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I. INTRODUCTION 

In this note we study a lattice formulation of the one-space-one-time dimen- 

sional Abelian Higgs model. This model is of particular interest because its con- 

tinuum version shares with the higher dimensional non-Abelian gauge theories 

the property that there exist solutions to its Euclidean field equations which carry 

a non-vanishing topological charge. 1 The existence of such solutions implies that 

the naive perturbation theory vacuum is not the true vacuum of the theory, and 

that there are in fact an infinity of distinct possible worlds, each based on a dif- 

ferent vacuum labelled by an angle 8, -a zs 0 5 ?r .2 The question which we ad- 

dress in this paper is whether or not the lattice formulation of this theory and 

its analysis by variational methods will automatically take into account the exist- 

ence of these multiple @-vacua. 

As we will show, not only does a direct reformulation of the continuum theory 

as a lattice gauge theory allow us to discover this effect, but it is forced upon us 

as a consequence of the gauge invariance of both the Hzd.kmia,n and the algebra of 

physical observables. It will be made clear in the discussion to follow that while 

the specific source of @-parameter labeling the different versions of the theory 

varies somewhat in different gauges, the existence of the phenomenon is easily 

understood in any gauge without reference to the instanton. In particular, we will 

see that in the A0 = 0 version of the theory the existence of the @-vacua is ohiOuS 

once one properly understands the physical significance of the residual gauge in- 

variance of the Hamiltonian. We believe that the reformulation of the question 

in these terms is particularly physical. 

Our subsequent discussion will proceed as follows: In Section 2 we will de- 

fine the lattice theory of interest and following the procedure of Ref.~ 3 reduce it 

to a simpler Schroedinger problem. This section presents discussions in both 
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axial-gauges A0 = 0 and A1 = 0 in order to show the significance of the parameter 

@ in each case. We will establish the relationship between @ and the possibility 

of having a background electric field in l-dimension which cannot be completely 

shielded by producing pairs of positive and negative charges which migrate to 

the boundaries of the defining volume. This phenomenon is exactly the same as 

that discussed by S. Coleman for the massive Schwinger modelP section 3 will be 

devoted to a simple analysis of the lattice theory for certain ranges of parameters. 

The discussion here is for the purpose of elucidating certain interesting features 

of the theory and is not meant to be complete; in particular, the variational 

analysis presented is sketchy and for full details the reader is referred to Ref. 5 

where a similar procedure is fully discussed for the U(1) Goldstone model (the 

e = 0 limit of this Higgs model). Section 4 of this paper makes some comments 

about the way in which one expects these results to generalize to Yang-Mills thee- . 

ries in higher dimensions. 

II. THE LATTICE HIGGS MODEL 

We begin with a formulation of the A0 = 0 lattice theory and follow this dis- 

cussion with the A1 = 0 or Voulomb gauge” formulation of the same theory. The 

approach we adopt is directed towards a Hamiltonian formulation of the problem 

and so, from a Lagrangian viewpoint time is a continuous variable and space is 

taken to be discrete. Our introduction of the fields (Ao, Al) to enable us to de- 

fine gauge covariant derivatives is standard,except that we will allow the fields 

A0 or Al to take values over the range - ob (Ao, Al, i ~0. Our discussion of the 

procedure for the introduction of these concepts on a lattice will be quite brief 

and the reader is referred to Refs. 3 and 5 for further details. 



AO = 0 Gauge 

In defining A0 = 0 we remove the freedom of making time-dependent gauge 

transformations and so it is only necessary to define covariant derivatives with 

respect to spatial directions. The continuum Lagrangian is taken to be 

In going to the lattice we discretize the space variable and allow rx’ to take the 

values x. = Hence the 
I 

j/A where ‘j’ runs over the integers from -N to +N. 

