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ABSTRACT 

We investigate the possibility of a realistic hadrodynamics based solely 

on observable currents. The basic idea is to exploit the soliton generation 

in bosonic chiral theories as a mechanism for finding the fermionic represen- 

tations of current algebra. A prototype realization is Skyrme's O(4) invariant 

theory of pions and nucleons. A comprehensive reexamination of this model in 

the context of chiral dynamics suffices to reveal a strikingly self-consistent 

dynamical picture. First a differential geometric formulation gives the proper 

framework for a chiral invariant quantum theory of solitons and allows a com- 

pact derivation of Skyrme's main results. While no exact analytic solution is 

found, the solitons are sufficiently localized so that their singularities can 

be properly isolated out for analysis. Using Witten's ansatz, a determination 

of the form of the 1-soliton singularity is obtained from the field equations. 

It is given by Cayley's stereographic projection from S3 to R3UIm}"S3; a 

most suitable form for the proof of spinor structure. Williams' proof that 

the quantized 1-soliton sector gives rise to fermionic spin states is re- 

called. It is argued that the topological dynamics of this sector induce an 

invariance group K = SU(2)I x SU(2)J and its associated strong coupling iso- 

baric spectrum for the nucleons. The associated current algebra is derived 

and resolves the main difficulties of the Sugawara-Sommerfield program. The 

signature of a field theoretical bootstrap is clear: massive nucleons as 

soliton bound states of Nambu-Goldstone bosons illustrate a dynamical mechanism 

dual to that of Nambu and Jona-Lasinio. 
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1. CHIRAL SOLITONS AS HADRONS 

Strong interaction physics have long been in need of both new conceptual 

and nonperturbative computational methods. While a colored gauge theory of 

quarks and gluons is held as a paradigm [l], in actual practice the complexi- 

ties of the strong coupling regime have thus far empeded any real confrontation 

with the data on hadrons. In the infrared limit of QCD where the hadronic 

spectrum is to emerge there exists the issue of the proper collective coordi- 

nates to use in the resulting effective description of hadrons. Thus one has 

the boundary conditions of current algebra, PCAC etc - that is one expects a 

dynamical derivation of chiral dynamics. 

A possibly viable alternative or supplement to QCD, at least until the 

latter yields physical results, is the soliton approach to hadrodynamics [2]. 

Here one observes that the lack of progress toward a field theory of hadrons 

could well be due to the old belief in the crucial role of quantum mechanics 

in having stationary bound states to relativistic field theories. That it need 

not be the case has been demonstrated for solitons, which are in fact bound 

states already at the classical level. Whence they can be treated as a non- 

perturbative Born term dominating a suitable weak coupling expansion of the 

S-matrix. For a many body system like a hadron, the prospect of a more intui- 

tive and reliable semi-classical description is preferrable to a still intrac- 

table quark dynamics. 

Currently, the existence and properties of exact pseudoparticle solutions 

underscores the importance of the aesthetic geometries of Yang-Mills and grav- 

itational theories [3]. Formally akin to general relativity, chiral dynamics 

is intrinsically nonlinear and endowed with a very appealing geometric struc- 

ture. The methodology of chiral dynamics is clear; it aspires to be a quantum 
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field theory of strong interactions and lays no claim to be a fundamental 

theory of matter. It only purports to describe a limited range of low energy 

phenomena by dealing with the observable degrees of freedom, with the epiphe- 

nomena of possibly more basic hadronic interactions. A casual comparison with 

solid and liquid state physics readily identifies chiral dynamics as the 

relativistic analogs of the mean field, Landau-Ginzburg equations describing 

the physical realizations of spontaneous symmetry breaking. Instead of in- 

quiring into the origin of the symmetry breakdown, one simply postulates a 

dynamical symmetry and explores its consequences. From the technical side, 

while the domain of applicability of phenomenological Lagrangians is usually 

restricted to the semi-classical approximation, the empirical success at the 

tree graph level has induced some to take chiral dynamics more seriously [4], 

to develop for it a consistent quantization scheme [5]. Chiral dynamics is 

not explicitly renormalizable, yet it has been hoped that its geometric non- 

linearities might be such that a mechanism of compensation of divergences may 

render physical results finite. Support for this idea is indicated by the 

good agreement with the data given by computations at the one and two loop 

level in a superpropagator regularization quantum chiral theory [6]. 

From the above perspective, it seems important to test how far chiral 

dynamics in fact can be pushed, what physics besides the tree graph results 

can be extracted from the geometry. Specifically, the phenomenological rele- 

vance of the semi-classical approximation, a rather unique case in strong 

interaction physics, naturally invites excursion into the soliton sectors, if 

any, of nonlinear chiral theories. Just as the usual chiral dynamics is 

analogous to the dynamics of the homogeneous phase of ordered media, be they 

superfluids or liquid crystals [7,8], the study of chiral solitons should 
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parallel the classification and dynamics of the defects or inhomogeneities in 

these media. In the latter, such observed singularities have been successfully 

accounted for by the mean field hydrodynamic description. It is pertinent to 

inquire whether chiral dynamics similarly generate singularities which upon 

quantization may be identified with observable hadronic states. 

Before summarizing our work, it is helpful to briefly recall the salient 

features of topological chiral solitons which remind us of hadrons [9]. 

1) They carry an exactly conserved homotopic charge, a consequence of 

vacuum degeneracy. This dynamical charge is localized arbitrarily 

and provides an ideal candidate for a baryon number. 

2) They are extended and interact strongly. 

3) They are very massive compared to the masses of the fields in the 

Lagrangian. These features coupled with the existence of a rich 

spectrum of bound states emerging from one or a few fields have been 

the key advantages of a soliton approach to hadrons. 

In a series of pioneering papers, Skyrme [lo] first saw in the soliton 

generation a unified mechanism to have both mesons and nucleons from a quan- 

tized bosonic field theory. The latter are to be bound states of the former 

in contrast to the Heisenberg-Pauli [ll] and Nambu-Jona-Lasinio philosophy [12]. 

