where the explicit l/2 accounts for 7r” =m (ui!i - da) composition. The y/?r” 

ratio at 90’ is (after multiplying the above r” yield by the total/prompt -3 ratio) 
24b 

d”@p4y) +EM (p;+M2) -0.004@;+M2) . 
du(pp+ TO) 

(6.12) 

This is less than l/2 the preliminary ratio reported by Darriulat et al., IL2 at 

pT -3 GeV/c. However, there are other CIM sources of photons, giving a pT -8 

scaling behavior, from bremsstrahlung processes as well as from r” and r] decay. 

These should give a roughly constant contribution to the y/?r ratio. 

The Mq + y*q subprocess with the same normalizations has been used in 

Ref. (24) to successfully describe the pT fall-off of massive lepton pairs from 

proton and pion beams. 



35 

VII. INCLUSIVE CROSS SECTIONS FOR PION BEAMS 

In this section, the inclusive production of mesons, baryons and antibaryons 

at large transverse mome.ntum by pion beams will be discussed. The compari- 

son of yields from pion and proton beams is a very important constraint on any 

model and on the values of the parameters used to describe the data. 

The meson yield from a pion beam arises in the CIM from the 5 dominant 

diagrams illustrated in Fig. 11, corresponding to the direct basic process, 

M*q - Mq (where the M* can arise from the beam or target), M* q -+ Mq, 

ss- Ml?I* and qq -. lk*M. Not all of these contribute to the yield of all mesons. 

For example, there is no direct diagram for the K- yield from a pion beam. The 

respective contribution of these terms to the inclusive cross section easily fol- 

lows from our general formula: 

E do (np 
d3p 

+ MX)=02 M 3 c fq,pN(dp) X1 4K(3 9 4) 
q 

“M 3 ,xM* fq/pf~,,N(s/p)N(M*/s) 
3 

+CY 2 r;;;;‘5) K(7,4;3,0) 
, 

3 
+01 “M 3 q FM* (fq/a+ fq/T)f M*/pN(q/r)N(M*/P) 2 rFt;O K(7,4; -2,5) 

t , 

+;cQ c f q,9,~ q,pfq,nNdW@i/~) w [K(5,4;W +K(5,4;-3,3)] . 

The sums are restricted according to the quantum number of the produced meson 

(e.g., only q =d contributes for the direct contribution to r+p -+ n”X). 

ti we take cfMein wCfB*,p -0.8 then this formula gives for r” production 

(including the factor of l/2 for the =0--C da, UC coupling) at 90’. 
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E -+ (a+~+ r”x) = 1.4 xT K(3,4) 
dp 

+ K(7,4) [4. 7]+ K(5,4) [. 041 n(z*) 

72 =K(7,4) [4.7+ O.O4n(?Q*)e I- 1.4xTE-4] . (7.2) 

The corrections from J( xT) are evaluated in Appendix A, Table V. The most 

important contribution for xT < 0.4 is the K(7,4) term which arises from meson- 

quark scattering. For n@*) = 4 the fusion term dominates the M-q term for 

XT >” 0.8. The direct 7r+q - n”q term dominates the indirect qM+ qM contri- 

bution when XT ,” 0.5. The prese.nt experimental results are compatible with 

the fit 3.5 K(7,4) for xT TO. 5, confirming that the direct term does not domi- 

nate in that region. We predict that a transition should appear in the data: Near 

9o” , as xT increases above 30.5, the da -E 7 pi8 behavior will change to a 

da - l 3pT8 behavior. The occurrence of such a transition is an important test 

of the normalization a.nd dynamics of the CIM approach. 

For small xT, the direct and annihilation terms can be neglected in Eq. (7.2) 

to yield a simplified result. In the same region of xT, the prediction for pp - no 

is also simple and one finds that the ratio is expressible as (taking N(M/p) - N(M/n)) 

The momentum fraction fM,p has cancelled as well as a2 and the prompt/total 

ratio. The experimental value2 
%- ryw iq2 

for the above ratio is, -0.6c 
d” 

,whereas Eq. (7.3) 

predicts -1.0 em2. Corrections to this ratio and to the difference in effective 

F powers are given in Appendix A. Chase and Stirling (Ref. 6) have also predicted 
a ratio similar to (7.3). We don’t consider the present discrepancy to be serious. 
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Let US now turn to predictions for two reactions which have not yet been 

measured, namely I-P + pX and VIP -+ @X. The first reaction has several important 

terms, which are illustrated in Fig. 12. These 5 contributions (a-e) scale as 
-12 

PT at fixed E and 8 cm and take the form respectively 

+O! ; 3 cf-, Ntih) [~Q-x,)~ + x,s(l-~,)~] 2 K(1,6) 
9 qn 

+(I! “B 3 ,cB, fq/nfBP,pN(q&N(B’/P) Q$$+(5,6;0,0) 
, 

+a! 4,B, fq,,fB,,pNtq/rr)N(B’/p)2-4~K(5,6;-2,-2) c 

Nti~~)Nq/p) 2-2 -(5,6;0, -2) 
\ 

(7.4) 

Using the nominal values of the constants this cross section becomes at 90’ 
note that u quark contributions are cohe 

5 
ent): 

(again 

E *(s+p-r p) = 55 xt (I-$xT) 
dp 

(l+.(l-$~~)~)~(l,~) 

-J- 110 K(5,6) , (7.5) 

where n(B*) + 4 is the estimated number of baryon resonances of a given quark 

composition. These two terms become comparable for xT N 0.3 with the second 

term dominating for smaller xT. For this latter region of small xT, if only the 

dominant terms are retained, the r/p yield at 8cm = n/2 takes the simple form 
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This ratio can be used to check a new combination of the couplings used in the 

model. Using our nominal values, this becomes 

= 0.75 E2 ($+d)” V-7) 

where we expect l? y 1 Ge?. 

The antiproton yield with leading E power arises from the last term only, 

the fusion graph. The general formula is 

E da (n+p+ = a2 n(B*) 3 
d3p 

B Ntih) W/p) Y2 

. w K(5,6;-4,2) (7.8) 

and at 90°, the nominal value is 

= l-2 n(B*) K(5,6) . 