9olumelV of our system is L = (2N+ 1)/A. Following common practice’ we intro- 

duce the complex fields e(j) and try to write a lattice Lagrangian which is in- 

variant with respect to local gauge transformations 

cP(j)-(p, (j) 3 e 
i:e(j) 

W) (2.2) 

This is done by first introducing a field, A1 (j) defined on the link joining ‘jl to 

‘j + lf, which transforms under this gauge transformation as 

Al(j) -Ag W P A(j) -I- e(j+l)-e(j) (2.3) 

where Al(j) can take all real values from -Q) to + QI. We then define the covariant 

derivative of 9(j) as 

W9,l.i) = A e 
-%A# 

I W+l) - 40) (2.4) 

which under a gauge transformation generated by a function 8 (j) becomes 

%I (j+l) 
en 

S(j) 
$J (j+l)-e” W) = eA 

I 

S(j) 
tD+),ci) 

(2.5) 
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Having introduced the notation (2.2) - (2.5) it is simple to write down gauge in- 
* 

variant expressions. In particular there is an obvious transcription of the gauge 

continuum action to a discretized gauge invariant action, namely: 

where we have adopted the convention that D+(N) = 0. Substituting (2.4) into (2.6) 

yields the gauge invariant classical lattice Lagrangian which we quantize i. e. : 

$*(-N)$(-N) + .@*(N)@(N) + AE” W*tjW4) 
j=-(n- 1) 

(2-V 

We remark here that we have chosen a formulation for which the gauge field 

varies over a non-compact range, i. e., in (2.7) we allow A1 to take any real 

value-oosA1<ao. In this we differ from pevious formulations of lattice 

gauge theories’ which always choose to limit A1 to a compact range. As we 

shall see in the subsequent discussion, this difference is unimportant in this 

one-spce dimensional case; we could arrive at the same results with a compact 

formulation and a careful treatment of boundary conditions. 

To quantize the theory specified by (2.7) we proceed in the usual way; that 

is, we identify the momentum conjugate to each of the fields $(j) and A(j), 
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impose canonical commutation relations, and construct the Hamiltonian of the 

theory in terms of fields defined at t = 0. (This procedure guaranties that the 

Euler-Lagrange equations derived from (2.7) will hold as operator equations of 

motion. ) The Hamiltonian of the lattice theory obtained this way is 

1 N 
H = ii ,=-N c 

I 

3 E2(j) + P$*(j)P+(j) + X (2+*(j)$4j)-f2)2 

9(j) + h. c. 

where 

E(j) = PA(j) = BoAI 

y#)o) = a,+*(3 : P@*(j) = d,@(j) 

and we have imposed the commutation relations 

I 
E(j), A( j’) = -“bjj, 

1 

(2.8) 

(2.9) 

(2.10) 

with ail other commutators set equal to zero. Note, the link variable A(j) is only 

defined for j = -N, . . . , N - 1 whereas $ is defined for j = -N, . . ., N. Equations 

(2.8) - (2.10) completely define the lattice version of- our quantum- theory and our 

problem is to diagonalize H in the Fock space of states generated by in the usual 

way by applying polynomials in A(j) and #(j) to some %acuumw state. 
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While we could proceed to analyze this theory directly for all values of the 

parameters e, A and f, it is not necessary to do so. In fact, as in Ref. 5 it is 

just as interesting and somewhat simpler to study this theory in the limit h-a, 

wit% e and f held finite. This essentially freezes out radial excitations. To be 

precise, we introduce dimensionless variables 

and ix 0) 

Since our Fock space is just the space of square integrable functions in the vari- 

ables 

-mid~)~m, olp(j)s- and -rsx(j)rn (2.11) 

We can replace P4+(j)P#(j) by 

P,,(j) P,(j) = f - -& L 
1 

d 1 d2 
~0) WI PIjIm - - 

p20) ax (jJ2 1 (2.12) 

Our Hamiltonian can then be rewritten as 

+ C (X b2U)-f2)2+ p20))- B t.p2(-N) + p2@) ) 
J=-N 

(2.13) 