To Faddeev [13], who espouses a more fundamental view of chiral fields, a local 

gauge invariant extension of Skyrme's model is taken as a good prototype theory 

where the strong interactions emerge from the weak and electromagnetic forces. 

Our own goal is more modest. We only aim to test the overall consistency and 

the scope of the physics of chiral solitons at the semi-classical level. Such 

a preliminary step seems advisable particularly in light of the a priori very 

intricate mathematical structure of a quantum soliton expansion [6] and/or 
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more realistic models involving gauge fields [13]. For our purpose, it suf- 

fices to critically examine Skyrme's original model in light of the objectives 

and current understanding of chiral dynamics. Keenly aware of the mutual ex- 

clusivity between mathematical rigor and realistic models, we have chosen a 

possibly optimal attack of the problem. Namely our main effort is to extract 

as exact and coherent a dynamical picture of Skyrme's model as its rich topo- 

logical structure can divulge at the semi-classical level. At the same time 

past questions and answers in chiral dynamics, dynamical groups and current 

algebra are brought to bear on the problem. As will be apparent, a synthetic 

view is gained already at the level of a still preliminary investigation. 

In succinct terms, Skyrme's model is an SU(2)@SU(2)-O(4) invariant 

chiral theory of pions. While the standard nonlinear pion Lagrangian is 

quadratic in the group currents, Skynne's has an additional piece, quartic 

in these currents, which allows the evasion of "Derrick's theorem" on static 

three dimensional finite energy solutions [14]. We identify this quartic term 

as a possible term in one loop quantum correction in the context of Slavnov's 

chiral quantum theory. By use of differential geometry a la Cartan, we first 

reformulate Skyrme's essential results in a compact and transparent form 

ideally suitable for an eventual quantization. While the model does not 

appear to admit exact analytic solutions, we can still extract key physical 

features. By exploiting the geometric parallel between our chiral problem and 

the Yang-Mills Instanton, we make use of Witten's ansatz [15] to parametrize 

the soliton solutions. Mainly, we show that near the origin, the center of 

the soliton field configuration, the spherically symmetric 1-soliton solution 

to the field equations is exactly given by the standard stereographic projec- 

tion from S3 to R3U{a], of degree 1. In other words, the nontrivial 
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topological structure is localized arbitrarily near the origin where the pion 

fields have a singularity, a simple zero. This Cayley map of degree 1 is the 

key ingredient in Williams' proof of spinor structure for the quantized l- 

soliton sector [16]. For completeness and logical cogency of our work, we 

give a compact reformulation of this topological proof. Two other developments 

also constitute new contributions by us. As a supplement to Skyrme's collec- 

tive coordinate treatment of the point singularity [17] we deduce from the 

topological dynamics an effective invariance group K = SU(2)J@ SU(2)I and its 

associated isobaric spectrum for the quantized 1-soliton sector. Thus on the 

one hand, Skyrme's model describes the dynamics of Nambu-Goldstone bosons, the 

pions, as they locally restore chiral symmetry, the nucleons emerge as classi- 

cal soliton bound states with homotopic baryon number and dynamical fermionic 

spin. On the other hand, this model can equally be viewed as a remarkable 

canonical realization of the Sugawara-Sommerfield dynamical theory of cur- 

rents [X3]. We derive the associated current algebra and show the key diffi- 

culties of the Sugawara model to be resolved. Mainly from the soliton genera- 

tion mechanism and the SU(2) nature of the model, the quantum soliton has 

baryon number and its associated half-integral spin and isospin states with 

the usual connection between spin and statistics. One witnesses here the 

distinct signal of a field theoretical bootstrap dynamics among hadrons. This 

fermionization mechanism is seen as the obverse of Nambu and Jona-Lasinio's [12 

Our work is organized as follows: In Section II the elements of chiral 

geometry and topology are written down for later use. In Section III Skyrme's 

model is formulated in a chiral invariant manner, the essential motivations for 

its choice are given. An ideal form for the soliton "singularity" of degree 1 

is justified via a Witten-type ansatz applied to the field equations. In 

I. 
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Section IV we include Williams' proof of admittance of fermionic spin for the 

quantized 1-soliton sector. An effective strong coupling dynamics is deduced. 

In Section V the current-algebra of the model is derived and its implications 

discussed. In Section VI we comment on the connections between our work and 

the algebraic approach to quantum field theory. In closing we define several 

directions for further research. 
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11. CHIRAL GEOMETRY AND TOPOLOGY 

We recall that chiral dynamics is in essence the dynamics of Nambu- 

Goldstone bosons, e.g. pions (rnn = 0). As there exists no 3-dimensional linear 

representation of the chiral group SU(2) x SU(2), the pion fields were taken 

to transform as the 3-dimensional nonlinear realization which is a representa- 

tion of the group in a curved Riemannian space [4]. This means that chiral 

symmetry is an interaction symmetry not shared by the asymptotic fields. Gen- 

erally then the mathematical framework of chiral dynamics consists in the co- 

ordinatization of some homogeneous space M by the Nambu-Goldstone fields $' 

(p = 1,2,...,n), n = dim M. The Riemannian manifold M has a transformation 

group G and is realized as a coset space M = G/H. H is a maximum subgroup of 

G and leaves the vacuum invariant. Cartan's differential forms provide a 

manifestly chiral invariant formulation, independent of the coordinate basis 

P. It turns out that they also form the most natural framework for the dis- 

cussion of the topology of chiral solitons as well as for a proper quantum 

soliton expansion by the background field method. To prepare the ground for 

the latter procedure, it will be useful to gather here the essential ingredi- 

ents of the geometric approach [5,6]. The latter may not be widely known and 

its particular suitability for a quantum theory of solitons may be a new and 

important point of this section. 

