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ABSTRACT 

The non-uniqueness of Yang-Mills potentials in the Coulomb 

gauge leads to a non-trivial vacuum structure featuring vacuum 

fields of both integer and half-integer topological charge. Instan- 

tons fit in consistently with this picture and their interpretation is 

not changed. Integer and half-integer vacua are connected by 

certain meron solutions and the existence of half-integer charged 

states appears to be important for the confinement properties of 

the theory. 
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The discovery of instanton solutions to the Yang-Mills field equations [I] has 

revealed an interesting structure of the Yang-Mills vacuum [2]. This vacuum struc- 

ture is most easily seen in A0 = 0 gauge [2] and arises from the non-uniqueness of 

vacuum-field potentials in this gauge. More recently, Gribov [3] has pointed out 

that non-uniqueness of Yang-Mills potentials occurs even in the more restrictive 

Coulomb gauge, a so-called physical gauge. In this note, we study the Yang-Mills 

vacuum in Coulomb gauge and find that Gribovts non-uniqueness leads to a non- 

trivial vacuum structure featuring vacuum potentials with both integer and half- 

integer topological charge. We find a similar non-uniqueness in the gauge trans- 

formation which takes the instanton solution into Coulomb gauge and correlate 

this to our Coulomb gauge vacuum structure. The existence of half-integer charged 

vacuum fields does not change the effects of instantons in the theory, but rather 

is related to the presence of meron solutions of the field equations. Recently it 

has been realized by various authors that half-integer charged field configurations 

are those which are relevant to the confining properties of the theory. These fields 

give rise to a large Wilson vacuum-integral[4,5] or a confining Coulomb force [3,6] . 

We begin with a description of vacuum fields for SU(2) Yang-Mills theory in the 

Coulomb gauge. We will characterize these fields by the value of the topological 

charge 

l-1 
tl =- 

24n2 
d3x f ijk 

In the Coulomb gauge a vacuum-field potential AP is a pure gauge 

(1) 

;= U-‘TV, A0 = 0 (2) 

satisfying the condition 

(3) 
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Following Gribov [3$nd Wadia and Yoneya @I, we consider gauge matrices of the 

form 

u = eiu(r) q 
(4) 

Substituting (2) and (4) into Eq. (l), we find that the topological charge for such 

a potential is 

n =-$-o!(r)- 2 
( 

r=oo sin2ar(r) ’ 
)I r=O 

(5) 

In order to avoid singularities at r=O we must require 

[Y(O) = 0 (modulo nn) (6) 

r 

To find the value of Q(W) as needed in Eq. (5) we will analyse the Coulomb condi- 

tion (3). For the ansatz (4), this condition becomes 

v zcu _ sin 2~ = o 

r2 
(7) 

With a change of variable t = JInr, this becomes the equation of motion for a 

damped pendulum 

&!I-&- sin2cr = 0 (8) 

Condition (6) requires that we impose the boundary condition, consistent with the 

linearized form of the pendulum equation, 

Q(t) t -xYet (9) 

for arbitrary 6. This gives us three types of solutions to Eq. (8). For 6 = 0, we 

have the trivial solution o(r) = 0. For 6 < 0, we have the solution o(r) = o r l/2( ) 

where CY~,~(O) =0 and cyli2 (m)= -x/2. Finally, for 6 > 0 we have o(r) = -Ly,,,2(r). 

Substituting these results into Eq. (5) we find three types of Coulomb gauge vacuum 



field configurations, 

and 

Note that 

gauge vacuum 
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X=Owithn=O 

wit&n=+ (11) 

with n = -4 (12) 

since A0 = 0 for vacuum fields in the Coulomb gauge, our Coulomb 

potentials form a subset of those in A0 = 0 gauge. Let us define 

the gauge fields 

Z.7 
-imaq(r) 7 

2.7 

X=e 
imqtr) 7 

Fe 2 , (13) 

A0 = 0, where m is an integer. These are clearly in A0 = 0 gauge, but due to the 

non-linearity of Eq. (7) they are not in Coulomb gauge unless m = 0, 1 or -1. For 

even m, these correspond to the m/2 vacuum fields of A0 = 0 gauge with integer 

topological charge, which have previously been discussed[2] . For m odd, Eq. (13) 

generates a series of vacuum fields with half-integer topological charge. These 

were not considered in Ref. 2 due to the restrictive boundary condition Ury- ” 1. 

Conversely, we can transform A0 = 0 gauge homotopically non-trivial vacua 

into the Coulomb gauge. A representative of an n-th vacuum is given by [2], 

where P(r) = -&an-l 2ar 

( ) r2-a2 
(15) 
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After transforming by U = exp ~QF and imposing the Coulomb condition, we 

obtain, 

gy-,sin2 =o 

r2 

where 

70) = Q(r) + P(r) 

Since 

P(O) = 0 p (m) =n7r 

and 

Y(O) = 0 y(m)=& 0, -g 

W-3) 

(17) 

(18) 

(19) 

we find 

a(0) = 0 (y (-3) = (i-n) 7r, -nn,-($+n) w (20) 

Thus the pendulum rotates exactly the right number of times to cancel the original 

homotopy up to +, l/2. Therefore all the homotopically non-trivial vacua in Ao= 0 

gauge collapse into one of the cases n = 0, l/2 or -l/2 when transformed into 

Coulomb gauge. 