Using n(B*) = n(B*) z 4 as a nominal value, the ratio of 6 yield to p yield for 

small xT at 90’ is 

U-9) 

As for K- and @ production in proton beams, important background contributions 

with higher E powers are expected, and these can be estimated in the same 

manner as before. 
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VIII. INCLUSIVE-EXCLUSIVE CONNECTION 

In the limit E--, 0, a direct inclusive process such as that for Fig. 3 is 

expected to smoothly connect to its corresponding exclusive process, in this 

case Fig. 3a. Following Bjorken and Kogut 25 this can be made quantitative by 

integrating the inclusive cross section over a finite range in missing mass: 

Usiag our general formula, Eq. (3.16), for direct processes, we obtain for a 

proton target 

E. 5s N+4 dcrinc- 
in dt ?‘rg 33’ f N(q/p) 26+T+N/ 

q q/P AeM2 
d&2(.2-$p)3 . 

Using the definition of Ed, Eq. (3.12), the ratio between inclusive and exclusive 

scattering becomes 

E. 
Inc= li L f <x>N-T 

Ed! q q/P Ndp) 8 

MV 
d&2(&2-M2?‘J3 . (8.2) 

Now let us apply this to 7r+p and pp scattering. For both of these processes, 

N-T=4. In addition, since MV measures the rate of falloff of the nucleon form - 

factor and hence provides a measure of the coherence of the proton wave function, 

we choose A&= MV, and achieve the form 

E. 
mc = 3 ; fq,pWh) M8 
Ee!2 

d [(Mp+ Mv)2 - dp14 

V 

(8.3) 

which indeed is of order one for our nominal values for the momentum fraction 

f 
q/p’ 

the shape function N(q/p), and UC> = l/3 (see Table II). Note that this com- 

parison does not account for the coherence of various amplitudes at the exclusive 

limit. 



40 

IX. THE CROSS-OVER BETWEEN CIM 

AND QUARK-QUARK SCATTERING SUBPROCESSES 

As we have emphasized, subprocesses based on quark-hadron interactions 

must occur in any quark-parton model. In the preceding section we have shown 

that the magnitude of the qq-M and qqq-B couplings (determined from form 

factors and exclusive processes) lead to inclusive high pT cross sections con- 

sistent with the experimentally observed normalization and scaling behavior for 

pT < 8 GeV/c. In this section we will comcare the scale-invariant contribution 

from quark-quark scattering expected in lowest order QCD with the CIM contri- 

butions, and we estimate the crossing point in pT where a <4 scaling behavior 

can be expected to dominate. In our calculations large scale-breaking effects 

in the structure functions will be assumed to be absent. 26 We also need only 

consider the scattering of valence quarks, since only a small fraction of the 

momentum of the protoa is carried by sea quarks. In addition one expects 

scale-invariant p;P contributions in QCD from gluon-quark and gluon-gluon 

interactions; these however require knowledge of gluon distributions which are 

highly model decendent. Estimates of QCD contributions are made in Ref. 8, 

but for completeness, we will ‘repeat some of their discussion within our calcu- 

lational framework. 

The differential cross section for quark-quark scattering from the lowest 

order QCD diagrams shown in Fig. 13 is8 

2 7ra s 4 s2+u2 g?qJlp- s,sp) = - - 
H s2 g 

- t2 + %!p u2 q -&$pl (9.1) 

This cross section is spin and color averaged and includes interference terms 

between t-channel and u-channel graphs that are present when a! =p. The color 
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coupliag o! s = gi/4nis d e f ined by the interaction Lagrangian 

# gI = :gsF y LA YA; ~2 a , Trhz=2 . (9.2) 

We will calculate jet and single particle cross sections, but leave the discussion 

of the former to the following section. For proton targets q =u, d dominate and 

we can safely neglect antiquarks and the qq scattering contributions. 

In the case of the jet trigger cross section from qaqp-. qoqp, we must 

distinguish carefully the cases a! =,B and a! #P. In the latter case the jet trigger 

receives a contribution from either of the final state quarks and the cross sec- 

tion should be~doubled. For the case a! =p, the cross section already accounts 

for both trigger possibilities. The 90’ jet trigger cross section can be computed 

in a convenient analytic form from Eq. (3.18). The factor which changes from 

term to term in this formula is 2 F+ + F- = 24+T+U . 

The various terms in the bracket of Eq. (9.1) then give 

$2" II (a2+l)+ t&-$22,1) -$&22]=$24[5+;S*/J , (9.3) 

which, when weighted by the f q,D factors, gives 

i 

(0.3)2 [22/3] uu 

$24 x 2(0.3)(0.2) [5] ud + du 

(0.2)2 [22/3] dd 

. (9.4) 

For triggering on a jet arising from either a u or a d quark we take 

uu + 2(ud + du) + dd , 

while for a u trigger only we use 

uu + (ud + du) . 
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Thus 

E 8 (PP+ [; ;;;I K) = K(7,2) 02,N2(q/p) ;z”w . [21:;;] 

=K(7,2) o!“, f.2; , [ 1 P-5) . 
This analytic form is a useful characterization of the QCD qq jet cross section. 

In order to comcute the cross section for the production of a specific hadron 

h one must incorporate the final state fragmentation function D h/q: 

(9.6) 

using 

D=d(l-z)f and E d; 
Z 

- = I K(F,N) 
d3p 

, 

we obtain at 90’ (defining z = w + (1-w) xT) 

where 

E + (cp- h) = c d I K(F+f+l, N) 3(x,) , 
dp q 

(9.7) 

(9.8) 

j(x,) = ( dw (l-~)~ wF [w+(l-w) xT]2N-F-3 . 

