
A Multi-faceted Data Gathering and Analyzing System*

David B. Gustavson and Keith Rich
Stanford Linear Accelerator Center

P. 0. Box 4349
Stanford, California, 94305

We have implemented a low-cost general purpose
data gathering and analyzing system based on a
micro-processor, an interface to CAMAC, and a phone
link to a time-sharing system. Thhup,arts cost for the
micro-processor system was $6000. The
micro-processor buffers the data such that the variable
response of the time-sharing system is acceptable for
performing real-time data acquisition.
and flexibility of the time-sharing
the task of on-line data analysis once
problem has been solved.

The full power
system excels at

this buffering

Introduction

This system was developed to fill
computer controlled data acquisition

a need for a
system to aid in

the testing of complex particle detectors for use in
basic research on elementary particles ("high energy
physics"). Goals included low cost (<$1X),
flexibility, and general usefulness as a graphics
terminal for data analysis (this paper was typed using
the microcomputer system as a terminal).

The power and flexibility of the system come
largely from utilizing the vast capabilities of a large
computer's time-sharing system rather than trying to
put too much sophistication into a stand-alone
micro-processor. This leaves the micro-processor free
to do its primary task well. The main purpose of the
micro-processor is to acquire and buffer data, and to
control peripheral I/O devices. The fact that this
works well enables us to live with the variable
response of the time-sharing system rather than needing
the fast response of real-time support.

In fact, no special hooks of any kind are needed
into the time-sharing system; the micro-processor
appears to the time-sharing system to be a standard
terminal. As we develop the data analysis software, we
can bring to bear the full range of large computer
tools available under the time-sharing system. Only
for the primitive data gathering and buffering need we
program the micro-processor. Having the dominant
portion of the programming in a large cwputer is a
significant advantage during the last-minute tuning of
the system to an experiment, when constraints lead to
annoying delays and errors. any data analysis
features can be implemented and debugged from a normal
terminal but yet in the real environment, thus allowing
development to occur in parallel with production.

The modesty of the micro-processor system also
results in portability of the hardware and in
reliability, since there is less to go wrong.

SLAC- PUB-2031
October 1977
(I)

The Micro-processor Hardware --

The heart of the micro-processor is an Intel 8080
central processing unit in a MITS Altair 8800 cabinet,
utilizing the S-100 bus on a Processor Technology
Corporation MB-l motherboard. There is a simple
programmed data transfer interface to the SLAC CAMAC'
branch highway. There are two keyboards and two
scrolled TV screens which are driven by video display
modules purchased from Processor Technology Corp. Each
screen has 16 lines of 64 characters refreshed from 1K
of two-port memory dedicated to the display, but also
addressable as part of the micro-processor's memory.
There is a Qume Sprint-55 daisy-wheel printer rated at
55 characters per second. It can partial space in
l/120" horizontal and l/40" vertical increments in
either direction, thus allowing it to do graphics
(lines are formed from dots). There is a 2400 baud
hardwired phone line and a 300 baud dial-up phone line.
The micro-processor can dial or answer the dial-up
line. The memories consist of 32K bytes of Intel 2107A
dynamic RAM and BK bytes of Intel 2708 EPROM on a
Cromemco BYTESAVER. Each have access times of slightly
less than half a micro-second.

A simple photoelectric paper tape reader and a
paper tape punch are included in the system so that it
can be operated in a stand-alone fashion, but normally
programs are loaded over the 2400 baud phone line.
Paper tape will be obsoleted soon by a planned floppy
disk system. A simple 200 Hz clock interrupt provides
a time base for automatic dialing, process time
slicing, and maintaining a time of day clock.

Fig. 2 Inside view of the microcomputer, showing the
memory, interface cards, and cpu card.

The Micro-processor Software --

The distinctive features of the micro-processor
software are the very flexible multi-programming and
message switching capabilities which have only modest
hardware requirements. For example, the
multi-programming supervisor occupies only 427 bytes of
code space.

Fig. 1 The microcomputer system, showing one of the
controlkeyboard stations.

*Work supported by the Department of Energy
(Contributed to the IEEE 1977 Nuclear Science Symposium, San Francisco, Ca., October 19-21, 1977)

The Multi-programming Supervisor

The multi-programming supervisor consists of
routines which systematically manage processes,
resources and memory. Processes are the invocations of
algorithms and process management allows multiplexing
of these algorithms. Each process is executed serially
while the scheduler controls the concurrency of
execution of the active processes. Resources are
physical I/O devices or any abstract entities which are
to be used serially rather than concurrently. Dynamic
memory allocation facilitates reentrant code (code
which may be executed concurrently by multiple
processes).