In a Riemannian n-space M with local coordinate 9' (1-1 = 1,2,...,n), let 

any set of n linearly independent vectors e -(i) (do) f orm a complete vector 

basis, a "rep& frame" at each point. Greek indices refer to the coordinates 

P and tensor components with respect to them. Latin indices refer to the 

frame z(i) and transform like scalar under coordinate transformations. So 

are the contravariant components of the vector e -(i)' The frame dependent 
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components of the metric tensor are g.. f B 
g&3eYi)e(j) = !?(i)?(j) which has a sym- 

=J 
(i) 

. . . . . . . 
metric inverse g lJ, glJgik = 6;. One also defines the dual basis e 5 g17ecj) 

with e(i)e(j) = cS!. 
J 

The key differential forms that can then be introduced are 

1) the set of l-forms 

wi(d$) = eAi)dGa (2.1) 

associated with the e(u). Solving for d@" gives d$" = eTi)wi, a "translation" 

2) The n2 connection l-forms 

i ' 
fJJ. = r= 

jk 
uk 

J 
(2.2) 

the I" 
jk 

called Ricci coefficients are the n3 numbers, scalars under coordinate 

transformation 

I& E -e (i) B 
Blve(j) ek) 

where 

'Tj) IrdQ 
8 

(2.3) 

and the covariant differential De s(j) = ecj)(x + dx) - e(j) (x). so I-= * yield 
jk 

the components of the covariant derivatives of e (a) w.r.t. the reper frame. 

Furthermore 

De(i) = -,i,(j) , 
. 

j 
De(j) = !?(i)wi 

(2.4) 

which are "rotations." 

3) Given any l-form E = Aad$a = A,@" the Riemann tensor R" 
BY6 

is defined 

A6/4a - A$lay = AaR;y6 

and the Ricci tensor is R 
a@ 

= R' 
aBu' 

The curvature 2-forms are 

(2.5) 

i-li k R Rj = 2 Rjkilm Am , (2.6a) 
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the torsion form is 

$ = 1 si J ,., uk 
2 jk 

Adenotes the wedge or exterior product. The Cartan equations are 

ds2 = ga8d$"d@ = . ' gij wlwJ 

for the metric, with d denoting exterior differentiation and 

(2.6b) 

(2.7) 

doi + co; A uj = Qi (2.8) 

(2.9) 

are the first and second structure equations respectively. They summarize the 

essence of Riemannian geometry and form the roots of the chiral geometric de- 

scription [4,5]. In a space coordinatized by aa in a certain basis depending 

continuously on the parameters b i , the forms w1 define a vector da", w1 = 
. . 

wi(a,b,da) while ~3 = wi(a,b,da,db) defines a transformation of a vector under 
. . 

a basis change dAi(a,b) = -ui(a,b,O,db)A' and the covariant derivative 

DAi - Ei ’ * da + mi(a,b,da)AJ 

Now if the holonomy group H of the space M is a subgroup of G then 

wi(a,b,da,db) = (Aa): e"(a,b,da,db) 

(2.10) 

(2.11) 

are given by a linear combination of the generators Xa of H. Greek indices are 

to distinguish entities in H. If furthermore M is a homogeneous space on which 

G acts transitively then the structure equations (2.8)-(2.9) become 

dwi = gawk A ea + 3 C;;&Ok A 2 (2.12) 

(2.13) 
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. . 
such that Cia, C ti, 

a 
Cza and CBv are the structure constants of the group G 

with the algebra 

[Ya, y81 = iCigYy 

[\, Ya] = i&Xi 

[ I xk’ xI1 m = iC&,Ya + iCkaXm (2.14) 

The Ya are the generators of H and Xk those of the coset space M = G/H, taken 

in the adjoint representation. When G(a,b) = K(a)H(b), the form w1 and ea are 

defined through 

G-'(a,b)dG(a,b) = iwJ(a,b,da,db)Xj + iea(a,b,da,db)Ya (2.15) 

For the manifold of any semi-simple group, M is a symmetric space 

Rj ~~!Llrn = 0, one has Cfk = 0 so that from Eqs. (2.8) and (2.9), one gets U: = 

Ciaf3' and Sf 
Jk 

= 0 and Rika. = -CiaCze. 

To compute the Cartan forms ui and 8" which constitute the basic building, 

blocks of chiral dynamics [5], it will turn out that for a quantum theory of 

chiral solitons the coordinate system to expand the fields is the normal frame 

(N) = given by the geodesic parametrization of M, Ga exp(ixkak). Let xk -f a k t. 

The structure equations (2.12) and (2.14) become 

dai + akGi 
k 

. 
at;: = -R*. 

eJk 
aJ 2 

where 

i ' -i w =a'dt+w , ;i(t,aj,dak)t=O = tii(aj,dak)/t=O = 0 . 

(2.16) 
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Then the solution to Eq. (2.16) is 

(2.17) 

where&!; = being constants. 

For G = 0(4)xSU(2) x SU(2), of interest to us here, the above series sums up 

ui = (dai + (6ia - F)(y - $da') 

and 

,B= * k -aJda cBjk 

(2.18) 

(2.19) 

(a = &G) 

We shall have occasion to encounter these explicit forms. 

So far our formalism applies to the classical chiral theory. To go over 

to a quantum theory [5,2] the key object is the generating functional for the 

S-matrix (in> . . 
d4x[L(w(a,da),e(a,da))- dladrln 

i 
(2.20) 

written in a. form with sources. N is the normalization, IIdv(a), the invariant 

group measure and T (in> the asymptotic fields. 

To have a proper soliton expansion, the geometry of the Riemannian space 

again enters crucially. Indeed one needs in any semi-classical expansion of 

(id w(n ) to properly separate out the "classical" fields 0, from their "quantum" 

fluctuations 4 over which integrations are done. Namely, if one wishes for a 

compact chiral invariant perturbation theory in which there are no reductions, - 

then the usual shift of fields a -+ @c + C$ should be understood as a vector 

addition in the curved space M = G/H of the Nambu-Goldstone fields, i.e., 
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G(N) ~ G(N) G(N) 
a @c 4 

(2.21) 

which has an easy geometrical interpretation: it determines a normal coordi- 

nate system with the origin at the point $c such that the coordinates of the 

classical field 4, are themselves normal coordinates. 

