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ABSTRACT 

We study the U(l)-Goldstone Model in two dimensions. We for- 

mulate this model on a one-dimensional spatial lattice and show that 

Colemangs theorem (i.e., there exist no Goldstone bosons in two di- 

mentions) is satisfied by the solution found by the variational approach 

of dissecting the lattice into small (4-site) blocks and iteratively con- 

structing an effective truncated Hamiltonian. 
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In a series of papers1 we have developed relatively simple variational tech- 

niques for solving quantum field theories on a lattice and have applied them suc- 

cessfully to construct low lying physical states and to find phase transitions. 

Toward the eventual goal of understanding quark confinement and calculating the 

observed hadronic states on the basis of non-Abelian color gauge theories (or 

&CD) we have thus far applied these methods to simple two-dimensional models 

with known exact properties that were successfully reproduced, These applica- 

tions include, in addition to free massless bosons and fermions, the Ising model 

in a transverse magnetic field and the massless Thirring model on a lattice. We 

conclude this phase of our program by studying the U(l)-Goldstone model in two 

dimensions, This model is of particular interest in view of ColemanDs theorem2 

for the continuum theory which says that there is no Goldstone boson in one space- 

one time dimensions, in spite of the predictions of the naive classical analysis to 

the contrary. The lattice analbgue of this theorem was proved first by Mermin 

and Wagner. 3 Having shown in Paper III that our techniques successfully repro- 

duce phase transitions known to occur in the Ising model, we now further dem- 

ostrate that they also do not predict them when they are known not to occur. 

The basic idea of our variational renormalization group approach is to dis- 

sect the lattice into small blocks, each containing a few lattice sites which are 

coupled to one another by the gradient terms in the Hamiltonian. 4 The Hamil- 

tonian for the resulting few-degree of freedom problem within each block is 

diagonalized and the degrees of freedom “thinned” by keeping an appropriate 

set of low-lying states. We then construct an effective Hamiltonian by computing 

the matrix elements of the original Hamiltonian in the space of states spanned 

by eigenvectors having the lowest energy eigenvalues in each block.5 The process 

is then repeated for the new effective Hamiltonian, whose coupling parameters 
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change at each step. The procedure is iterated until we enter a regime that can 

be handled simply by perturbation theory, either for very weak or very strong 

effective couplings. 

In Section II we formulate the U(l)-Goldstone model in two dimensions on a 

one-dimensional spatial lattice. In Section III we prove by the variational ap- 

proach that this model has no false Goldstone bosons. In Section IV by pertur- 

bative calculations we provide a heuristic explanation of why they are absent. 

II. U(l)-GOLDSTONE MODEL ON A LATTICE 

The continuum model is specified by the Lagrangian density 

The corresponding Hamiltonian, in d = p 9 1 dimensions, is 

(2.1) 

(2.2) 

In the classical limit, 7r = 7r* = 0, there is a one-parameter family of degenerate 

ground states represented by 

~#J,(E) = +feie (2.3) 

with the constant phase angle 8 arbitrary in the interval (-71, 7r), corresponding 

to the minimum of H with zero energy. The naive approach to the quantum theory 

(2.2) expands the field $ about $,, specifying 8 = 0 for convenience 

c@(x)= -A- [o (x)+ ix (x)1 = A- f 

6 ’ a- [ 
u g (x) + i x (x) + 7 

I 
(2.4) 

1/y 
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This leads to 

m2 2 
CT* +- 92 2 mop (aS2+ x2) 

2 
Jzf u*(u +x1+ 4f2 

1 

where 

m2 = 
u’ - 4Af2 (2.6) 

The form of (2.5) suggests that for fixed mass m (T, and large f2 >> 1, we can 

make a perturbation expansion about the free modes for a massive o* field, 

with mass (2.6), and a massless x field, the “Goldstone boson. ” If this were 

valid, we would expect that for f >> 1, <a p > = < x > = 0, and hence from 

(2.4~ I I 1 
<4> =m # 0 (2.7) 

This result is believed to be valid for p = 2 or 3. However, it is known to be 

false for p = 1. This is the so-called Coleman Theorem2 which requires that 

<$> = 0 (2.8) 

for all finite values of f, no matter how large. The failure in the naive analysis 

is the result of infrared divergence in the propagator of the x field when p = 1. 