Process management includes dynamic initiation,
termination and scheduling of concurrent processes.
This mechanism is the essence of multi-programming and
these process management routines provide a framework
within which the working programs may be coded without
knowledge of the eventual process configuration. There
are four process related routines:

CALL FORK(ADDR,VALl,VAL2,VAL3)

is similar to the usual subroutine call:

CALL ADDR(VALl,VALZ,VAL3)

except that FORK merely enters the called routine into
the concurrent process table and then returns.
Execution of the called routine proceeds concurrently
with any other existing processes as well as the
calling routine.

CALL STOP

terminates the calling process.

CALL CNCL(RESODRCE)

terminates the process which controls the specified
resource (unless that is the calling process).

CALL WAIT

causes the calling process to release control of the
CPU. Control is then given to the scheduler and will
return to the calling process when the scheduler so
decides. Any scheduling algorithm may be employed, but
a simple round-robin queue will suffice unless
otherwise dictated by special circumstances. Time
slicing is provided by the interval timer interrupt.
If no WAIT occurs between two consecutive timer
interrupts, the interrupt routine merely simulates a
"CALL WAIT" prior to the instruction to which the
interrupt would normally return.

It should be noted that this process structure
differs significantly from most. Many systems have a
fixed number of processes which are connected to
interrupt levels (usually called foreground tasks) plus
one process which is not connected to any interrupt
level (usually called the background task). In
contrast, this system treats all processes as abstract
entities which are not connected to interrupt levels,
but are rather controlled by a centralized scheduler.
Interrupt routines (if used at all) do not execute as
part of any process. Instead, they act as part of an
external I/O processor, although they may invoke the
scheduler when they exit rather than merely returning
to the point of interruption.

The centralized scheduler is therefore not
constrained by the structure of the hardware, and may
dynamically vary the number of processes over a wide
range as well as adjusting priorities if appropriate.
The details of the scheduler are transparent to the
processes, which simplifies the writing of most of the
code.

Resource management requires that processes
request and be granted exclusive control of resources
dynamically before they use them. The processes should
relinquish control when they no longer require it and
process termination must ensure that all resources
controlled by the terminating process are freed. The
request and grant mechanism fits logically into the
concept of "open" while the relinquish mechanism is
associated with "close". The exclusiveness of control
is necessary to resolve conflicts concurrent
processes (which need not otherwise b?aware of each
other) compete for resources. Processes which request
busy resources must wait until those resources are
available and the resource management routines have
granted exclusive control of the resources. There are
two resource management routines:

CALL GETR(RESOURCE)

requests exclusive control of the specified resource by
the calling process. Control is returned only when
this has been granted; until then the calling process
waits.

CALL RETR(RESOURCE)

returns exclusive control of the specified resource to
the system when it is no longer needed. In order to
avoid system interlocks in more complex systems, it is
sometimes necessary to have a third resource management
routine:

CALL TSTR(RESOIJRCE)

which acts exactly like GETR if the specified resource
is immediately available. However, if the specified
resource is unavailable, it simply returns with an
indication that it failed rather than waiting for the
resource.

Memory management requires that processes
dynamically request and be granted memory space for
data. They should free the memory space when it is no
longer needed and process termination must also free
any data memory space associated with the terminating
process. Whereas processes request specific resources,
they merely request the amount of memory which they
need. The memory management routines decide which
memory to grant and cause the requesting process to
wait if the requested amount of memory is unavailable.
There are two memory management routines:

CALL GETM(SIZE)

requests SIZE bytes of dynamic memory. The starting
address of the acquired memory is returned when its use
has been granted. In the application described here,
SIZE is always assumed to be 256 bytes.

CALL REIM(ADDRESS)

returns the memory when it is no longer needed. Under
highly dynamic conditions, it may be valuable to have a
third memory management routine:

CALL TSIM(SIZE)

which acts exactly like GERM if the requested memory is
immediately available. If insufficient memory is
available, it simply returns with an indication that it
failed rather than waiting for the memory.