We approximate the integral using the mean value theorem (<w> = F/(f+F)) and 

find A 
Jr ’ f+F 3+F-2N 

F+f xT . P-9) 

The last factor is relatively slowly varying. For typical values f=l, F=7, N=2, 

it varies from 2.3 at XT=0 to 1 at xT=l. For very small xT (< 0.1) the above 

approximation is not adequate and must be supplemented. 
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As an example, for quarks decaying to mesons, f=l, Eq. (9.9) gives the 

suppression factor 

r (l+f) r (i+q 
r (B+f+F) = (l+F)X+F) N 3 ’ 

For the lr+ cross section, a reasonable fit to the quark fragmentation 

functions gives Dr+lu (or ;i)(z) = 1.0 (1-z)/z. Equation (9.8) then gives at 90’ 

E da -(PP-- q- 
d3p 

T+) = K(9,2) o?(O. 035) . (9.10) 

where we evaluated J(xT) at xT=O. 3. The ratio of this contribution to the data 

(or the CIM prediction) is 0.0044 a”, pt or 4 x 10m4 pt for 01 ,=O. 3 0 Thus the 

CIM pi8 terms can dominate the cross section for pT < 7 GeV/c. The cross- 

over moves to pT s 10 GeV/c for cus=O. 15. The above result is not sensitive 

to the form of Dhlq for reasonable fits to the fragmentation data obtained from 

e+e- anaihilatioa and deep inelastic scattering. The total yield can be succinctly 

written in the form 

E$p =A[($3+(&)2($]eg , (9.11) 

which may Prove convenient in fitting the large pT data. Equation (9.11) implies 

for o! s=. 15 a change in the pT power (at fixed E) from neff=7. 5 at PT=6 to 

neff=4. 8 at pT=14 GeV. 
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X. JET- JET CROSS SECTIONS 

We turn now to the calculation of the cross section for jet production at 

large transverse momentum obtained from the CIM hard scattering subprocesses. 

In the CIM the jets consist of single hadrons, multiparticle resonances, as well 

as quark and antiquark jets which arise from subnrocesses such as Mq.- Mq, 

W-c Bq, and MM-. qq. We shall also make comparisons with the jet trigger 

cross sections calculated from quark-quark scattering in Section IX. It should 

be emphasized that the relationshic of the predicted jet cross sections may not 

be simply related to what is measured experimentally in calorimeter trigger 

experiments, due to the effects of resolution, background particles, and missed 

hadrons. Furthermore there may well be contributions from multiple-scattering 

processes or multiple high pT reactions in the same event which can complicate 

the jet trigger. 

Let us now estimate the jet-jet cross section in pp collisions. In the CIM, 

the cross section for producing a single prompt meson or proton is expected to 

be l/4 to l/2 the observed inclusive cross section. The remainder is made up 

by production of resonances which decay into the observed meson. In a jet _ 

trigger all the decay products of a given resonance are seen which effectively 

means that we must multiply our prompt cross sections by the number of possible 

resonances. In addition, a jet trigger also can catch the decay products of the 

quark which normally balances the trigger meson in the CIM diagrams. We 

proceed to quantitatively estimate these effects (discussing only those diagrams 

which are important). 

The important subprocesses are: 

a) Mq-, M*q: either M* or q may be the jet. We estimate the number 

of lPps which can participate as N(M*) > 9 +3 x 9 = 36 corresponding to the 
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spin 0 and spin 1 meson nonets with statistical weighting. In support of this we 

cite the p cross section which experimentally is approximately equal to the 

total 7r cross section. 15 Since more p’s are presumably prompt as compared 

to the pions (not decay products of still higher resonances), we are led to (see also 
Ref. 14) 

4promptL 
$7r(total) 1 

z 
@-owt) P(tota1) “3 ’ 

In the following we take N(M*) =40 as a reasonable estimate; note that the previ- 

ously employed n(M*) is that portion of N(M*) resonances which can be. produced 

by quarks of a given type; i. e. , n(M*) = l/9 N(M*) = 3-4. 

Including both the quark jet and meson resoaance trigger, we have for 

qM--- qM*, 

E d* d3p (up- jet (meson induced)) * 80 E % (PP- 7W=-mt)) 
dP 

w27E- da (PP 
d3e 

- 7r(total)) (10.1) 

The above prompt ratio of l/3, as discussed in Section II, also leads to reason- 

able xE distributions: dN/dxE must extend beyond xE=l, and the many non- 

prompt 71’s guarantee this. 

4 Bq--+ B*q: either the baryon system B* or the quark may be the jet. 

The entire octet and decouplet, N(B*) = 8 + (2) 10 = 28 can contribute. Allowing 

another 25 mrcent from still higher baryon states, gives the estimate N(B*) -35, 

E do - (pp- jet (baryon induced)) = 70 E 
d3p 

da (PP- p(prompt)) 
d3P 

-23 E do (?P- p(toW) , 
d3p 

(10.2) 

where we again employ an estimated prompt/total ratio of l/3. 



46 

Combining a) and b) we have 

E doCIM - (pp- jet) = 27 (8 E’ p;,“) + 23 (500 c7 P;.‘“) 
d3p 

* (10.3) 

The numbers in parentheses are the pp, 7r and pp- p large pT single particle 

cross sections. The contribution of the direct processes for baryon production 

and the Mk --c q; subprocesses are relatively small. 

Comparing these results with the pT -4 c7 jet cross section, Eq. (9.5), 

arising from q-q scattering, we see that the CIM terms are dominant until 

pT = 4.6 (6.5) GeV/c for ors=0.3 (0.15). 

Including both the CIM and qq -c qq contributions, the total jet/measured 

single pion cross section is predicted to be 

R=27+ 1400 

E2 P; 
+ 

0.3 o!“sp”T 

E2 
, (10.4) 

where we have taken E dcr/d3p (pp- TX) = 8eg/pt for the ?r’, 7rr- average. For 

dk= 23.7 GeV (plab= 300 GeV/c) and (1! s=O. 3, this gives R=62, 55, and 172 at 

pT3, 4, and 6 GeV/c respectively. Thus we expect a jet/single ratio greater 

than 50 and increasing rapidly at higher pT values. The ultimate ratio at large 

pT-once the qq -. qq scattering contribution dominates the single particle cross 

-2 section-is R-12~ . The last term can be further enhanced by-glue-quark and 

glue-glue interactions which have been estimated in Ref.~ 8. 27 
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XI. DISCUSSION 

The analytic results, Eqs. (9.7) and (3.18), for general reactions 

A+B+ C+X are extremely useful, not only for high oT reactions, but also for 

calculations in other contexts, e. g. , the two photon processes e-e- - e-e- 
- - 

e e - e-e-n/- e-e-CX, and single lepton production in hadron collisions. The 

results are a realization of the dimensional and spectator counting rules at 

large pT and large ecm: 

E R = 
‘-“active 

c(&+g) FWcm) 
subprocesses 

2-n 

- +? p;+M? ( ) 

active 
EF gVcm) 9 

E--c 0 
(11.1) 

where E = 1-xR= &Y 2 
/S. Here n active is the number of active fields in the high pT 

subprocess (e. g., nactive=4 for qq- qq, 6 for qM--c qM, 8 for qB - qB)and 

F = 2n spect - 1 where n 
spect 

= n(&) + n(6B) + n( Cc) is the minimum number of 

elementary constituents required in the fragmentations A- a, B-c b, c--c C 

le. g., nspec =5 and F=9 for qq-, qq or qM& qM in pp- MX). 