We now comment on the topology of chiral solitons in general. We seek 

finite energy, static, topological solutions to some chiral model built on a 

symmetric space M with transformation group G. The first step should be the 

homotopic classification of the solutions allowed by the field equations and 

boundary conditions. Typically the Lagrangian has the geometrical structure 

of the line element Eq. (2.7) 

6: = gij waM&$ (2.22) 

The energy finiteness condition then requires that the fields $i be constant 

at spatial infinity or equivalently that U j-+-i,,' I (see Eq. (2.24)). This 

condition implies that the soliton fields are classified according to the 

homotopy classes of the maps from S3-R3U{m] into M. While we will specifically 

deal with the more familiar instance of M = S3 the general classification prob- 

lem and that of finding the topological currents for an arbitrary manifold M 

has recently been studied by the powerful method of de Rham cohomology [20]. 

It turns out that in the case of maps into a Lie group the cohomological in- 

formation is the same and not less than that provided by homotopy theory. 

Since it is not possible for us to comprehensively yet briefly summarize the 

results, we urge the reader to consult Isham's work as an ideal topological 

complement to the general geometric formalism given here. 

Having specified the general geometric and topological formalisms, we now 

mention two explicit chiral systems. One example of a nonlinear manifold M is 
n 

the 2-sphere SL% SO(3)/SO(2), the coset space of the two dimensional continuum 
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classical Heisenberg ferromagnet [21]. The nonlinear field on S2 is the unit 

vector field $ = ($ +2 9 @ ), $ = 1 describing the spin waves or magnons. 1' 2' 3 Its 

3-dimensional counterpart is the manifold S-)x SO(~)/SO(~)ZSU(~)X SU(2)/sU(2), 

the 3-sphere coordinatized by the unit quaternion (9 = ($,$"), 02= II with $ 

being, say, the triplet of pion fields [22]. Skyrme's model is of this 

type 1101, and will be discussed next. 

Specifically, consider at each space-time point x 
!J 

a quatemionic field 

U(x) = o" + i?*$ which takes value on the nonlinear manifold M = SU(2)x SU(2)/ 

SU(2) -,SO(4)/SO(3)% s3. Indeed U(x) is represented here by a unitary, unimod- 

ular 2x 2 matrix taken in a doublet spinor representation of SU(2), T being the 

Pauli matrices; M is parametrized on a unit sphere S3, the natural habitat of 

unit quaternions. Since S' is embedded in a four dimensional Euclidean space 

E4' the group O(4) carries this hypersphere into itself and is the largest 

group of isometrices of S'. 0(4)~SU(2)x SU(2) acts naturally on S3 by the 

left and right shifts 

fiLg = 6rlg , ARg = 865 (2.23) 

g being a point in the group manifold of SU(2) and 6n, St infinitesimal ele- 

ments of the SU(2) algebra. 

The above shifts correspond to the left and right screw motions, the two 

kinds of absolute parallelisms which by Adams' lemma exist on 4 remarkable 

spheres, one for each Hurwitz's algebra [23]. They are the spheres Sn, 

n= 0,1,3, and 7 coordinatized by the unit real, complex, quatemionic and 

octonionic numbers respectively. 

For fixed x, U(x) is a group element of SU(2), hence it obeys the same 

equation as g in Eq. (2.23). Similarly the counterparts of the Cartan l-forms 

in Eqs. (2.1) and (2.15) are the coordinate invariant left local group currents 
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(2.24) 

also written as 

4a(x> (a=1,2,3) being the local coordinating field. 

The Lu remain invariant under the left-shift U + GU and transform as 

L -+ G-lL G under the right-shift U + UG, G is a global isotopic SU(2) rotation. 
lJ 1-I 

Of course, the converse is true for the right group current R = (a,U)U -1 
1-1 

, which 

could equally well be used as basic objects with which to construct chiral dy- 

namics. 

Now if of all possible fields U(x), we only select the particular subset 

which obeys the would-be energy finiteness condition 

U(x) s 1 (2.25) 

true at all times t. Then at any fixed t, U(x) or LP(x) maps the physical 

space R' into the group SU(2). The condition Eq. (2.25) implies that all points 

at infinity of R3 are identified with a single point and mapped into the unit 

element; R3 can be continuously deformed onto S3 N R3U{m}, it is compactified 

onto S . Hence we have the equivalent mappings 

Li 
: s3 +- s3 (2.26) 

In consequence, the phase space of the Li(x) with condition Eq. (2.25) is split 

into an infinite set of topologically disconnected components, the Chern [24] 

classes of l13(SU(2))z n3(S3)XZm l Zo3 denotes the additive group of the inte- 

gers which are the Brouwer degrees of the mappings. Any two mappings of the 

same class can be continuously deformed into one another while two maps belong- 

ing to different classes cannot. Examples of such deformations or homotopies 

are a global SU(2) rotation or a time evolution. So the degree of a mapping 
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is a homotopic invariant, hence a conserved entity irrespective of the dynamics 

of the system. It depends solely on the periodicity of the field U(x) which 

arises from the compactness of SU(2) and the condition Eq. (2.25). 

We proceed to write the degree of the mapping in terms of the group cur- 

rents LP(x). From the Minkowskian and chiral geometries, it follows that a 

trivially conserved topological current is [10,13] 

(2.27) 

av’B = 0 follows since al-IL 
u P 

= apapRnu is symmetric in u and p, etc. The map- 

ping degree is 

B = $b3x cijk([Li,Ljl Lk) (2.28) 

To see the explicit meaning of B, we use the geodesic parametrization of S3 

GcN) z U(x) = e , (2.29) 

varies within the sphere 0 < $ 7 vf- jr2 1.2r, then 

(2.30) 

3 2 where d a = (a) sin 8dct d0dX is just the 3-dimensional volume element in 

spherical coordinates, the radius being a = $12, the angles 0 I (3 < IT and 

0 I x 5 2Tr. The integral Eq. (2.30) is then proportional to the surface of 

s3; the factor 1/2~r~ is the proper normalization allowed by the compactness 

of SU(2) so that B takes integer values. The Chem number B just measures the 

number of times S 3 is covered in the course of the mapping Eq. (2.26). 