8 

a form which makes explicit the fact that one is dealing with a many degree of 

freedom Schroedinger problem. Having reduced the problem to this form, simple 

inspection of the single-site terms allows us to argue that in the limit K- ~0 the 

multiplication operator p(j) can be replaced by f. Then, up to a c-number, the 

Hamiltonian can be simplified to 

N-l 
-c 

f2 
2 

e ifgt(j)+x (j)-x (j+‘) ) + h c . . 
j=-N 

(2.14) 

Since by construction the variable&(j) runs over -m Id(j) 5 00, and x (j) is a 

periodic variable running over - 7r I x (j) I K the system described by (2.13) is a 

set of rotors defined at each site ‘jr coupled to oscillators defined on the links 

joining the point Ij9 to Oj + 1’. Hence, if we choose to work in the basis where 

E(j)=+ -&jj- and ’ a 
2 ‘=; ax(j) are diagonaLour space of state is spanned by a basis 

whose members are specified by giving two quantum numbers for each ‘j* ; i. e. , 

IYj; nj> , where nj takes all possible integer values and yj runs over all real 

numbers. In terms of the variables d(j) and x(j) such a state is of the form 

lyj; nj>= j-&INe 
iYj,plci) inaX (j) I I e ’ 

-- 
(O;O> (2.15) 

At this juncture, having specified our Hamiltonian and Hilbert space of states, 

we must turn to the general problem of diagonalizing the Hamiltonian and identify- 

ing the subclass of states which we may call llphysical.‘l 

One needs to specify the class of physical states because in A0 = 0 gauge the 

equation V-E(x) = j,(x) or its lattice equivalent E(j+l) - E(j) = j,(j) is not one of 

the Heisenberg equations of motion. In fact, it is easy to see that the space of 
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states we are considering includes states for which this equation is totally false, 

and that the presence of such states is intimately related to the residual gauge in- 

variance of the theory. This is most easily seen if we construct the operators 

which generate the gauge transformation corresponding to a given function 6 (j). 

The problem is to find an operator U(0) such that 

WV&) U+(e) = 4jU) + f3 tj + 1) - 0 (3 

U(8) @(j) U+(O) = eie’)#(j) 

or 

Utwj) U+(e) = p(j) uteleiX tj) + u (0) = ei[X tj)+e tj>] 

(2.16) 

(2.17) 

where we recall that although @ (j) is defined for -N< j 5 N, J(j) as a link variable 

is defined only for -N “j 5N - 1. Since e(j) is the momentum conjugate tobY,/ 

and (1 -% i ax 0) 
is conjugate to x (j) it is clear that U(8) is correctly given by 

/ 

N-l N 
i j,(j) 0 01 

~(0) = e j=-N I 

where 
1 a E 0) = i adi (j) and j,(j) = + -&) . 

Collecting terms referring to the same ‘j’ we can rewrite u(e) as 

(2.18) 

i(jg(-N)-E (-Nj)Q(-N) 
N-l 

u(e) = e 
WW-l)+jO(N))W9 

e I-l 
Wj)[j,(j)+ dj-Wdj)l 
e 
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From (2.19) it follows that any state which sa.tisfies the Maxwell equation 

E(j) - ~(j-1) = j,(j) for -N-FE j s N-l (2.20) 

is a singlet (i.e., invariant) under all gauge transformations generated by func- 

tions 8 (j) which vanish at j = + N. (Note, requiring (2.20) for j = + N is not a 

meaningful thing to do since this corresponds to a choice of boundary conditions 

and is not part of Maxwell equations. ) 

Since U(6) H U’(e) = H for all 8 (j) it follows that classifying the set of states 

in our Hilbert space into irreducible representations of the group of gauge trans- 

formations is a useful preliminary step to diagonalizing the Hamiltonian, H. More- 

over, in order to have our theory describe a quantized version of the classical 

theory for which (2.20) is true we have seen we must restrict our attention to the 

set of states which are singlets under gauge transformations generated by arbitrary 

e(j) which vanish at the end noints. As can readily be seen from (2.19), for this 

set of states the irreducible representations of the group of all gauge transforma- 

tions are specified by giving the eigenvalues of the operators 

-E L = jot-N) - E (-N) 

ER = e(N-1) + jo(N) (2.21) 

Alternatively, we can-- for the set of gauge invariant states--specify EL and 

the total charge Q = 2 j,(j) since from (2.20) and (2.21) it follows that 
j=-N 

ER = EL +Q (2.22) 

Hence, we see that the eigenstates of H are all labelled by a value of Q and the 

single parameter - QO d E L I 00 . 