The spectator counting nrediction for GajA(x) at x-1 is GaiA(X)” (l-x) 2n(%A)-1 

where n(&) is the number of fast elementary constituents of the bound state A 

which are left behind after fragmentation. Examples are VW 
2P 

- G q/B + wo3 9 

GM/B - (1-x)5, Gq/M - (l-x)? These predictions are again based on the short 

distance behavior of lowest order terms in renormalizable perturbation theories 

assuming a finite Bethe-Salpeter wave function at the origin. (In cases where a 

is a fermion and A is a boson (or vice-versa) the power can be increased by 1 

from snin effects, although this effect is generally cancelled by nonleading cor- 

rections. In the case of elementary bremsstrahlung in oerturbation theory one 

has Gyro - 01/r log(s/m2). (1 + (l-x)~)/x, etc., where the logarithm arises 

from the ;T integration. ) 
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In general, one predicts that aside from normalization effects the sub- 

processes with the minimum nactive (minimum piI power) will dominate the 

cross section at large pT, and small E . Thus, given the fact that the qq -. qq 

term has a small predicted normalization as shown in Section VI, the dominant 
f 

terms (for pT 2 7 GeV) for pp- r , K+X will come from the qM- qM sub- 

process (Fig. 7a): 

E +(pp- VT*“, 
dp 

K+X) + I eg (P;+M?)-~ f(6) 

Here M2 represents terms of order <f;,2>, m2 
q’ 

etc. All other quark-hadron 

subprocesses lead to a higher power of l/pT or E. In the case of K- production, 

the dominant contribution at high pI, and very small E will come from the “fusion” 

subprocess qq- K-M (Fig. 7b) 

E $f- = I cl1 (pi+i%I?)-4 f(6) , 
dP 

whereas at moderate E, the qMd qM E l3 terms discussed in the text, Eq. (6.4), 

will dominate. A comparison of the CIM predictions with the experimentalists’ 

fits to the Chicago-Princeton data’ for pp- n*, K*, pX is shown in Table IV. 

The agreement is very good. For example, as shown in Fig. 14, the best fit 

quoted for the ecm= 90’ data for pp- T+X is pT -8- 2 (l-xT)g* 0 (with uncertainties 

in n and F order *O. 5). The relative decrease of the r-/r+ ratio from -unity 

as x T increases evide,ntly reflects the relative suppression of the d/u quark ratio 

in the proton structure function at large x as remarked in Section VI. 

An important check on the identification of the underlying subprocesses is 

the angular dependence of its cross section. The leading CIM contribution to 

pp + 7r+X arises from ur+ --c UT+: 

2 
7m! 

2 (u,“- UT+) =--.A (g$ * 
ii4 

(11.3) 
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Table IV. Scaling predictions for E da/d3p = C Gn (l-~~)~. 

Large pT Process Leading CIM Submocess Predicted Observed (C P)l 

+ 
PP--X 

7T- 

K+ 

qM - q7r+ 

qM - qn- 

qM -c qK+ 

n//F n//F 

8//g 8.2//9-O 

8//g 8.5//9.9 

8//g 8.4//8.8 

K- qq-MK- 

qM --L qK- 

g//11 8. g//11.7 

8//13 

PP -* @ qB - qp 12//T 11.7//6.8 

PP - I;x qi -c Bp 12//U (8.8//14.2) 

qB - qP 12//15 

np - 7rx 
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The angular dependence of the subprocess can be determined from experiment 

either from the correlated angular dependence of the away side jet 
28 or the 

angular dependence of the pp- TX inclusive cross sections. 
9 Both analyses 

indicate that the data are best fit with the form, 

(equivalent because of the pp symmetry). This coincides with the CIM prediction 

(Eq. (11.3)) for the angular dependence reflecting elementary spin l/2 exchange. 

It should be emphasized, though, that phenomenological analyses which use the 

opposite side jet distribution can be complicated by spectator effects unless the 

particles in the jet are required to have a sufficiently large pT. 

Since the value of the basic quark-hadron couplings olM and aB are deter- 

mined by exclusive processes, predictions of the CIM for inclusive reactions 

are almost completely constrained: the model predicts the pT power, (1-xR) 

power, and angular shape, as well as the normalization for each contributing 

subprocess. As an example, for K+ (P+) production in proton-proton collision 

the dominant CIM subprocesses is UK+-. uK+ which contributes (in GeV units) 

using (Eq. (6.1)) 

E 3 (pp’K+X) N 3 4 [(I+x~z)-~ f (1 da 

dP 
-%Z)-5] . 

pT 

(11.4) 

This estimate has theoretical uncertainties of a factor of 2. This can be com- 

pared to the fit to the CP data1 at 90°, Eda/d3p(pp-K’X) N 5(ImxT)8* 4*0a5/ 

8.850.5 
pT ’ Thus the normalization of the qM-qM amplitude as determined from 

exclusive reactions and form factors is of the correct size to account for the 

FNAL data, The prediction for 7r’ is similar but somewhat higher due to the 

larger number of decay channels and to possible SU(3) breaking effects. 
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The leading CIM contribution to K- production at very large xT is expected 

to be due to the “fusion” subprocesses qq- MM. For K- production this includes 

ii- K+K-, d< * K’K- as well as K* contributions. Specifically, at 90°, the 

yield for pp- K-X is 

El1 0.02 -g- (11.5) 

PT 

for the contribution of the single subprocess UC- K+K- alone. The calculation 

includes a factor of l/3 from the fact that quarks of the same color must annihi- 

late and l/2 from the spin crossing factor. This is useful for an estimate of 

how often a K- trigger will be balanced on the away side by exactly one particle, 

the K+, in the CIM. Taking all the prompt fusion contributions, the coefficient 

in Eq. (11.5) is increased to -0.16. Additionally, one can expect a contribution 

of order 0.8 (1-xT)13/pt at 90’ from K-u- K-u s-channel subprocesses, etc. 