The I/O System --

There are a number of queues which provide for the
buffered transfer of data between the physical devices
and the processes which control them. The output
queues are normally emptied by the interrupt service
routine of the associated device. The input queues may
be filled by the interrupt service routine of the
associated device, but may also be filled by output
from a process. These devices and queues are
associated as follows:

device queue usage: input (/output)

KBL any
RB2 w

:
k
1

PI1
PI2 :

3:
z
W

RDl r

physical keyboard one
physical keyboard two
input for KBl control process
input for KB2 control process
keyboard input for slow phone process
keyboard input for fast phone process
slow phone input
fast phone input
input to BASIC, Assembler, etc.
output from BASIC, Assembler, etc.
input to CAMAC process
output from CAMAC process
paper tape reader

device queue usage: output (only)

G garbage pail (discard output)
PR1 Q Qume printer
PUl P paper tape punch
PO1 0 slow phone output
PO2 N fast phone output
TV2 T TV2 screen
TV1 V TV1 screen

The existence of the queues allows the I/O drivers
to run on interrupt level (when appropriate) while the
processes merely fill and empty these queues
asynchronously. With the exception of the keyboard
driver, the I/O drivers associate a physical device
directly with a queue.

The keyboard driver is specially extended such
that either keyboard may be associated with any input
queue. This is accomplished by typing the appropriate
key sequence from the keyboard and thus it is under
control of the operator rather than any process. This
allows the operator to multiplex the use of his
keyboard for input to any input queue and hence to any
process which reads from a queue.

The phone drivers have several special features
which facilitate the half duplex communication mode
supported by our time sharing system. When
transmitting, the phone output driver feeds each
character both to the phone line and to the phone input
driver to provide local echoing. It keeps track of the
characters sent, until encountering a carriage return,
so that any transmission interrupted by a reverse break
(caused by an incoming message) can be retransmitted
automatically. This eliminates the well known
phenomenon in which someone always sends you a message
when you have nearly finished typing a very complex
formula, forcing you to type it again. Our timesharing
system optionally sends a DC1 character when it is
ready for input. We use that character to switch from
receive to transmit mode, and we switch from transmit

receive
iOreak.

upon transmission of carriage return or
Because of the queues, the keyboard is always

enabled so that commands or responses can be typed
ahead even while text is being received and printed.
The typed-ahead text is not echoed until it is actually
transmitted, so the printed record is chronologically
correctly ordered. The typeahead capability is much
more convenient than one would at first imagine.

When entering text on an ordinary terminal, one
has to be alert not to begin typing until the next line
number prompt is complete, or characters will be lost
from the beginning of the line. With this system one
is free to type full speed even if time sharing
response time is slow. Another use is to start a
listing and type ahead the logoff cantrand before
leaving for lunch. After the listing is complete, the
logoff command will be transmitted automatically, thus
eliminating unnecessary connect-time charges.

The keyboard driver takes special action when it
sees the break key while communicating with a terminal
process input queue (k or 1). The break key causes all
typed-ahead text to be discarded, to facilitate
recovery from an unanticipated situation such as a
mistyped cwmand. If it is desired to type-ahead a
break, the control-C character will produce a break
when it is encountered by the phone output driver.

The Qume output driver includes graphics routines
for vector generation and allows production of plots
coded in Tektronix storage display terminal format (see
Fig. 4) or coded in Gencom or DTC format.

A special driver handles putting output characters
into input queues. This has the appearance of a
loop-back mode in which characters appear to exit from
an output queue only to appear again in an input queue.

The TV screen driver writes directly to the
screen, which operates at memory speed and therefore
needs no buffering.

The driver for G merely discards the characters
which it receives. It is a sharable resource.

The Scanner --

The scanner is at the heart of the micro-processor
application software. It contains the command
interpreter, provides for data flow switching, and
implements a useful form of output device sharing. It
is reentrant and many processes use this routine
concurrently. It is started with three parameters: an
input queue, an output queue and an interlock
character. For our typical application the scanner is
normally running with the following queue pairs and
interlock characters.

in out char

process 1 G CR
process 2 : G CR
process 3 k 0 CR
process 4 1N CR
process 5 i DC1
process 6 j G DC1
process 7 Y v DC1
process 8 W N CR

When a process initially enters the scanner, it
requests exclusive control of the input queue. It
retains this control for the duration of the process.
The main body of the scanner is a repeat forever loop
with no exit conditions.

During steady state operation, the scanner reads
characters from the input queue (which was filled by an
interrupt level service routine or another process) and
writes characters to the output queue (which will be
emptied by an interrupt level service routine or
another process). Exclusive control of the output
queue is requested (if not previously obtained) only
when a character has been acquired which requires
outputting. After the character has been accepted by
the output queue, it is checked to see if it was the
interlock character. If it was, then exclusive control
of the output queue is relinquished (otherwise it is
retained). In any case, the input queue is then
interrogated for the next character. This interlock
mechanism allows multiple processes to share output
devices without intermingling lines. The use of
interlock characters other than carriage return (e.g.
form feed) allows other than line by line interlocking
(e.g. page by page).