If we observe that for a state Iyj ; nj> , 6 -!?- 
1 ax. 

is just multiplication 
J 



by nj, these general considerations tell us that the set of all physical states cor- 
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respond to the space of states spanned by linear combinations of states 1 yj; nj> 

for which * 

yj - Yj-1 = nj for -N+lljSN-1 (2.23) 

and 

c nj = Q ; -E L = -xN+n(-N) (2.24) 

It follows, therefore, that for a given E L we can make the replacement y. = mj+EL 
J 

where the mj take integer values only. Clearly, in the Q = 0 sector E: L = cR and 

cL just describes a background electric field coming in from the left of the lattice 

and leaving from the right. To see that the background field is the same as the @- 

parameter which labels the vacua in the path integral formulation of the theory we 

must do two things. First, we must establish that physics is periodic in the variable 

EL and it is therefore only meaningful to label theories with -i s E L s 4. Second, 

we must show that the Welling of sets of physical states by the parameter cL is 

equivalent to the 8 Welling of vacua in the instanton way of looking at things. 

The first point is made clear by observing that the states 1% , Q, mj > and 

1. 
eL+l,Q, m. - 

J 
l>are identical in all ways except that the latter has an additional 

negative charge at j = -N and an additional positive charge at j = +N. Hence, mod- 

ulo end effects--which vanish as N -+ 00 --the expectation value of the Hamiltonian 

and all gauge invariant observables will be the same in these states. Physically, 

this periodicity in EL corresponds to the possibility of cancelling out a background 

field by polarization of pairs out of the vacuum. If we were to start with a state 

having a background 1 E L I> % on interior links a pair of charges will materialize 

and migrate to the edges of the lattice so as to reduce the E-field by a unit on every 
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interior link. Since only integer charges exist this reduction can only take place 

in integer steps and so background fields will all be reduced into the range 

-3 I E L 
5’ 2 ’ To see that this migration will occur we need only follow 

S. Coleman4 and compute the energy of a pair of charges in a background field 

EL>+. Assuming there are 2N links on the lattice the energy of a state with all 
2 mj= 0 is 4(2N)EL. Now if a pair separates by ‘S’ links then yj = EL on all links 

except the ‘S-links’ between the charges where it is ~~-1. In this case the energy 

as a function of S is 

E(S) = &2N-S) c; + 4 S(FL3)2 

=$2Ne; + S&EL) v.=) 

It therefore follows that for eL < 3 the charges are attracted to one another where- 

as for E L > $ there is a gain in energy of 2N(&e L) to be obtained by allowing the 

charges to separate to the ends of the lattice. 

To see that this angle gives us the same information as the @ parameter in 

the instanton way of computing let us first divide H (Eq. 12-14) into two parts 

Hclassical 
3 00s [x (j+l)-x U)-d (j,] (2.26) 

j=-1 

and 

and restrict attention to Hclassical. Clearly, the states of absolutely lowest energy 

correspond to classical configurations such that 

2*Pj + x0+1)-x(j) =dW (2.28) 



13 

where pj is an arbitrary integer. This is nothing but the A o =0 latticized form of 

the t = 2 00 form of an instanton. It follows from (2.243) that 

where 

N-l N-l 
2np+ pN[xtj+l)- x(j)]= C 44(j) -- j=-N 

-1 
P= fs 

J=-N ‘j 
(2.29) 

or 

-1 
2nP’+6= c c.d 0) (2.30) 

j=..N 

where 6 is a number between 2 r . Hence, each classical ground state has an 

integer P’ associated with it. Moreover, this integer cannot be changed by a gauge 

transformation U( 0 ) generated by a function 8 (j) for which 8 (-N)=B (+N) = 0 since 