This expresses the fact that the quantum fluctuations are uncontrollably large, 

leading to (2.8). For fixed m2 u’ , and f2 arbitrarily large, A -0 according to 

(2.6), and we are in the weak coupling region. In the opposite strong coupling 

extreme of rnt , - co , a.nd f2 fixed but arbitrary, so that h - cc , we expect 

from (2.5) that the infinitely massive o q excitations will be “frozen out, ” so 

that presumably only the false Goldstone bosons survive. Study of this region 
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Provides the most severe test of our methods and therefore we shall analyze (2.2) 

in this limit. 6 

First we transcribe (2.2) to a lattice in terms of dimensionless variables by 

writing, 7 with p = 1, 

~ (x) -) ~j = - 2- (xj + iyj) 
a- 

n(x)- 7r. 5 -L (p 
J ~ Xj 

-iP ) Yj 

@+yx) - cq = -L- (Xj 

fl 
- iYj) 7r*(x) - 7r* EL (p +ip ) 

J JF xj yj 
P-9) 

-N 

H=A 
C[ 

1 2 
+,z Py 

j=-N j 

N-l 

The canonical commutators are 

(2.10) 

(2.11) 

with all other commutators vanishing. We observe that diagonalizing (2.10) is 

equivalent to solving the 2(2N+ 1)-degree of freedom Schroedinger problem 

H+jXeN, yBN, .,O..e.+ xj, yj, . . . . o xN, yN) = Ea. 
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where 

1 a 
Px 

j 
=’ iax and = la 

j ‘Yj i ay. l 

J 

We attack this problem by going to polar variables 

‘j 10 

!i s tan -1 
x./y. ; 

J J 
-7r 5 8. 5 7r 

J 

and rewrite (2.10) 

+ r2 j 

+A r2 -f2/2 i il 2 

j -I 

(2.12) 

(2.13) 

N-l 

-A 
c ‘j ‘j+l cos(&-8 J j+l) - +- 

j=-N 

In the limit A ? - oo it is apparent that the radial modes in (2.13) are 

frozen8 at rj = f/ & and the Hamiltonian reduces to 

H -p ( f-co) = n 

The set of basis states 

-- - /2 cos 

with 
im.8. 

Imj>=e JJ 

( 8. - 8. 
J J+l ) I + const, (2.14) 

(2.15) 
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provides a convenient representation for H when we identify 

J3 (8 ] mj > = $ & I mj > 

j 

= mj lmj> (2016) 

and 

f ie. 
J,(j)(mj> =e J lmj) = !mj*l> 

Ln this representation 

“( g2 
: < (j) - $ f2 p+(j)J-(j + 1) + J-(j)J+(j + l)l 

J 
(2.17) 

which describes a rigid planar rotor with all possible integer values mj of the 

angular momenta at each lattice point j. The rotors have moments of inertia /2 i? 

and adjacent sites are coupled by a force proportional to the angle between the 

rotors. For infinite moments of inertia., f”- co, one finds the classical limit of 

the lowest energy state; i. e. , at all sites Bj = eo, with -r < e. ~71. This is the 

same as described in Section I for the classical co.ntinuum limit. Our interest is 

to show by our variational procedure how the ?- term in (2.1’7) modifies this con- 
.2 
I 

elusion and removes the false Goldstone boson for finite 3. For simplicity we 

shall keep 1 = xt -2 finite but small so that we can expand to leading order in 
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III. VARIATIONAL ANALYSIS 

Our first step is to divide the lattice into blocks each containing two sites, 

rewriting the sum over sites as 

where 

j =2pPs 

p=-;N, ...0. , +fN and s=O,l, 

and introducing new angle variables within each block: 

2+p= e2p + e2p+1 ; -7r sz)p 5+n 

(3.1) 

(3.2) 

2+p- f(e 2p - 02p+1); -(n - qp’ s> 5 ‘“-qp) 

Substituting in (2,14) gives (up to an irrelevant constant) 

1 a2 i a2 ---v-- 
2f2 aq2 

P 

(3.3) 

-A c f2 ! yj- cos 
( 
II, 

P 
p+1-+p+ ipp+l+@Pj) 

In the small x: = 1 <CC 1 region the single block terms describe a.n uncoupled 
f2 

rotor and oscillator. In particular up to corrections 0(x:) the motion in qp de- 

scribes a simple harmonic oscillator of frequency w. = fi a,nd mass unity. 