Thus the fusion subprocesses will not dominate K- production until xT 5 0.6. 

The value of aB N 10 GeV4 allowed us to predict the normalization of cross 

sections for baryon and antibaryon production. The leading CIM processes are 

qB - qvB* and qq- BB’. The predictions are consistent with the FNAL and ISR 

data as discussed in the text. 

It is interesting to see how charge correlations between the trigger charge 

and the charge of fast particles on the away side arise. In the ISR domain, where 
f 

xT is small (-0.3), the dominant CIM subprocesses for K production are 

qM - q’K and qM --) q’K* 4 q’K . The various recoil quark systems q’ involved 

in the direct product of kaons are shown ia Fig. 15. (Notice that the strange 

meson M in Fig. 15a is found in a proton Fock state components with > 5 quarks, - 

and the recoil quark has a roughly equal chance (assuming SU(3) symmetry) to 

be an s or d or either of the two u-quarks.) As shown in the figure, the quark 
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system opposite the trigger is always positively charged for a K-, and roughly 

neutral (or slightly positive) for the K+. (The s-pole contribution of Fig. 15b 

is suppressed by a factor of 24 at 900.) The same results are maintained when 

decays of K* - Kn are included. In the case of the fusion contributions for K-, 

the recoil system tends to have charge 0 or +l, so again the K- tends to be 

balanced by positive charge. The charge correlations for p and 6 are predicted 

to be similar to those for K+ and K- triggers, respectively. 

Since the CIM processes always involve flavored quark exchange, charge 

correlations between the trigger and away side systems occur naturally. In 

contrast, such correlations are generally expected to be negligible for qq scattering 

via colored gluon exchange. It would also be interesting to determine the charge 

and strangeness configurations of the spectator systems in the beam directions 

accompanying a particular high pT trigger. As emphasized elsewhere, 2g the 

charge flow associated with massive lepton pair production provides an ideal 

laboratory for the study of quantum number transfer in high energy reactions. 

We have also seen in Section IX that contributions to single particle produc- 

tion from the pi4 subprocess qq - qq are small (for OS < 0.15) until pT > 10 GeV/c, 

see Eq. (9. ll), due to the suppression from the effects of single particle trigger 

bias. Other pi4 subprocesses, such as gq -. gq, qi - gg and gg- gg, are 

similarly suppressed. 

However, there are additional processes present within the QCD framework 

which are not suppressed by trigger bias. At first glance the most important 

example is gluon + quark - meson + quark. This process yields p;,” behavior 

in the inclusive cross section. Using rough estimates it seems to dominate all 

the above mechanisms at all but the highest pT values. However the gauge invari- 

ant structure of QCD leads to a remarkable cancellation among the various 
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diagrams contributing to this process. As a result it may not play an important 

role in single particle inclusive scattering, but deserves further study. 

While the above p i4 processes are probably not dominant for single particle 

yields until pT is very large, measurements involving a jet trigger with large 

total transverse momentum K$ are important since the natural suppression of 

quark-quark scattering (and other processes involving gluon jets: Mq-. gq, 

gq -gq, qq -gg, gg- gg, etc. ) due to bias from the single particle trigger is 

removed. 

In order to interpret such jet measurements it is crucial to be able to 

distinguish the various possible contributions. This requires knowledge of the 

scaling behavior in pc and xc of the cross section and the nature of the source 

of the hadronic jets. At large pT, a jet can arise from a quark, multiquark, 

gluon or hadronic system. Empirical means of discriminating between them 

will include (1) quantum number retention, (2) the power law behavior in the 

momentum fraction x of the leading particle, and (3) the associated multiplicities. 

An important theoretical and experimental question is how to define a large 

pT jet trigger which does not confuse contributions from spectator particles. In 

out addition, the large values reported for <pT > may indicate contributions from 

processes involving more than 2 - 2 collisions. It may be possible to resolve 

some of these questions by studying a lrquarkn jet trigger at high pg in deep 

inelastic lepton scattering where we %nowl’ the subprocess is eq + jq. 

The cross sections for p+pd jet f X with a calorimeter trigger, as defined 

in Ref. 30, is observed to be quite large. At plab = 200 GeV/c, the ratio 

R = EJ da/d3pj(pp -+ jet + X)/E dD/d3p@p + Ir”X) appears to be in the range 

200-400 for pT -5 GeV. This appears to be too large to be completely accounted 
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for by the CIM subprocesses, Mq- Mq, Ml& - qq, q + qq- M +B, qB --) qB, 

ss- M@. Using Eq. (10.4), for a total jet trigger one obtains a ratio R of 

order 50 for the above kinematics. The leading processes in the CIM scale as 

EJ dc/‘d3pJ N p;8(1-xTJ)g l 

The contribution to the jet trigger from the scale-invariant qq- qq process 

from Eq. (10.4) is (in GeV units) 

EJ do/d 3 2 PJ = 2.5 Q! s (I-xTJ) 7 -4 
PT J * 

Asymptotic freedom-type modifications to the structure functions, or quark 

constant can give logarithmic modifications to this result. However, it should 

be emphasized that the exponential factors which have been computed for gauge 

theories to exclusive quark-quark scattering, are not applicable to inclusive 

reactions, since the quarks are allowed to radiate. We emphasize that any 

proposed scale-violation from kT fluctuations, structure1 functions, or quark 

form factor effects must not in total exceed the scale violations seen in 

pi Edo/d3p @p --, pX) at fixed xT and 8,. Double counting should be avoided. 

The qq- qq contribution to the jet trigger from Eq. (10.4), for as =0.3 

at plab = 200 GeV/c, pT = 5 GeV is R 2 0.3 o!3 p$/(l-~,)~ s 70. Other QCD - 

processes involving gluons are roughly double this contribution. Thus it is 

possible that the CIM processes, combined with scale- invariant QCD contribu- 

tions, can give jet cross sections just below the observed values. In order for 

this picture to be a viable and consistent explanation, however, the jet cross 

J section at pT > 5 GeV should begin to approach p$ behavior at fixed xT J and 

8 cm’ 
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XII. CONCLUSIONS 

The experimental data for single particle and jet cross sections,’ charge, 

momentum, and angular correlations are now so extensive that the constraints 

on fundamental models have become overwhelmingly restrictive. 