3

A coded sequence of characters is recognized by
the scanner as a command to switch to a different queue
for input or output. The output can be switched from
the default established at process initiation time to
any other output queue. Another coded sequence returns
the output assignment to the default queue. When input
is switched it remains so until it is switched again or
an "end of data" is encountered. This switching of
input was intended for implementing command files in
subroutine-like fashion and is little used at present,
though it should be valuable when the system is
expanded to include a floppy disk. For loading BASIC
programs from paper tape, the input (of any scanner
process) may be switched to r and the output to x. The
generality of this mechanism allows the scanner to act
as a dynamic "patch-panel jumper". Although this may
seem totally confusing to the uninitiated, the power to
patch software together in this fashion is tremendously
useful. One fact that may not be obvious is that the
coded sequences of characters which do this switching
may be generated dynamically under control of
time-sharing or BASIC programs as well as by being
typed by the operator. Also, the special ability of
the keyboard to drive any input queue allows for
operator intervention by inserting canmand character
sequences where desired in order to make temporary
reassignments of output.

A real example which we have found useful while
running an actual physics experiment2, collecting 40
channels of analog data, worked as follows:

devices queues processes comments

collection:

CAMAC --7 Collect/format data

KB2 ---> 1 --->

PO2

PI2 ---> j ---> scanner
1 TV2 <e-s ‘I <----em- -------

KBl ---> k
PO1 (---

PI1 ---> i ---> scanner --

PRl 1

Thus with one microcomputer
collect data, simulate two computer
an analysis program in BASIC at the

send it through
the scanner.

Merge KB2 commands
to the fast phone.

Terminal output
goes to the TV.

analysis:

Send KBl commands
to the slow phone.

Terminal output
may go to
BASIC, while
BASIC output

is merged with
standard printout.

we were able to
terminals, and run
same time.

The CA?iAC Handler ---

The CAXX handler polls the CAMAC interface until
a data ready condition occurs. It then reads the
event, re-enables the apparatus, formats the event and
transfers it to output queue w which normally is
spooled by the scanner to the output queue N. The
existence of the scanner in this flow is to allow
patching to some device other than N (e.g. T while
testing). if our CAMAC transfer rates were high, we
would go to the trouble of implementing the interrupt
capability in the CAMAC interface hardware and
inserting a queue for use with CAMAC. This queue would
be filled by an interrupt level I/O driver and emptied
asynchronously by the CAMAC handler at a lower peak
rate.

The BASIC Interpreter --

The BASIC interpreter reads from input queue x and
writes to output queue y which is normally spooled by
the scanner to output queue V. The existence of the
scanner in this flow is to allow for patching to some
device other than V (e.g. N to transfer BASIC program
statements or data to the time-sharing system).
Although BASIC on a micro-processor is slow, this tool
is quite useful for a wide variety of problems which
occur from time to time during the operation of the
system (e.g. CAMAC diagnostic programs).

The Time-sharing System --

The time-sharing system runs on an IBM 370/168 and
talks to the outside world through an IBM 3705
communications controller and a terminal processing
system called MILTEN which was developed at Stanford
University.

The Editor --

The WYLBUR3 editor of Stanford University is used.
It has an active file in which editing is done. The
active file consists of a single file of numbered
lines. About 5000 to 20000 lines may be held in the
active file depending on their length. An extensive
associative and explicit editing vocabulary is
available. The active file may be filled from or saved
into the batch file system, the time-sharing file
system, the editor exec file, or a time-sharing
program's data buffers. The active file is paged from
a drum so that it need not be entirely in memory and it
can be recovered if the time-sharing system crashes.

A program of commands may reside in the exec file.
Exec files are useful for simplifying routine
procedures, reducing routine typing, and facilitating
transfers of data and control to and fraa the
microcomputer. The exec file can hold about 250 lines
of commands. Variables, expression evaluation,
transfer of control, and conditional tests are
provided. The exec file may be loaded from the active
file or from a batch file. Exec files may contain or
generate editor commands, time-sharing supervisor
caamands, time-sharing program commands or data, or
active file data. An exec file may be suspended while
the time-sharing supervisor or a time-sharing program
has control, but will resume execution when the editor
regains control unless an invalid command is
encountered or a terminal break occurs.