under this transformation d(j) becomes 

cd, tj) = ~2 0) + 0 di+l) - e (9 

and so 

Cd,(j) =C&oj) + 80 - 0(-N)= 27rP’+g 

This is an important result since this means that an integer PI, as well as a 

6 e c-r, x] can be associated with every classical ground state which satisfies 

Maxwell’s equations, since these states are formed from any of the ones under 

discussion by taking any given configuration and summing over all configurations 

which can be generated from it by gauge transformations of this type. Hence, 

the integer P’ which is the direct analogue of the continuum variable dxVx=27rP1+ 6 
I 

characterizes the gauge invariant ground states; however, these states correspond 
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neither to irreducible representations of the full gauge groupnor to the configurations 

which the path integral analysis classifies as 6 -vacua. To get to the @-vacua 

we note that the instanton prescription is to limit attention to “gauge invariant” 

states having definite values of x (-tN) and x (-N). One the sums over these con- 

figurations to form states of definite 0 as follows: 

-iP@ 
lo>= C e I P, 6 > 

P 
(2.31) 

Similarly one can take the states labelled by P and 6 and project them onto 

irreducible representations of the gauge group, which is now taken to include trans- 

formations which do not vanish at j = *N. Since such transformations can change 

a state characterized by two numbers P, 6 where P is an integer and -r-(6 5 7~ 

toa P’, 6’>. I Moreover, all such states are transformed in the same way by 

a single gauge transformation since 2nP+6 - 27rP+b + 0 (N) - 8 (-N) for all configura- 

tions; hence, the problem of finding irreducible representations of the gauge group 

coincides with the problem of finding irreducible representations of the transla- 

tion operator on the real numbers. This is of course done by making use of the 

functions e ikx , and since in our case x = 2nP+6 we find that a state of definite eL 

is just 
?T 

I 
rL>aCe 

-ie L(2’lrP) 

P s 

ieL6 
d6e IP,6> (2.32) 

-R 

which just averages in a well defined way over the configurations of definite 

[XVI-X WI] P rf d s ec’ ie in the instanton prescription. Comparison of the two pre- 

scriptions leads to the identification of 0 with 2neL. Note that the prescriptions 

coincide trivially if we limit ourselves to forming irreducible representations of 

the gauge group including only those functions 

t9(N)-8(-N) = 27r(integer) . 
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This completes our discussion of the general properties of the A0 = 0 gauge 

formulation of the theory and the identification of the ambiguity in the definition of 

the physical vacua of this theory with the possibility of having a background electric 

field of absolute magnitude less than one-half (in units of e). The remainder of this 

section is devoted to a brief discussion of the formulation of the same theory in 

A1 = 0, or Coulomb, gauge in order to see the same background field occurs in a 

natural way as part of the quantization procedure. 

In Al = 0 gauge, the variable A0 is not a dynamical variable but satisfies the 

constraint equation 

2 -al Ao=eJo = efaOx 

This is just Ms%ell’s equation. Furthermore recognizing that 

8;A0 = A2 AO(jfl) + AO(j-1) - 2Ao(j) 1 
summing over all sites ‘j’ gives 

Q = c n(j) = 0 

(2.33) 

(2.34) 

(2.35) 

so that in this gauge we can only consistantly quantize the Q = 0 sector of the 

theory! The background E-field appears, as in the continuum case, as a con- 

stant of integration when one inverts (2.33) to obtain 

AO(j) = c 1 j-j’1 n(j) + ELj + C . 
j 

This is exactly the same feature as has been observed in the Schwinger model 

as discussed in this gauge by Sydney Coleman. 4 

We remark at this point that the need to choose irreducible representations 
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of the gauge group is clearly quite unrelated to the existence or otherwise of 

classical Euclidean solutions of various topologies and must be faced foranytwo 

dimensional QED theory. We have chosen to examine the Higgs model because in 

the path integral formulation it has an additional complication due to the existence 

of classical solutions (or approximate solutions) for the q f 0 sectors. However, 

we find that for a Minkowski space Hamiltonian lattice formalism such as ours the 

theory is in no sense more complicated than the Schwinger model. Roth theories 

are properly described in terms of an additional parameter which has the phys- 

ical interpretation of a background E-field and which labels the subspaces of the 

space of states which are irreducible representations of the full gauge group. 