If sufficient scale-breaking is assumed-either in the structure functions 

and/or the scattering amplitude-then it is always possible to interpret the 

single particle cross sections in terms of an effective quark-quark scattering 

cross section. However, as we have emphasized here, it is difficult to under- 

stand the input normalizations and the strong charge correlations and momentum 

correlations measured by the BSF collaboration, 10 as well as the pT behavior 

for baryon production. Further, there is no obvious explanation or co,nnection 

with exclusive large pT data. 

On the other hand, the CIM, together with dimensional and spectator counting 

rules predicts the dynamical forms and normalizations of inclusive and exclusive 

cross sections in terms of two fundamental coupling constants which can for 

instance be determined (in fact, overdetermined) from low eaergy fixed angle 

exclusive scattering, form factor asymptotics or momentum distributions. The 

scaling laws of the CIM assume a underlying scale-free theory (modulo logarithmic 

corrections) characteristic of renormalizable perturbation theories. Given that 

the coupling 01~ of QCD is numerically small plus the strong trigger bias sup- 

pression of quark jet fragmentation, the leading subprocesses for single particle 

yields then arise most naturally from quark-ha&on scattering amplitudes. We 

emphasize that the qM - qM, qB - qB contributions and their crossing variants 

are an essential component in any model including &CD. The calculated sub- 

process cross section for T*, or K’ production in pp collisions is do/dt (qM+ qM) 

= 7ro! 2,/sd, where 01 M is determined by the valence meson wave function renor- 

malization. This form then yields the observed pT, ecrn , xT dependence as 
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well as the magnitude of the inclusive cross sections. However, as we have 

discussed in Section X, it does not seem possible for the quark-hadron and 

quark-quark processes to account for the reported large jet cross section. 

As we have emphasized, processes based on quark-hadron scattering can 
-12 dominate large-% single particle inclusive reactions, despite their pT8, pT 

scaling behavior, due to the absence of trigger bias and the relatively large size 

of o! M and (I B’ The CIM terms are predicted to dominate the qq- qq scale- 

invariant contributions for pT below N 7 GeV, assuming as = 0.3. The cross- 

over point in p2 . T is controlled by the ratios 01 M/o!s and (01 B/~s) l/2 . For 

inclusive meson yields one needs an estimate of the normalization of the G M/B(x) 
structure functions for virtual qq meson-like states. These were fixed approxi- 

mately by normalizing to the measured antiquark momentum fractions. The 

Pry E, and angular dependence of inclusive mesoa and baryon production reac- 

tions can then be understood in terms of a minimal set of two subprocesses, 

qM- qM, qB- qB, and their crossing variants. The normalization of each 

subprocess co.ntribution has been approximately computed. Detailed predictions 

for other beams (including photons and leptons) can be made using the simple _ 

general formula Eq. (3.18). There are also many important tests of the model 

involving correlations between particles on the same side, away side, and beam 

fragmentation regions. Occasional events are predicted to occur with a single 

particle in both the trigger and away side systems, via the qq- Mfi and qq- BB 

subprocesses. These may occur at a larger rate in MB and BB collisions. 

It is useful to distinguish three regions in transverse momentum for hadronic 

inclusive reactions at high energies: 

(A) The asymptotically scale-free, large nT region (above pT - 7 GeV for 

single particles, and b - 5 GeV for jets), where the simple perturbation theory 
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contributions for QCD are expected to dominate if os g 0.3. In this region, in 

which strong interactions take their most elementary form, one will be able to 

study the properties of quark and gluon jets, as well as multiquark jets in the 

spectator regions. 

(B) The moderate pT zone, where the CIM diagrams are predicted to 

-12 dominate giving scaling law contributions of the form <“, pT . . . at fixed 

xT, depending on the detected particle. In this region (roughly 2 < pT < 7 GeV 

for single particle reactions), one can trace the quantum number flow char- 

acteristic of duality diagrams. Thus, the dynamical structure of hadron wave 

functions can be studied in detail in this region. In the case of exclusive reac- 

tions, Regge behavior takes its most basic form, with trajectories a(t) receding 

to negative integers, or in the case of Compton scattering to a J=O fixed pole. 

(C) The most complicated region is at low pT where the cross sections 

Feynman-scale and many different coherent, diffractive, Regge, and resonance/ 

cluster phenomena operate. In the central rapidity regions correlations with 

the quantum numbers of the incident particles become negligible, but the multi- 

plicity in the central region may well be related to the same color confinement 

dynamics in the e+e- -. hadrons. Furthermore, the fragmentation regions with 

XL = p;m/P;aX - *l can also be related to off-shell hadron dynamics, and 

spectator quark counting rules can be used to discriminate the basic hadronic 

mechanics at low transverse momentum. 

The transition regions between (A) and (B) or (B) and (C) are clearly com- 

plicated since several different mechanisms compete, but phenomena in such 

regions could be important for the study of interference effects, etc. Photon/ 

hadron comparisons are especially important; in regions (A) we predict 

Y/T - const. at fixed x T; in region (B) y/r - Q! pc. 
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We note that in the CIM several different areas of hadron phenomenology 

become interco,nnected: (a) form factors, (b) large t and u exclusive reactions 

(c) Regge behavior at large t, (d) particle yields for xL near *l at low t, and 

(e) large pT inclusive reactions. The model satisfies the correspondence ‘:. 

principle, in the sense of Bjorken and Kogut, 25 and provides a smooth connec- 

tion between these various regions and phenomena. 

We have tried to show in this paper that the normalization of the various 

CIM contributions to inclusive scattering are fixed by external constraints and 

are not arbitrary. They are of a reasonable size to explain the moderate trans- 

verse momentum single particle yields (pT< 7 GeV/c) and qualitative features 

of the charge correlations. The CIM is consistent with &CD, for example, 

whereas arbitrarily omitting the CIM diagrams would not be internally consiste.nt. 

The CIM calculational rules, however, do not explicitly include any logarithmic 

variations which are expected in such asymptotically free theories (mostly for 

reasons of simplicity). 