The Time-sharing Supervisor --

The time-sharing supervisor is called ORViL4 was
developed at Stanford University. It supports a file
system which is built on top of the batch file system
and has some features not available directly in the
batch file system. Although the time-sharing system's
file system may occupy several volumes, and files are
physically scattered over the file system (with index
records to keep track of things), the user merely
refers to the files by name and lets the file system
find them. Space is allocated by the system as it is
requested rather than when files are created. Files
consist of numbered blocks of up to 2K bytes. Any file
may be referred to in direct access mode by referring
to the block numbers. Sequential access is provided by
accessing the blocks of a file in ascending order of
block numbers. File characteristics may be assumed by
a program or specified in a mode word which is
associated with the file. The default format has
blanks compressed and line numbers associated with the
lines. An extensive security system allows controlled
access to individual files or entire user file
structures by read, write and append permits. A quota
system controls the allocation of blocks to users.

Traps may be set, and branches, stores and fetches
may be monitored. Memory and registers may be
examined, changed and dumped to the active file. The
latter allows offline dumps for examination later or
semi-automatic debugging under control of editor exec
files.

4

I

The Data Analysis Program --

The operator types on a keyboard and views output
on a screen and a printer. He need not be aware of the
various components within the system. He simply types
commands (e.g. exec from #reload) which trigger
sequences of actions by the system, including execution
of exec files, execution of time-sharing programs,
prompting for further information, loading of programs
into the micro-computer, initiating processes, and
printing and plotting of information.

The main loop requests the editor to proceed until
it finds an input comxmnd or an exec file ccmnrand which
it does not understand. These unknown canmands are
then passed to the main loop of the data analysis
program which parses the command and looks up the verb
(first word) in its command table. If it finds the
command in the cwmsnd table, it calls the associated
cwmand processing routine. This routine then
processes the command which may include reading more
information from the terminal. If the command is not
found in the command table, it is passed to the
time-sharing supervisor command processor, which may in
turn pass it back to the WYLBUR text editor or to the
MILTEN terminal interface control program. After
successful execution of the command (at any level) or
after an error message (if no match is found), control
returns to the top of the main loop.

A generalized histogramming package known as HPAK5 Fig. 3 A typical laboratory setup using the
is employed. It is capable of both one dimensional and microcomputer for testing CAMAC modules. The
two dimensional histograms and a wide variety of local control station is not visible.
display capabilities. Non-graphical information is
accumulated in the editor's active file for later
processing and printing.

A6graphics system called the SLAC Unified Graphics
System is utilized for the display of graphical
information. It allows the choice of two dimensional
and three dimensional projected plots and of high

Bremsstrahlung Subtraction Spectrum
resolution Tektronix scope and Versatec printer plots.

Acknowledgements

We wish to thank Leonard J. Shustek for help with
. the design and debugging of the early microcomputer

hardware and software. John E. Zolnowsky provided us
with an excellent BASIC interpreter, and helped tailor
it to our needs. Shustek and Zolnowsky also provided
and supported a cross-assembler and EPROM programming
facility. Glenn Herrmannsfeldt assisted in the writing
of the application software for the timesharing system.
We are especially grateful to Justin0 Escalera for his
rapid and accurate work in laying out and constructing
the wire--wrap and printed electronic circuitry. We are
also grateful to Dr. Robert L. Anderson for arranging
suitable working quarters, and to our group leader,
Prof. David H. Ritson, without whose support this
project would not have been possible.

0 5 10 15 20
no. s3b Photon Energy (Gev)

References

1) Simple Versatile CAMAC Crate Controller and
Fig. 4 Typical graphic output from an analysis program

running on a large computer. This plot took
Interrupt Priority Encoder Module - IEEE
Transactions on Nuclear Science Vol NS-22 no. 1.

5 minutes to produce on the microcomputer.
Much of this time is avoided if typewritten

2) Tests of Proportional Wire Shower Counter rather than fancy plotted lettering is chosen.
and Hadron Calorimeter Modules -
R. L. Anderson et. al., Session 2B1,
High Energy Physics Instrumentation -
Calorimeters, this symposium.

3) WYLBUR/370 - SCIP, Stanford University.
4) ORVYL/370 - SCIP, Stanford University.
5) DPAK and HPAK - SLAC report no. 196, C. A. Logg,

A. M. Boyarski, A. J. Cook, R. L. A. Cottrell,
Stanford Linear Accelerator Center.

6) The SLAC Unified Graphics System -
Robert C. Beach, Computation Research Group,
Stanford Linear Accelerator Center.

5