Whether those subspaces corresponding to different background fields are phys- 

ically distinguishable depends on the operators which are included in the algebra 

of observables. For example, in the massless Schwinger model they are not, 

provided we insist that all observables are chirally invariant. If we introduce 

as an observable any operator of definite chirality, then the different sectors 

are physically distinct, whether or not there is a mass-term in the Lagrangian. 

III. SOLUTION OF THE THEORY 
IN VARIOUS COUPLING REGIONS 

We can insert the constraints (2.23) and (2.24) in the Hamiltonian (2.13) to 

find H in the physical subspace lahelled by (eL, Q) This gives 

-2 
c 
j=-N 

(mj+l -mj)2 + mfN 

+ (mNsl -Q)2 -f2 f’ cos czj 

I j=-N 

(3-l) 
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where o(j) = d(j) - x (j+ 1) + x(j) is the variable conjugate to mj + eL. Clearly 

the properties of the theory (3.1) depend on the relative sizes of the dimension- 

less quantities Z2 and L. 
f2 

We will now identify various regions and comment 

upon them. While we have not carried out a full variational calculation, nor cal- 

culated renormalization constants, and so our answers involve the arbitrary 

scale A in a non-trivial fashion, even a simple-minded examination of the theory 

is enough to convince us that we are obtaining the same physics as the dilute in- 

Stanton gas calculation (at least in that range of parameters for which we exuect 

both calculations to be valid). In the dilute instanton gas approximation the clas- 

sical action So is proportional to f2 and the instanton radius of order ‘l/ef’. The 

dilute gas approximation is thus expected to be reasonable when eBf2 --$ ( ) 

2 
is 

small, that is for large f and ef not too small. The scale on which the dimen- 

sionful quantity ef is measured is not well defined in this treatment, and in fact 

factors of ef are introduced in a somewhat arbitrary fashion to provide the cor- 

rect dimensions of various quantities. On the other hand in our calculation 

everything is expressed in terms of the dimensionless couplings z and f and the 

dimensionful factors will always appear as powers of the cut-off of A. To remove 

the cut-off dependence requires renormalization of the theory which we have not 

done, since we are only interested in answering a limited set of questions. 

Let us begin by examining the region, f >> 1; Z<< 1. In this region the cosine 

terms dominate the Hamiltonian and force CY~ to be small in the ground state. 

Hence, we can reasonably expand cos Q! . N 
3 

l- CY;/~ provided we also remember 

that we are in fact dealing with a periodic potential. At this point we observe 
1 that if we re-interpret oj as a momentum and F -$- as the co-ordinate con- 

j 
jugate to that momentum,then, up to an overall c-number, our Hamiltonian is 

exactly that for a free particle of mass of ef. This naive interpretation is, 
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however, not the full story, as it neglects two important fact; one is that the po- 
1 tential is periodic and the other is the fact that T & =m.+e . 3 

L is shifted 

away from integer values by an amount proportional & the background E-field. 

To include the effect of these constraints we must set up the variational cal- 

culation and examine its behavior. The program we follow is identical to that dis- 

cussed for the Goldstone model by Drell and Weinstein. 5 The reader is referred 

to this naper and to Ref. 3 for details. Here we will simply state some results 

and try to show heuristically how they arise. 