Let us remark that contrary to the case of vortices and monopoles where 

the topological current is axial, here BP is a vector current, a consequence 
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of 0's being pseudoscalar fields, and B has no corresponding dual charge. The 

most remarkable feature of B" is that it is not a total divergence and there- 

fore the charge can be localized arbitrarily in space. This is again to be 

contrasted with the monopole charge whose detection involves Gauss' law, i.e. 

the flux through a large sphere at infinity. All this makes Eq. (2.27) an ideal 

baryon current whose nature is correlated with the existence of three pseudo- 

scalar pions in nature. A topological origin of baryon number is very appeal- 

ing; while the electromagnetic charge distribution of a particle can be 

measured through their form factor, the baryon charge is not coupled to any 

long range field and its measurement is performed through simple counting. 

Its law of combination is exactly that of the additivity of homotopy classes 

in the group I13(S3). 

That the topological charge density can be arbitrarily localized has 

another crucial implication. It means that the topologically nontrivial struc- 

ture of the soliton is concentrated at a singularity, e.g. a zero of the pion 

fields. Chiral dynamics has its exact counterpart in liquid crystals and 

nematics or in He 3 [7,81. In these systems, Brinkman spheres or hedgehog sin- 

gularities are solutions of the Landau-Ginzburg equations and have actually 

been experimentally observed. We are here seeking their hadronic analogs in 

a phenomenological chiral system. 

Indeed a salient feature of chiral solitons lies in the field U(x) being 

for any fixed x a group element of SU(2). Hence any solution U(x) to the field 

equation can always be factorized as 

u(x) = ul(x>uO(x> (2.31) 

by means of the group composition law. U,(x) can be a suitably selected sin- 

gularity to carry the topological charge B while V,(x) is topologically trivial 
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(B = 0) and could correspond to the pion cloud which dresses the bare singular- 

ity U,(x). It can be verified that if U(x) is given by the product Eq. (2.31), 

the baryon number is additive B = B 
(1) + B(o). This follows from the topologi- 

cal current [lo] 

B ian 
lJ = BwlJ + B(o>lJ + 4n2 A ph 

(2.32) 

where 

n 1 
px = ? Epphv I 

%JAJ+T"L" 
LwP (O)v 1 

This factorizability of the field means that any topological singularity can 

be isolated for study and the localizability property implies the possibility 

of associating a local field operator to the singularity in analogy to the 

correspondence between the chiral-Sine-Gordon soliton and the massive fermion 

of the Thirring model in two dimensions. Of course, the separation (2.31) with 

(2.29) for Ul is the same as the prescription for the splitting of the field 

into its classical and quantum components in Eq. (2.21). While exact ana- 

lytic solutions to three-dimensional chiral systems are available [14], they 

belong to models which have no phenomenological basis. In the physical model 

we choose to examine, no analytic solution has been found. Yet the preceding 

discussion guarantees that no essential topological information is lost in 

only analyzing the "singularity" separated from the soliton solution. We shall 

see that much can already be extracted at the level of our semi-quantitative 

study of this singularity. 

In the next section, we shall motivate and analyze Skyrme's chiral model 

making use of the concepts and properties just laid out. 
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III. SKYRMIONS 

We now write down Skyrme's chiral Lagrangian [lo]. It is composed of two 

pieces 

d: = 52) + 54) 

L(,> = 2 Tr(LpL,,,) E2 , 54) = 4 Tr( [L,,Lv12) 

the static Hamiltonian is 

Hs = 

(3.1) 

(3.2) 

where c is a length, for example the inverse of the pion decay constant f,' 

and E is a dimensionless coupling. d: 
(2) 

is just the usual pion chiral Lagrangian 

of Gursey et al. [22] written in the Sugawara form [25]. As to the additional 

quartic term, the key motivations for its inclusion are the following: 

a) A simple application of Derrick's scaling argument [14] shows that ec2) 

can only have stable, finite energy static solutions in two space dimensions, 

such as vortices with finite energy per unit length. To allow for truly three 

dimensional solitons one must introduce either higher spin gauge fields or at 

least additional terms quartic in the currents L ~ [lOI or both [13]. In the 

second case, the most general chiral invariant interactions involving only 

four derivatives in the field are 

i(,) = a(LtLE) f B(LPLv)2 + ybuLJ2 (3.3) 

a, B and y are free dimensional parameters. For a compact notation, the trace 

symbol Tr is and will be omitted. Any other invariants can be cast into linear 

combinations of the above terms by use of the Maurer-Cartan identities 

a L 
l.lV 

- aVLll = i[LU,L,] (3.4) 
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Skyrme's model is a special case of d: = d: 
(2) + l(4)’ Then the same scaling 

argument applied to L and d: shows that finite energy static solutions are pos- 

sible in only three space dimensions. 

b) Secondly, an argument of much physical importance is the following. 

The quartic terms of Eq. (3.3) should 

counterterms at the one loop level in 

Lagrangian [5] 

be viewed as a specific choice of 

Slavnov's superpropagator regularized 

-cr = + (1 + Zlh2)LnLn + ?Z2(LVLn)2 + X3Z3 (allLJlauLy) 

(3.5) 

which leads to a divergence free S-matrix. Zl diverges quadratically and the 

others logarithmically. The last term is the regulator removing the diver- 

gences in Z2, Z3 and Z4. With Z1 and Z3 being the wavefunction renormalization 

and the renormalization for the regulator q , there remain only two free 

parameters Z2 and Z4. In the limit of the cut-off A-tm, the Z3 term drops 

out. Then the selection of Z4 = -Z2 = s2/4 gives us the model Eq. (3.1). The 

system (3.5) has been shown to satisfy current algebra constraints, PCAC, it 

predicts the correct threshold behavior and is unitary up to reasonable ener- 

gies below a cut-off. As to the higher loop counterterms a general algorithm 

for their construction is available in the Cartan form approach to chiral 

theories [5,6]. 