Since the ground state wave function for this motion varies as 

-q2/a - 4;g 
f2 (e2p-e 2p+ 1) 

2 

eP =e , (3.4) 

(3.4) shows that for large f2 >> 1, the variable (0,p - 82p+ .l) is restricted 
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to be very nearly zero. This justifies the quadratic approximation to (3.3) as 

well as the application of periodic boundary co,nditions to qp in the interval (-n, n). 

We can now rewrite the block Hamiltonian (3.3) in this approximation 

H=A c I 1 

2 

- a2 

1 1 2 2 

P \ 
-iTxo 

a+: ----b---w a2 2 2 
a+2 P 

0 
c$ 

P 
+coa 1 

-A 
c 

1 - cos 

P 
2x; 

(q p+l-+p)+x()(@p+l+@ dl 
where 

(3.5) 

2 w. = 2, co = -l/2 xi , 

and 

-“/X0 5 $ P 
I T/X0 

We are now ready to initiate the procedure of iteratively forming higher blocks 

and thinning degrees of freedom. Our basic truncation algorithm is to retain the 

lowest oscillator degree of freedom plus the trivial rotor in each block. Proceeding 

next to coupliag two blocks together in (3.3) we will find the rotor plus three 

oscillator degrees of freedom and our thinning procedure consists of retaining 

just the rotor plus the lightest oscillator per superblock, always truncating away 

the two higher oscillators in constructing the new effective Hamiltonian. This 

truncation is accomplished by taking the ground state expectation values of H with 

respect to the degrees of freedom of these higher oscillators. Formally these steps 

imitate those described in Papers III and IV and will be simply sketched. They 

lead to recursion relations from which we find a soluble fixed form for H which 



10 

describes a theory with no gap in its spectrum but with <J+(j)) = eiej > = 0 

in accord with ColemanPs theorem, where < > d enotes the ground state expecta- 

tion value for the higher oscillators. 

The general form of (3.5) after n iterations and truncations is written 

AH A (n) = c 
P 

- p,cos 
[ 
+ -$ + 6n w,, 1+ GpY p+l P 

4 

Next we perform the (n+l)st iteration, defining p = 2Q + s; s = O,l, where 

P maX = N/2”+l, and rewrite Hn as 

LH A (n) = 

*; 
L 

-a2 a2 \ - - 
a @2a 

2 +u2 2 
a%Q+l 

n @2Q + @iQ+lj ( I 

- pn ‘OS (%Q+l 
[ 

-$2Q) + 6n(q2Q*1+@ ’ 2Q) 
I 

-c On ‘OS [ $2(Q+1) - $2Q+l ’ 6n (@2(Q+l) + @2Q+l)] 
Q 

(3.6) 

(30 7) 

We introduce new angle variables within each superblock vQ9, with $Q and 9 

defined as in (3.2): 
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2‘km = $Q ++2Q+l 
1 

7 'Q = n @2Q+l+%'Q 

2+Q = g (ezQ -+2Q+l) ; 
o! n 

“Q = -i- (@iQcl - +2Q) . (3 8) 
dT . 

In terms of (3.8)) (3.7) becomes 

(n) = 

12 2 2 + 2 wn rQ + vQ 
i i -p, cos 

i 
- &on*Q+ &dnrQ 

1 
I 

I 
(3.9) 

-F ‘n “‘[,, 1 -'Q + $ ($!+ l+'Q)++ (rQ+l+rQ+y+l-vQjj 

We again make the quadratic appoximation to the single Q-block terms in (3.9) 

and diagonalize the resulting system of coupled oscillators, As discussed above 

(3 O 4) this procedure is justified if, in terms of the original 0 parameters, the 

oscillators to be frozen out have sufficiently narrow ground state wave functions. 

We verify this ‘a posteriori at each step of the iterative calculation for f2 >> 1. 

In this approximation the single block terms in (3.9) describe coupled oscil- 

lators in the rQ, 4 variables. To find the normal modes we rotate the coordinates 

xQ 3 rQ cos tn - 4 sin 5, 

eQ = ‘Q sin 5 n -+ $ cos tn 

so that we can rewrite the Hn as 

.(3.10) 
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1 a2 

i 

2 2 
+ $i 

-- 
az + %+l% 

Q 

+; 
t 

a2 -2 2 -- +o 
ax,2 

n XQ 
,i 

x L p,cos fJ! Q+l -QQ+ %cos[n+$sinin 
t i 

(eQ+, +eQ) 

Q 

+ XQ) 

6n +- 
v5 i vQ+l -"a) 

3 

(3.11) 

where 
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and. 