We consider first the single site Hamiltonian obtained from (3.1) by dropping 

the terms l/f2 
( I( 

mj mj +1) which couple neighboring sites. At each site j we 

then solve the problem given by this Hamiltonian 

y =(g ++)(+ f)Z -f2cosaj 

where the fact that 

LL= T ao! “j+E L with m. = integer 
j J 

(3.2) 

(3.3) 

is taken care of by requiring that the solution of the problem must be in terms . 
of functions of the form #J(CY j) = e ‘W $ (Crj), where the #(a! j) satisfy periodic 

boundary conditions. Thus our problem is equivalent to the Bloch wave problem 

for a periodic potential cos (Crj) with - cc I cy. I co, where we identify c L as 
3 

the momentum of the particle. ‘ib a good approximation for low-lying states n 

the energy of this particle is given by7 

En = En+AncOs (27~) 

th where zn is the energy of the n excited state of the single well and An is the 

transition amplitude for a particle in the state InI in one well to tunnel into the 
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neighboring well. In order to simplify the computation of En and An we will make 

some modification of the cos(aj) term in the Bloch Problem but it will not be im- 

portant for the case f >> 1. The substitution will be to replace cos Q! within each 

region (2 n+ 1) A 5 o! I (2 n+3) n by the expansion ahout its midpint,i. e. , for 

(2n+l)r5 a!l (2n+3)r wetake 

2 cos(a) * -f2+$ (a - 2(n+ 1))2 . (3.4) 

Clearly, this modifies our Problem to some extent but for f >> 1, since the 

ground-state wave function must concentrate about the regions cy n = 2 (n+ 1) ?T, 
the use of (3.4) is sufficiently accurate for our Purposes. 

To find the lowest state of the problem (3.4) having momentum eL we ob- 

serve that for large ‘f’ we have a system of weakly coupled wells. In the ab- 

sence of tunneling between the wells there would be a set of degenerate ground 

state levels corresponding to having the n = 0 oscillator of mass m= 
112 

?(2 + e2?)‘l 

and frequency o = (2 + e2f2) confined to any one well. Obviously, from (3.4) 
. 

the energy associated with such a state is 

3 = -f2 + f2 l/2 
2 (2+e2f2) . 

To get the ground state of the system, we observe that the Hamiltonian in (3.4) 

mixes levels corresponding to oscillators in different wells, and we can estimate 

the mixing coefficient by taking the expectation value of H between the Gaussian 

wave packets 

lcln==exp ( - f f2 (2+e2f2) 1’2 ( 0-2(n+1))2) 

and 
l/2 

JI n+lOCexP -if” (2+e2f2) (a-2 
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to obtain 

-f2 r2(2+e2f2) 
l/2 

A0 = e (3.5) 

It follows from our previous discussion that to a good approximation eigenstates 

of (3.4) are given by 

whose energy is ~oportional to 

~08 (2flcL)e -f2v2/JZ , _ (3.6) 

for each of the 2N single site term in the Hamiltonian (3.2). Thus we see that 

just as in the dilute instanton gas calculation we find a contribution to the ground 

state energy density which is proportional to cos (@) e 
-f2K where K is a number. 

Obviously a more accurate determination of K would be obtained by solving the 

Schroedinger equation for the boundary problem more carefully than we have 

done here. 

The Hamiltonian (3.1) also allows us to determine the ground state expecta- 

tion value of the E-field. We observe that the E-field is simply given by 

G <mj+ eL) = i$?*> 
L 

(3.7) 

Thus we find, again in agreement with the dilute instanton gas calculation, that 

the E-field density in the vacuum is proportional to sin (2neL) e 
-f2K . Of course, 

we have Ilot cdc~.lated a meaningful constant of proportionality; to do so would 

require performing the wave-function renormalization. 



21 

Since for large pf* the shift in energy is the same for the first few excited 

levels, the remainder of the calculation can be done as if we were dealing with 

oscillators at each site. Hence, if one restores the coupling between adjacent 

sites and diagonalizes the resulting coupled oscillator problem, one obtains the 

spectrum of a particle of mass ‘ef9. Since now we have taken the periodicity of 

the potential and the effect of CL into account, this is a correct version of our 

previous argument. 

It is interesting also to look at the model in the region Z >> f 2 >> 1. Naively, 

one might expect that the dilute gas calculation should also be valid here, but 

this is the limit e - cc in which the classical configurations can no longer be ex- 

pected to dominate the path integral. In this region the lattice version of the 

theory looks quite different. The momentum terms dominate the Hamiltonian 

and one expects the ground state to be close to the state 1 EL, Q, mj = 0 all j>. 