A related argument for a model of this type comes from a lattice treatment 

Of =$2>’ Latticization is necessary in the definition of functional integrals 

in any case. On the other hand it is also the functional formalism which 

allows for a description of the quantum theory in terms of the classical one 

and hence most suitable for any quantum theory of solitons. Here the "e(4) 
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type terms naturally emerge from the dynamics of d: 
(2) 

upon integrating out the 

field components between two frequencies A0 and Al in the renormalization group 

scaling procedure [26]. So the quartic term is seen to have a quantum origin 

and solving for the solitons say in Eq. (3.1) is to classically simulate in- 

trinsically quantum effects up to the one loop level [27]. We will see that by 

giving rise to an effective interaction the radiative corrections in the SU(2) 

@SU(2) invariant model not only make possible solitons with topological baryon 

number but also fermionic spin states. 

From the above arguments the effective nature of the model becomes ex- 

plicit. As a cut-off theory its form has no deep significance lest the higher 

order loop contributions turn out somehow to be negligible. 

c> Finally from the soliton approach, the most appealing argument for 

the specific choice of the commutator as the quartic term is rooted in the par- 

ticular form of the topological current Eq. (2.24). It allows for a lower 

bound to the soliton energy as we can recast Eq. (3.2) into 

Hs = + (3.6) 

where *LT C E abc b c 
ijk E L.L . Therefore Eq. 

Jk 
(3.6) yields the lower bound for the 

kink-mass in each homotopy class. The would-be nucleon classical bound states 

are all massive in accord with the nonlinear realization scheme. Moreover the 

existence of a lower bound to the energy is the best guarantee for the stabil- 

ity of the small wave expansion about the classical solitons. We now observe 

that this bound would be saturated if the first term in Eq. (3.6) identically 

vanishes when 

(3.7) 
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a condition analogous to the self-duality Fa = fF a+ of the Instanton solu- 
I-lV UV 

tion [3]. The resemblance stops here however. At first sight it looks as if 

the simpler first order equations Eq. (3.7) could replace the highly nonlinear 

second order field equations, which result from the Heisenberg equation 

apLv = -i[bp0d3x,Lv] 

with the energy momentum tensor 

0 
I-lV 

= L; 
- glnJd: 

and 

Gab = $[(L;L; +-&),,_ L;L:] . 

(3. a 

(3.9) 

(3.10) 

The equations of motion are then Eq. (3.4), the Maurer-Cartan equations and 

a 

where 

A ab f L;Li- (Li) 2 ab 
6 

(3.11) 

(3.12) 

Equation (2.24) gives Eq. (3.4) as the integrability condition which is purely 

geometrical in character. It is simple to observe that Eq. (3.7) cannot be 

reconciled with the Maurer-Cartan Eq. (3.4). So the lower bound for the static 

energy cannot be saturated by the topological structures which give rise to 

this nonzero lower bound. Since we cannot get simpler equations to replace 

the Eq. (3.11) via the "saturation mechanism" [3], we must try solving it 

directly if explicit solutions are desired. 

We shall'look for these solutions by use of the following general Witten [15] 

ansatz 

L; =+(&ai-++2 ~~~~~ +AlF (3.13) 



- 24 - 

which upon substitution in Eq. (3.12) yields 

and the equation of motion Eq. (3.11) simplifies to 

A;+~Al-~(l+c2s2~';"-A;])=0 . 

(3.14) 

(3.15) 

Equation (3.15) contains three unknowns, which implies that the solution to 

Eq. (3.11) with Eq. (3.13) can be very general. Here we shall restrict our- 

selves to a spherical hedgehog type solution [10,9]. The latter are obtained 

by setting in Eq. (3.15) 

1 
A1 =TJl'(r) , 

+1 = 5 sin $(r) , 

o2 = -1 -+ (1 - cos +(r)) . 

Hence 

LT = +-[(6ai - F)sin;b + F(r+') 

- E aij2 (1 - cos +> 
1 

(3.16) 

(3.17) 

which should be compared with Eqs. (2.18) and (2.19). For these restricted 

configurations the equation of motion Eq. (3.11) becomes 

$“+I- 2 2 sin * 1 + c2E2 

L ! 

2JI 24sin y-rlr, 2,2 =-J 
r r )I 

(3.1s) 

Since Jo is an angular variable, the topology of the problem imposes the ensuing 

boundary conditions: U(x) -+ I + Q(r) + 0 and U(x) + -I j@(r) -f HIT modulo 2~r. 
r-+a r+a r-t0 r-+0 
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It is amusing to rewrite Eq. (3.18) into the form 

. . a+&- sin 2a 1 - f(a,&) = 0 ( 1 (3.19) 

where we again use a : 
4-J 7 the radius of S 3 and 4 g dcr with r = Rn -, a ficti- r 

d.r rO 
tious time variable 

$(a,&) 5 4c 2 2 E: r -2e-2-c 
0 ( 

&2 - sin 2 a ) (3.20) 

For r+a or r-+00 we can clearly drop terms of order e 
-2r i.e. f(r)+ 0. So in 

the near asymptotic region, we have a pendulum equation with friction 

cl+&- sin 2a = 0 r>>a (3.21) 

which further linearizes to G + 6 - 2a = 0, r+m. Its solution has the behavior 

a(r) - 1 
r2 

r>>l (3.22) 

For r-t0 or r-+-a, f dominates as it grows exponentially with r. Hence the be- 

havior of near the origin r -0 is approximately determined by solving for 

f (a,&) = 0, which gives 

& = tsina 

Its two solutions are 

-1 r. a=2tan --r- 
( 1 

-1 r a=2tan - 
( 1 rO 

respectively. The length r. 

our 'singularity'. 