(3.13) 

We now complete the reduction of Hn to the truncated Hamiltonian Hn+ 1 for 

the (n+l)st * iteration by “freezing out” the two higher frequency oscillators in 

the variables vQ and xQ with frequencies wn and Gn, respectively, both of which 

are greater than wn 9 1” Specifically we take the expectation value of (3.11) using 

normalized ground state oscillator wave functions of the form 

l- 2 1 2 

i-I e- z wn xQ e- 2 “nvQ 0 
Q 

(3 O 14) 

Comparing the result with Hn in (3.6) we see that the truncated Hn 9 1 has the 
I - 

same form with 

i - dn CO8 5, 2’ * 
an sin tn 1 I 

P = 8; n J 
n-+-l 

6 1 =- 
n+l fl i 

an cos 5, + An sin &) 

‘n-k 1 = WC,) - P, + 2 It Wn+q 

and 
2 a0 s x0 2 = 6; 

2 w. = 2 

P,= -+ 
2xO 

(3.15) 

(3.16) 
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Equations (3.12), (3.13)) and (3.15) provide us with an analytic recursion 

relation for the parameters in the truncated Hamiltonian. The results of a nu- 

merical solution of this relation are given in Table I for x0 = 0.1. As we can 

see, the truncated Hamiltonian rapidly iterates to a fixed form which is, to all 

intents and purposes, the fixed form to which the massless free field would iter- 

ate. In particular, the oscillator frequency, wn, goes to zero like 1/2N or 
-1 (volume) . Thus we find that the gap to the lowest lying state above the ground 

state of this model vanishes as l/(volume), and we are dealing with a massless 

theory. It is apparent from (3.11) and (3.12) that the higher oscillators have 

frequencies in the ratio u”,/u”,+ 1 - 2 and G:/w~+~ - 2” to the lowest one that 

we retain. 

In order to verify that our procedure satisfies Colemanvs theorem, we must 

show that 

where < >N denotes the ground state expectation value (3.14) with respect to 
th the higher oscillators after the N iteration. We find by the same steps leading 

to (3.15), 

<eiej>N = pN/po = e 
-No Kx; 

and K is a constant. The dependence on xi is explicitly shown as deduced from 

(3.15) and (3.16), in the sixth column of Table I for x0 = 0.1, and in Table II 

for x0 = 0.01: K - 0.368. Since the volume is proportional to gN, we have 

PNxe 
-c{QnL \ x: 

PO 

which is the result one obtains heuristically by evaluating the expectation value 
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of ,W) for a massless free field in one space-one time dimension.’ The var- 

iational analysis described here applies to the f2 >> 1 limit of (2.14). In the op- 

posite limit of f2 << 1, the theory switches over to one of massive excitations- 

a result which has recently 10 been obtained by going to a dual lattice formulation 

of the X-Y model and then discussing vortices in the path integral formulation of 

this theory. 

The occurrence of such a transition to a massive theory is evident from an 

inspection of (2.14) or (2.17) since, in the limit f2 - 0, the single site terms 

proportional to l/f2 dominate H.(hJ/2 
f-co)’ 

Therefore the groundstate is the 

unique state (mj = 0) by (2.15) and (2.16) 0 The first excited states of the theory 

have a mass 2/f2, corresponding to any one mJ equal to f 1. We discuss the per- 

turbation about this limit in the next section. From the point of view of our var- 

iational analysis the breakover to this phase occurs when on+ J < P,/2 so that _ 
. 1 

the single site terms grow in strength relative to the coupling terms. Table III 

shows that this happens for x0 ;L 1. In this region we have to be more careful 

in taking account of boundary effects since the Gaussian approximation (3.4) to 

(3.3) breaks down but the analysis is still straightforward. 