This will be true for all values IeL 1 < i and Z2 sufficiently large. The case 

L is peculiar, l L= 2 here as in the Schwinger model, since for eL = 2 f excita- 

tions which consist of a pair of charges aligned to exactly reverse the sign of 

the E-field between them exist at an energy cost of only 
f2 

, indenendent of 

the charge separation. These are the “half-asymptotic states” which exist also 

in the Schwinger model. They will not change the vacuum energy density, but 

they will reduce the expectation value of the E-field density; the field strength 

remains constant at e /2 but its direction fluctuates. Presumably, an iterative 

calculation would allow us to calculate the value of the ground state expectation 

value of the electric field, but it has not been carried out. 

III. CONCLUDING COMMENTS 

We can ask what happens to our conclusions when we look at higher dimen- 

sions. Although we have not carried out a detailed analysis of such theories, 
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certain points are immediately obvious. The first is that much of the physics 

of the Abelian Higgs model observed here will also apply in higher dime.nsions. 

Using Maxwell’s equations will allow us to eliminate the scalar field as a dy- 

namical variable and reduce the problem to that of a massive photon. A priori 

we will still obtain a background E-field in higher dimensions, but the physical 

ground state in the infinite volume limit will always be that with EB = 0. This 

is because even though the charges are integers they can cancel any value of 

the E-field by arranging charge distributions on the surface at infinity. Thus in 

this case there exists a unique physical vacuum; the multiplicity of possible 

background E-fields is a peculiarity of the one-dimensional case (as is the 

existence of the topological charge q = 
I 

d2x E ” F 
ClV 

). 

The lesson that we learn from our study of the two-dimensional Higgs model 

is that the question of finding the correct vacuum is in fact readily addressed 

without reference to the Euclidean solutions and topological invariants. It is 

in fact simply the question of finding those sub-spaces of the Hilbert spce of 

physical states which form irreducible representations of the gauge group. We 

remark that this exercise was straightforward with our non-compact formulation 

of the theory, but it would be the same for a compact formulation in terms of a 

gauge field d such that - 7~ L -& < R , even though at first glance it would seem 

that there is no room for a background field E . This is because there is an am- 

1 a biguity in defining the operator i- as a self-adjoint operator on a compact 

interval. The key point is that 
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if and only if 

f*(n)g(?r) - f*(n)g(-r) = 0 

and if the choice of boundary conditions for g forces f to satisfy the same bound- 

ary conditions (i. e. , the domain of the adjoint operator (i &It?&?)+ - must equal 

thedomainof (k -&) ). Clearly, while these conditions are trivially satisfied 

if we require g(r) = g(-n), they are also satisfied g(a) = e i2nEg(-x) for arbitrary 

‘el. Hence, there is a one-parameter family of definitions of (+-$-J) which 

it self-adjoint and therefore a one-parameter set of compact gauge field formu- 

lations of one-dimensional QED. 

It follows from this discussion that there is no difference in the physics of 

the one-dimensional theories for the two formulations. In higher dimensions 

there is a difference for Abelian theories and no one has successfully written 

a non-compact lattice formulation of non-Abelian gauge theories. One thing 

which is clear is that the problem of finding the sub-spaces of the Hilbert space 

which form irreducible representations of the gauge group for four-dimensional 

non-Abelian gauge theories must be discussed in a similar manner to our dis- 

cussion of the two-dimensional Higgs model. The requirement that the physical 

states satisfy the non-Abelian equivalent of Maxwel19s equations is fulfilled by 

choosing states which are singlets under all gauge transformations generated by 

functions, 8 (x), which vanish at spatial infinity. The further requirement of 

irreducibility under gauge transformations which go to a constant at infinity is 

presumably satisfied by choosing the O-basis of the standard instanton treatment 

although there remains the intriguing possibility that the remaining class of 

gauge transformations, namely those which have non-trivial behavior at infinity, 

may alter the classification. 
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