, r-r +O 0 (3.24b) 

is a constant of integration giving the size of 

(3.23) 

(3.24a) 

As the above expressions are only good near r=: 0, we cannot select one 

solely on the basis of the asymptotic boundary conditions. But fortunately 

we have another boundary condition just right for this purpose, namely 
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uG> w-1. The solution (3.24b) fails to satisfy this, as it gives U--,1. 
r-+0 r+O 

Hence we pick (3.24a) as the acceptable solution for r=O. 

So the mapping U(1) (x) and the group current LF about the particle singu- 

larity (as ro+O) are respectively 

l+i?*Z - rO 

%> (4 = 
0 r2 - (3.25) 

and 
-2r0 

Lz = ($ + r;) 
2 [( ) '0 - r 2 'ai + 2xaxi + 2r E 0 aijXj 1 

We note that the group current LT is identical to Eq. (4) for the l-instanton 

potential AT in Ref. 28. The connection between chiral dynamics and massive 

gauge fields is of course known [25]; the interaction of the most singular 

longitudinal polarization of the latter gauge fields is exactly given by 

=fc2> [261. The key difference with the Instanton is that the kink (3.25) has 

a length scale r. fixed to be arbitrarily small to give a singularity and it 

it not a solution of the field equations. 

The full solution to the equations of motion which gives Eq. (3.22) and 

Eq. (3.24a) respectively, as r-+m and r-t0 respectively, can be sought for 

either numerically, or if one is clever, analytically. But since we have pre- 

viously noticed that our topological structure is truly localized, and Eq. 

(3.24a) represents the desired solution, within a very good approximation, in 

the immediate'vicinity of the particle center, it would not be worthwhile here 

to seek the exact expression for the static energy which we define to be the 

mass of the kink. Indeed again on the basis of true localization the mass of 

the kink is approximately given by the lower bound for HS, Eq. (3.2). The 
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corrections to this mass can be found by numerical methods; they are not 

attempted here. 

We see that written in terms of the pion fields, the kink solution around 

the particle-like core is 

$ = 
2roZ 

r2 + r-i 

$0 = 
r2 - ri 

r2 + r2 0 

(3.26) 

They are readily recognized as the stereographic mapping of the Einstein space 

S3 onto compactified Euclidian 3-dimensional space R3U{m} %S3. We verify that 

the solution (3.23a) is a map of degree + 1. This comes out as a result of 

the boundary conditions and the particular form of the hedgehog ansatz 

J 
2lT 1 B=z d$(l - cos $J) (3.27) 

0 

The anti-kink solution with B = -1 is given by U+. We can reinforce our argu- 

ment that our kink is truly localized by explicitly calculating the topological 

charge density about the kink singularity. 

B. = ---L-(1 - cos $)$' = 
8n2r2 

(3.28) 

Finally, we remark that the similarity between chiral dynamics and general rela- 

tivity becomes even more striking in the soliton sectors. At any fixed time t, 

the soliton field U(x) effectively "sees" a closed physical space S3 because of 

the boundary condition Eq. (2.25). So its physics is reminiscent of that of 

closed Einstein universes with hadronic size radii [24]. Due to~the correlation 

between the internal and spacetime symmetries, the curved geometry of chiral 



- 28 - 

dynamics induces an effective curvature in space felt only by the soliton field. 

We can describe the situation equivalently that there is a kink structure near 

the origin given by Eq. (3.25) or that the pion fields see a closed Einstein 

universe of radius r-r 0' as the metric of space is given there by 

(3.29) 

generated by the dynamical geometrization of the field U(x) via the mechansim 

of spontaneous symmetry breakdown. This connection merits a more detailed study. 



- 29 - 

IV. SPINOR STRUCTURE 

A. Topology of Fermionization 

As an intriguing bypass to the current reliance on the proliferating 

quark fields in hadron models, one somewhat unconventional notion deserves 

serious attention. Can the usual spinor field be actually not fundamental 

but emerge as a point limit to operators creating and annihilating specific 

states of a bosonic soliton field? That this fermionization mechanism is 

possible in 4-dimensional theories generating their own superselection rule 

sectors has been rigorously proved for dyons [30]. In the latter systems, 

the existence of quantized fermionic states is tied in a one to one way with 

the topological magnetic charge whose existence necessitates a long range 

gauge field. Here we are seeking the realistic analog of the Sine-Gordon- 

Thirring correspondence [10,31]. The long range fields are the Nambu-Goldstone 

fields, however the chiral topological charge has no dual charge such as an 

electric charge. Moreover its homotopic charge density being arbitrarily 

localized [13] allows for the possibility of constructing a local fermionic 

operator for the bare soliton [17,321. This is not possible for dyons which 

are nonlocal entities. 

We begin with the remark that, being classical, a soliton field config- 

uration must be single-valued under the action of the Poincar6 group, e.g. 

under the SO(3) group of spatial rotations. On the other hand, spinors are 

characterized by their quantum mechanical double-valuedness under a HIT 

rotation. The connection between half-integral spins and the group SO(3) is 

most directly seen in the path integral formalism [33]. There different 

homotopy classes of paths enter into the sum over paths with arbitrary rel- 

ative phases. The ray representations of SO(3) come about from its double 

connectivity: lrl(SO(3)) = Z2' the additive group of integers modulo 2. To 
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the two classes of closed paths in SO(3) corresponding to the elements I and 

-I of Z2 are associated the integral and half-integral spin representations 

respectively. 

In general relativity, it is an important problem to find the conditions 

under which various space-times manifolds admit a spinor structure [34]. 