IV. HEURISTIC PERTURBATION TREATMENT 

Having shown that our lattice techniques do not predict a non-vanishing ex- 

pectation value for 4. , 
J 

in this section we carry through a perturbation treatment 

in order to provide a better heuristic understanding of the mechanism that pre- 

vents this occurrence. In particular, we want to show why Goldstone bosons dis- 

appear for ,arbitrarily large but finite f2 , although the f2 - 00 limit is a classical 

theory with Goldstone bosons. In other words, why canvt we do perturbation 

theory in l/t2 << 1 ? 
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For f2 << 1 which is normally called the strong coupling limit, since the 

gradient term in H is small compared with the single-site potential terms, we 

have a uaique ground state to the theory. It corresponds by (2.17) to the eigen- 

state of 

N 
Ho = A 

c 
L J2 (j) 

j=-N 
f2 3 

with all rotors in their ground state-i. e. , 

mj 
= 0 for each j 

To first order the perturbation 

N-l 

HI = - iA,’ 
CL 

J, 6) J- (j + 1) + J- (8 J, 0 + 1) 
I 

j=-N 

(4.1) 

(4.2) 

(4.3) 

has no effect on the ground state section. It does, however, lead to a first order 

shift in the 2(2N+ 1) fold degenerate sector of first excited states, in which any 

one rotor is excited to mj = * 1. By standard degenerate perturbation theory we 

find these states split into two degenerate momentum bands with 

L - ;f2coskp+ . ..00.. 
f2 t 

for f2.c l;kp=&- (4.4) 

Thus the theory has a mass gap 

AE”-A ’ - 
7- 

fv 2 

and the ground state remains unique for f2 << 1, so that 

(‘Ire 1’ c$j po> = f (*. ] eiej I*o> = 0 

(4.5) 

(4.6) 
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and there is no Goldstone boson. Note, however, the gap begins to narrow in 

(4.5) with increasing f. 

Turning to the limit f >> 1, we first show the failure of a perturbation ex- 

pansion in terms of (4.1). A convenient product basis for diagonalizing (4.3) is 

in terms of 

* = jlj lej) 

where 

and 

e = 6 (ej - ej” ) . 
m=-oo 

Since 

hi& 
J,(j) lSj> =e J ;ej> ’ 

we find 

N- 1 

kf” c COStej+l -ej) 

j=-N 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

In this limit we have a classical description, since the conjugate variable 

to 8. , i. e. , 
J 

-ia/Mj has been dropped with the neglect of (4.1). Equation (4.10) 

tells us that there is a one-parameter family of ground states 
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PO(F) with 8. = r for all j 
J 

(4.11) 

where 

These are l*classical” states with energy 

EI = - (2 N) A f2/2 (4,12) 

and with a non-vanishing value for 

in apparent contradiction to Colemanvs theorem. When we now treat (4.1) as a 

perturbation on these states, we find 

c 
m2 

= R (2N+l) m=;a =CO 

f2 

c 

1 
m=-ci0 

(4.13) 

which evidently diverges. Thus the effects of correcting the classical 30 

limit cannot be perturbatively analyzed for the theory as formulated. We can, 

however, proceed perturbatively if we cut off the sum over rotor excitations at 

a finite Mmax and study the disappearance of the Goldstone bosons in the 

Mmax -, co limit. 

A finite Mrnax cutoff on the sum over m can be imposed simply by appending 

to (4.8) and (4.9) the definitions 



(4.14) 

so that 

J,(j)lm’, = Im%l> , . 
J j 

for Irnl < Mmax 

(4.15) 

This requirement is equivalent to discretizing the angle variable ej at each site 

so that it can only take on (2Mmax + 1) values 0 -i. e. , in place of (4.8) we write 
P 

1 

J 2Mmax+I 

+“max im 
27rn 

T e 
2 Mb=+1 

/1 - 
m=-M max 

(4.16) 

where p is an integer: -Mm= s p s Mm=. The classical f2 - co limiting re- 

sults of (4.8) - (4.10) still obtain except that there is a discrete set of (2Mmax+ 1) 

permitted values of the parameter 

i. e. 2np 
‘-2M +l ’ max 

(4.17) 

For the (2Mmax + l)-fold degenerate ground states the mtegers pj assume the 

same value at each site. In the limit of Mmax - co the ground state is infi- 

nitely degenerate and we retrieve the classical Goldstone picture. The lowest 

lying excitations correspond to “micro-sharp kinks I’ for which p jumps by its 

minimum step 

27r 
a’ = 2M-+1 (4.18) 
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at oae lattice point 8. These configurations are generated from the degenerate 

vacua by the operators 

N 

ai60x J,(j) 

4*(Q) = e j =I 

. 1. e. , 

9*(Q) = Q*(Q) I*,> 

and have energies, to leading order in f, 

f2A E(Q)=-f2AN+~ 2n 
1-cos2Mmax+1 \ 

I 

(4.19) 