We thus see that a theory of short distance hadronic processes patterned 

after asymptotically free QCD is tenable. CIM processes based on quark-hadron _ 

scattering are required for theoretical completeness and describe the experi- 

mental data at intermediate pr. Quark-quark scattering and related processes 

involving gluons will dominate at high values of pT; the precise-crossover point 

depends on the value of Q! S’ 
Thus a rather complete model of short distance 

processes exists which is consistent with a fundamental quark-quark interaction, 

in particular &CD, and which enjoys considerable phenome.nological success. 
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APPENDIX A 

Accuracy of General Formula (3.18) 

The hard scattering formula for processes not involving final state fragmen- 

tation (applicable to CIM prompt processes and also quark or gluon jet cross sec- 

tions) can be written in the form’ 

E* (A+B-C+D)= 
d3p 

2v (1 - 2x2) 

% 
“F 1 z2 a/A l+z 

-(l- 2x1) 

(s)FblR(z) $(G= $$ab,+cd 

(A.1) 

where F(x) =xG(x), and the integration variable z is the cosine of the scattering 

angle in the subprocess center of mass. The overall kinematics are specified by 

x1=-u/s, x2=-t/s, andp:, WithE’ -xB= 1 -x1 -x2 (see Eq. (3.14)). The lead- 

ing behavior at large pT and E - 0 is given by Eq. (3.18). To illustrate the ac- 

curacy of this latter form, we compare the two formulae for the case of the 

qM - qM (ut) subprocess contribution to pp -MX. Here ds/dt= ?I(Y$ / s^u3 , and - 

we take FM/P 
(X) =6(1-x)" for x ~0.3, F 

otherwi“se; -as in Eq. (3.1). 

q,p(x)= 4(1-~)~ for x >0.2, and constant 

For pion beams, we use F M,n(X) = 4(1-x)3 for x>O.4 

as in Table II. 

Equation (3.18) then gives for ecrn = 90’: 

&(pp+m)=$ a$ 8 (1-xT)g 
d3p pT 

In Table V we show the ratio of (A. 1) to (A. 2) Cthe quantity defined as J(xT) in 

Eq. (3.18)] as a function of xT at 90°, and also the effective power Feff of 

E = (1-xT) obtained for pT8 Edo/d3p from (A. 1). We see that for xT >0.3, the 
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simple form (A. 2) is accurate in normalization to within 25 percent. Furthermore, 

we see that the power behavior (1 -xT)’ predicted by the spectator counting rule 

CF = 2nspect -1) is accurate to within -l/2 units for XT > 0.4, and the effective F 

power decreases below this point. 31 

It should be emphasized that the effective power Feff is in general expected 

to decrease in regions where the structure functions F(x) are flat; i. e. , for XT < 

min (xa, %). Thus, a fit to Feff over the region 0.2 c xT < 0.4 for the above ex- 

ample should give a value of Feff -6 for pp -M and F eff - 5 for rp - M, yield- 

ing a ratio that varies as AF eff -1. On the other hand, for xT > 0.6, keff 

equals 2 to high accuracy in agreement with the spectator counting rules. 

Table V 

Accuracy of General Formula (3.18) 

XT J(PP ---, M) Feff(PP) J(w --+W Feff( ???) (F(PP) - 
- F(?P)),,f 

.l .37 3.8 .42 3.8 0 

.2 .63 5.0 .58 4.5 0.5 

.3 .99 6.3 .77 5.0 1.3 

.4 1.23 8.6 1.00 5.6 3.0 

.5 1.19 9.3 1.14 6.9 2.4 

.6 1.13 9.2 1.10 7.2 2.0 

.7 1.09 9.1 1.05 7.1 2.0 

.8 1.05 9.0 1.02 7.0 2.0 

. 9 1.02 9.0 1.01 7.0 2.0 
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Appendix B 

Coupling Constant Consistency 

In Sections III, IV, V we have shown that the values CY~ -1.2 GeV2, and 

a! S 
- 10 GeV4 for the meson q{ and baryon qqq couplings are consistent with the 

normalization of large angle elastic reactions and the momentum distribution func- 

tions. We demonstrate here that a similar consistency is present when comparing 

the above determinations to that obtained from the asymptotic behavior of meson 

and baryon form factors at large t. We also define here the relationship of oM 

and aB to the Bethe-Salpeter wavefunction. 

Let us consider the q-S Bethe-Salpeter wavefunction W(p, k) for the bound 

state, pseudo-scalar meson: We define 

$(p,k)=(m+i$-k)r5$(k) (m-+$-k) (B-1) 

where 9 (k) is the usual amputated vertex function, $(k), divided by the propagators 

[I (p/2-k)2-m2 I[1 (p/2 + k)2- m2 . 1 The calculation of high pT processes require knowl- 

edge of J, (p,Q) at large relative momentum Q. One can iterate the Bethe-Salpeter 

equation once and obtain 

*(p,Q) = (m -i + fi 4 V(Q-k) XP (p,k )(m - +16-C) 
-1 

(B-2) 

In the case of single gluon exchange, for large Q we can approximate V(Q-k)- 

V(Q) 4’,ag; ?‘;/ Q2- Furthermore, in the region of integration where k is small, 

we can drop the k dependence in the Dirac numerator of the equation for q (p, k), 

thereby obtaining at large relative momentum, 
9 
Y 

q(p,p)(m-i$ +I)-’ %- y, (i$ +m)Y5’Y(Y$(0) (m-i@ -1) 
Q2 

-’ . (B.3) 
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(B.4) 

can be directly identified with the nonrelativistic wavefunction at the origin. The 

approximations are justified as long as the integration over p converges. In 

asymptotic freedom theories, one obtains a mild logarithmic divergence 11 which 

can reflect itself in corresponding logarithmic modifications to the final scaling 

laws. 

We can now calculate the quark-meson scattering amplitude of Fig. 16 at 

large momentum transfer. For a quark of one specific color we have 

x F2(0)& tr2pf P,~)+J , , (B. 5) 

where C is a color factor to be deEned shortly. The spin-averaged square of the 

matrix element for It I, lu I >> m2 is 

$ c 
Spins 

ki 2 = 165 (9,2)4C2 ;G4(0) . 