Let us now consider how the instanton solutions fit in with our three vacuum 

fields of Eqs. (10)-(U). Consider the instanton solution 

AP= 
R2 

R2+1 

with 

R2 = 5 xi2 
1=1 

and 

x4 -s--F 

(21) 

(22) 

(23) g= -R 
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Note that as R- 00 the instanton field becomes a pure gauge and that 

and 

-1 gt-+m 

-in 
g7-e --00 

(24) 

(25) 

We have made a detailed study of the transformation taking the above instanton 

solution into Coulomb gauge. We find that this transformation is not unique but 

leads to three types of Coulomb gauge instantons which are gauge equivalent but 

topologically distinct. For large R, the Coulomb gauge instantons can be written 

in the form 

with 

In the three cases we find: 

Case I 

Case II 

and 

Case III 

AP - 
R-m 

y(r, + =J) = 0 

y(r, - 00) = - 7r 

y(r, + 4 = w(r)’ 

y(r, - 4 = - q(r) - T 

y(r, +=9 = -as tr) 

rtr, -9 =Q! (r)-7r 
i 

(26) 

(27) 

(28) 

(2% 

(30) 

defining the three types of instantons. 
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The instanton winding number, 

q=l~~d4x~~[Q,~pv} 

can be written as a surface integral at large R in the form 

‘q=n,-n +A 
I - 

where 

-1 n* =- 241r2 ( 

represents the contributions fror 

/d3x rijkTr j’lpjAkl 1 

t=-p 

(31) 

(32) 

(33) 

n the two temporal boundaries of our surface and 

A= 1 
24~~ J 

dtdSi E i/LUCY Tr AAA 

I I P v Q r= 03 
(34) 

gives the contribution from the spatial boundary. For potentials of the form (26) 

and (27)) Eqs. (33) and (34) can be explicitly evaluated with the resu 

-1 

( 
sin 2y(r, t) 

)I 

r=co 

“f: = T YP, t) - 2 
r=O 

and 

A= + f 
. 

y(r,t)- ‘m 2~(r~t~ 
t=ca 

t= -m 

.1ts 

(35) 
t=+cc 

(36) 
r= co 

Substituting the three cases (28)-(30) into (35) and (36) and using the fact that 

Y/2 (O) = O and v2 
(m) = - 7r/2 we can form the results summarized in Table I. t 

We can now correlate the non-uniqueness of the Coulomb gauge instanton with the 

vacuum structure discussed above. Clearly the type I instanton connects two 

n = 0 field configurations at t = 2 00 with all of the contribution to the winding number 

coming from the sides of the integration surface. The type II instanton connects 
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an n = -l/2 vacuum field at t = -00 to an n = + l/2 potential at t = 00 while the 

type III does just the inverse with a compensating term coming from the sides of 

the integration region once again. 

Finally, we will discuss the relation of our half-integral vacuum fields to 

meron solutions [8,4 ] of the Yang-Mills field equations. The n = l/2 Coulomb 

gauge vacuum potential 

can be approximated, for large r, by the pure gauge field 

3x-z x=i- 
( 1 r2 

(37) 

(38) 

An important difference between (37) and (38), however, is that the singularity 

at r=G of (38) is smoothed over in (37) and does not appear there. Both (37) and 

(38) satisfy the Coulomb condition. A particular form of the meron solution is 

A = 
cr 

When this is transformed into the Coulomb gauge we find the simple form 

(39) 

Thus, this meron can ix considered as a transition field frcm the n=O potential 

x=0 at t =- = to the potential of Eq. (38) with n =1/2 at t =+m. Thus, the meron 

represents a transition from integer to half-integer vacuum states. Note, 

however, that the above meron solution connects the x =0 vacuum to the singular 

n =1/2 vacuum of Eq. (38). We want a field which interpolates between x=0 and 

the non-singular field of Eq. (37). Furthermore, this solution has an infinite 

action. 
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Now the important question is whether there are finite-action transitions 

between integer and half-integer worlds. At present it appears unlikely that there 

exist finite-action solutions with a fractional index, however, even in this case 

there are trajectories in the functional space which start off one of the worlds at 

t =-a come close to the other world at finite t and return to the original one 

at t =+oo. These trajectories would have a finite action. Then the physical 

situation is very much like a resonance between different worlds. Coulomb gauge 

seems to be a convenient one to describe this phenomenon. 
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Note Added : After the completion of this work we received a CERN preprint by 

s. &uito in which our type II instanton is discussed. This subject has also been 

discussed in a recent Brookbaven preprint by R. Jackiw , I. Muzinich and C. Rebbi. 
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Footnote 

* t. In the results of Table I we take the limit t - f QJ before taking the r - 00 

limit of Eqs. (35) and (36). Results for the Pontryagin index q do not depend 

on which order these limits are taken provided that the same convention is 

used in both (35) and (36). This is because the terms at r = .ZJ cancel when 

(35) and (36) are substituted into Eq. (32). 
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Table I 