(4.20) 

+1 

Next we compute the energy shifts due to (4.1) for the ground state PO and 

the excited kink states. Analogously to (4.13) we find that the ground state is 

shifted up by 

(2 N+ 1) 

+“max 

i i 
c 

2 m 
m=-M max’ ,. 
+M 

max 

c 
I 1 ’ 

m= -“IIMX I 

= h (2N+l)D(O) 
f2 

~&(2N+l)$$~~ for Mmax >> 1. 
f2 

(4.21) 

To calculate the energy shift for the kink state, we compute first the matrix 

elements of (4.1) among the degenerate states for different values of I: 
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where 
M 

max 
1 

D(6e) _= 2Mrnax+l c 
,2 eim6(0) 

m=-M max 

The perturbation is diagonalized in a momentum basis 

emikL I*m> 

(4.22) 

(4.23) 

whose first order eigenvalues are 

E(k) =Eo+f2+ (1 - cos 66) +n[(2N+1)D(0)+2D(68)cosk] 
f2 

(4.24) 

From (4.20) - (4.24) we find, to order 1/f2, that the gap between the micro- 

kink and the ground state is 

2R AE(k) = f2 $ (l-cos68) -I=-- 
f2 

D(68) cask for f2 >> 1 . (4.25) 

For 60 as given by (4.18) for large Mm,, (4.22) becomes 

D(68) = - 2 M2,ax /7r2 

and the mass gap, AE(k = 0) in (4.25) is 

AE (0) Z A - 4MLax /Tr2f2 
I 

(4026) 
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Equation (4,26) shows that for 

(4.27) 

the micro-kink states cross below the (2N+ l)-degenerate would-be ground 

states. As Mmax - co (4.27) is satisfied for all finite f2, In fact, one can - 

construct micro-kink states that lie still lower than the single kind (4.19) by 

applying $+ (li) many times and building up a series of steps of the form (4.18). 

An example is the class of states built from (4.19) with r micro-kinks, i. e. , 

i+. 
Furthermore when r 2 2 Mm= 9 1 the evaluation of <!I! (r) 1 e’ j ‘q(r)) gives 

zero since each phase contributes, and the sum of the roots of unity vanishes. 

As a final comment we note that these low lying micro-kink states which 

cross below the vacuum states are unique to one dimension. In higher dimen- 

sions they would require a line or surface of kinks rather than just one single 

step and therefore would be higher in energy by an amount diverging as L - a 0 

CONCLUSION 

We have demonstrated that our iterative procedure of constructing an ef- 

fective lattice Hamiltonian when applied to the U(l)-Goldstone model in two di- 

mensions leads to a solution in accord with Coleman’s theorem. Adding this to 

its earlier success in reproducing known exact features of the transverse Ising 

and Thirring models we believe this technique is now ready for application to 

gauge theories in three and four dimensions in quest. of answering whether or 

not QCD can provide a basis for understanding quark confinement, Our interest 
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lies in this direction. There is of course much more work that should still be 

done with these calculational tools in further analyzing the cutoff models that 

we. have already discussed in this and preceding papers. For example, analyses 

of the equations of motio.n, operator product expansioas, current algebra rela- 

tions, Lorentz invariance, and of an SU-2 Goldstone model are of considerable 

interest in their own rights. We leave these problems as “exercises for the 

reader. ” 
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Table Captions 

I. The notation in this table conforms to that given in Eq. (3.15) exce 
ZP 

for 

the definition of Kn. This is defined by the relation /3,+ 1 = e 
-KnxO 

P n’ 

Note in particular that U: decreases by a factor of 22 for each iteration 

and hence uN cc l/zN Oc (volume) -1 . 

II. This table is included to show that for both x0 = . 1 and x0 = . 01 the itera- 

tion is basically the same up to a scale factor. The fact that a”, and 

2 wn both drop rapidly with respect to p, tells us that the oscillator approxi- 

mation is valid at all stages. 

III. This table shows that when x0 >, 1 we can no longer apply our oscillator 

approximation. It breaks down in the * sense that p, tends to zero faster 

than CX”, and wi, which means the Gaussians see the boundaries of the 

region in 8 and one must use Mathieu fu,nctions to iterate. The columns 

(ad2 and (u,)~ are not significant except insofar as they show this effect, 

and the large positive values of cn for n > 1 show that the Gaussian ap- 

proximation is quite poor. 