The color factor per average color quark in SU(n) is 

c = 1 1 (n2- 1)2 
iiTi n = $ (forn=3) , 

(B.6) - 

(B-7) 

where our normalization is conventional (see the text, Section IX). Thus 
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03.8) 

03.9) 

i.e., the dimensional coupling constant g is 

g. = 4 g,” F (0) Jqz (B. 10) 

Let us now turn to the form factor calculation. In a naive approach one is 

tempted to obtain the asymptotic behavior at large t from the graphs in which 

only one wavefunction is iterated (see Fig. 17). However, the x-integration in the 

d4Q loop (x is the lightcone fraction of momentum carried by the quark struck by 

the photon) then becomes singular at x -1, 

1 - M2/q2 
dx 

l-x’ 

and extreme values of the quark momenta are probed. The wave function 

imation is thus not applicable for the main loop integration over Q. Accordingly, 

we must iterate the Bethe-Salpeter kernel once more and calculate the graph of 

Fig. 18. 32 We shall use the general Lorentz frame (P is arbitrary) (see e.g., 

Appendix B, Ref. 7) 



64 

M2 3 M2 -m p=(‘+47’ TsP 4P) 

m2+j2 
p - Q = (l-x) P + Qr 

4(1-x)P 

(B. 11) 

where q2 = -92 -q T ’ and x = (Q, -I- Q3) / (pot p,) is the usual light-cone/infinite mo- 

mentum fraction carried by the struck quark. The matrix element is 

A$ = I [ -Q- Tr 
(2~) i 

(m+i$+$)r’Y(m+p 

Q)2(Q + q)2 p; ~2” 1 
-1 

Here the color factor is Ct = 16/3 (we sum over 

Using standard techniques--i. e. , picking up the 

i 2 I p2 
~fr(Q+q)~ --the above integral reduces to 

3 H 

C’ . (B. 12) 

colors for the form factor). 

(p-Q)2 pole where p12 z $Q2, 

where 

and 

D = $ (l-~)-~(x$ + M2(x))2($T + (l-x) s’T)2 + M2(x))2 

M2(x) E m 2 - x (l-x) M2 
q 

(B. 13) 
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The trace reduces at large q2 = -yg = t: 

Tr --- [ 1 = G2(x) x (1 -x)2 4tpP . (B .14) 

-2 where M (x) is a complicated combination of quark and meson masses. There 

are two important regions of the ZT integration- % .e, -0 and -) --zT (1 -x), pro- 

viding an extra factor of 2. Writing A’ = F(t)(2pP+ qP) we obtain at large t 

F(t) - 7 
(g,2 iji (o))2 4x(1-x)2 tiii2@) 

; (Q; + M2(x))2 t2 

ii2(x) > 8 
M2(x) 9r2 

Substituting in terms of g2,0r rather aM, we have 

cvM -2 
tF(t) - 2n CM+> . 

M W 

(B .15) 

(B. 16) 

Since G2(x) - M2(x), it is clear that the coefficient of l/t is of order 0.25-l. 0 GeV2 

if a! M =1.2GeV2. In a monopole fit to data, one has 

tF(t) - M2 -0.5 (GeV)2 . 

Clearly, the agreement is acceptable. 

In the baryon case where oB = 10, one similarly can show that the asymptotic 

behavior of the proton form factor is also satisfactorily normalized. The larger 

value of o! B, compared to aM, is required, in part, in order to compensate the 

more strongly damped x integral in the baryon case. One finds oB dx x(1-x)~ 

vs. aM dx x(1-x) in the baryon-meson cases, respectively. 
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singlet is suppressed, at least at low x. In the color radiation model of 

S. Brodsky and J. Gunion, Phys. Rev. Lett. 37, 402 (1976), the large 

amount of gluon emission in deep inelastic scattering is due to the dynamical 

separation of quark charges at large s = (q+p)2, rather than the intrinsic 

presence of gluons in the proton wave function. A detailed discussion will 

be given elsewhere. 
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The extra iteration accounts in part for the differences between our approach 

and that of B. Pire, Phys. Rev. D15, 3475 (1977) who was one of the first 

to consider the normalizations of large transverse subprocesses. 
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FIGURE CAPTIONS 

1. (a) A schematic of the simplified structure functions used to estimate rates 

in the text. (b) Th e manner in which the higher Fock states enter to produce 

the total structure function. 

2. Two examples of graphs that contribute to quark-proton scattering. 

3. (a) Typical exclusive scattering contribution to MB + MB arising from 

constituent interchange. (b) The corresponding inclusive direct process 

for MB ---, MX illustrating the simple connection to the structure function. 

4. The double bremsstrahlung contribution to the prompt inclusive rate for 

A + B -+C + X. The hard scattering contribution for the cross section is 

given in Eq. (1). 

5. The various coherent contributions to elastic proton-proton scattering 

and their respective weightings. 

6. The momentum routings and the coupling constants used to compute the 

valence contributions to the (a) meson and (b) baryon structure functions 

and sum rules. 

7. Various contributions to pp ---) MX reactions. (a) The (ut) graph for the 

qM + qM basic process. (b) The (st) graph for the fusion process 

iq -+,MI%+. (c) The (st) graph for.the qM -+ qM basic process. Wave 

functions are not shown for the meson states. 

8. The two dominant contributions to the e 13 term in the pp -+K-X yield; 

9. 

(a) the strangeness arising from the target and (b) the beam. 

Baryon production from proton beams; (a) the direct scattering graph, 

(b) beam bremsstrahlung (of a mesonic spectator system), and (c) the 

fusion process, are shown. 
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10. Illustrating the simple and direct relation between (a) photon and (b) meson 

production for one type of basic process. 

11. The five important contributions to meson production by meson beams. 

The direct process is (a), and the quark-meson process in which the 

intermediate meson arises from the (b) incident meson and (c) proton 

target are also shown. The two possible fusion processes are shown in 

(d) and (e). 

12. The five dominant contributions to baryon (and antibaryon) production by 

meson beams. 

13. Lowest order diagrams for quark-quark scattering via gluon exchange. 

14. Scaling law fit to the cross section pp + I;+X, ec m . . = 90°, xT = 2pT/fi > 0.3. 

From Ref. 1. 

15. Dominant CIM diagrams for Mq - K’q’ illustrating the final state charge 

correlations. 

16. Diagram for quark-meson scattering using the iteration of the gluon exchange 

kernel in both Bethe-Salpeter wavefunctions. 

17. Diagrams for meson form factor at large momentum transfer in which only 

one wavefunction is iterated. 

18. Diagram for meson form factor using the iteration of the gluon exchange kernel 

in both Bethe Salpeter kernels. 
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