Analogously, from the above remarks, the possibility of fermionic states 

emerging from the canonical quantization of purely bosonic chiral solitons is 

also related to the global topology of the arena for chiral dynamics, the 

phase space Q of the fields. The necessity and sufficient conditions for a 

soliton theory to admit spin have been formulated by Finkelstein et al. [16]; -- 

they are satisfied for Skyrme's model. For completeness, logical continuity 

and cogency of our paper, we will reformulate compactly the topological proof 

of admittance of spin. Essentially our treatment attempts a summary of the 

few papers on this topic [16,35]. 

Consider the functional phase space R whose points are the chiral fields 

S(x). This bundle R = II Mx is given by the topological product of all the 
X 

"internal tops" M = S3, the manifold of SU(2), the fiber, one at each space- 

time point x. Due to the boundary condition U(x) 4 I, R is split into 
Ia- 

an infinite set of topologically disconnected components (a-,... Qo3) each 

labelled by the Chem index B, Eq. (2.28), the homotopic invariant of 

rr3(SU(2)) = zm . While the structure of R is relevant to the topology of 

solitons in Section II, we now must analyze the homotopic structure of the 

chiral field propagator within each component Qi of R [33]. In fact it 

suffices to consider the l-soliton sector Q 1' Following Ref. [16], all 

fields in the basic Lagrangian are to obey commutation relations, as in 

canonical quantization, but the state functionals on which these fields act 
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are allowed to be multivalued. Such a multivalued quantization of a classical 

system C is a canonical quantization of the covering system C which is defined 

in close analogy to that of the universal covering space in topology [24]. 

Then a soliton theory is said to "admit spin" if it is possible to define 

on R 1' a wave-functional Yl(U(x),t) which is doublevalued under a 27r spatial 

rotation. More precisely we should work in the universal covering 61 of 

"p-$ z 6l/nl(Ql)] and define the functional ?l(fi(x),t) which is singlevalued 

in R 1 such that 

YIUJ(x)l = ~,[u,(x)rl = a,(r)~,[fio(x)l (4.1) 

gives the branches of that functional in 01. U. is a base point in a typical 

fiber such that any point U(x) in c is represented by c(x) = Go(x where P 

ranges over the elements of the Poincar6 group II1 (Ql), the al(r) are the 

unimodular phases. The functional propagator of the chiral field in the con- 

nected component Rl of Sl is given by 

q[u(x)l~(x)l =~K1[UO(X)/U(x)orla~(r) 
r 

(4.2) 

al(P) is a unidimensional unitary representation of the fundamental Abelian 

group IIl(n1) still to be computed for the theory. 

Specifically, let us consider a path generated by a rotation of the 

soliton field configuration. Being continuous deformations complete rotations 

can only induce closed loops within Rl, so the existence of half integral spins 

is possible if 

yfi,> a 3 (4.3) 

Since there then exist two kinds of propagators corresponding to the two 

homotopy classes of paths, they correspond to the integral and half-integral 
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spin in the instance of the trivial and nontrivial loops in "1 respectively. 

For this double connectivity of Rl to be uniquely linked with the manifestation 

of spinor structure, it must be shown that IIl(nl) = IIl(SO(3)), that the non- 

trivial loops of "1 are in fact generated by actual 2lI spatial rotations 

of the soliton field. 

If Eq. (4.3) holds, then it follows that IIl(ni) x Z2 as a consequence of 

the isomorphism lIl(ni) X lIl(nj) for any Ri, aj E R , which is a topological 

space. This is why it suffices to analyze the l-soliton sector Rl. In par- 

ticular we have IIi(fio) X lIl(nl); which reduces the problem to the simpler one 

of seeking the path structure of the trivial sector R 0' Now it can be proved 

that [36]. 

(4.4) 

due to the homeomorphism between the space of closed loops in RO and the 

mapping space R4 -+ G with suitable boundary conditions. On the other hand, it 

is known [24] that i'14(S3) X Z2. Hence the Skyrme model passes the first test, 

it obeys IIl(nl) M Z2. It only remains to prove that nontrivial closed paths 

in Rl based at some point Q(x) actually correspond to a 2lI spatial rotation. 

This is done next. 

Ye shall define a closed path in Rl, based at a particular "point" 

Ql E fil 

where we have:chosen explicitly 

4;(x) = x0 , lqx, = xa (4.5) 

here X0, Xa spherical projective coordinates defined in the usual way 

vis. Eq. (3.25). 
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x0 = 
r2 - rg 

, xa = 
2rOxa 

r2 + r2 r2 + r2 
(4.6) 

0 0 

Such a closed path is in fact a continuous sequence of mappings of 

gj3 -+ S3 defined by 

Q,[X] = @f(h) + i ToGI (A) 

where 

$;(A) = Rab(h)Xb 

Rab(X) is a rotation matrix to be defined. 

(4.7) 

(4.8) 

As Ql creates an antisoliton, it annihilates Ql, + so Q,Q, is an 

automorphism which transfers one from the l-soliton to the 0-soliton sector. 

Since we need a parameter to describe the paths induced by rotation, the 

paths in R. can be described by the paths in Sll as 

Q,Dl = Q;l 101 Q, [Xl (4.9) 

Using Eq. (4.6) and its degree-zero counterpart we get 

+I = $,0~0)9~0) + $p)@A) 

= X; + Rab(X)XaXb 

= XO[- gab + Rab(X)]Xb + E abcRcd(X)XbXd 

Let us choose a spatial rotation of 2~rX to be performed around the third 

axis, then 
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-.cos 2-lTx sin 27TA 

Rab(X) = -sin 2rX cos 2lTx 

0 0 

The rotated configuration becomes 

Q;(x) = 1 - (1 - cos 2lTX) (Xf -k X2,) 

O;(h) = xo[xl(cos 2Th - 1) + X$cos 2TX - l)] 

+ X3(Xl(COS 2lTA - 1) + X2 sin 27rX)] 

@G(h) = Xo[-X1 sin 27rX + X2(cos 27rX - l)] 

(4.10) 

(4.11) 

+ X3[Xl(cos 2nX - 1) + X2 sin 2nX)] 

@i(X)= -sin 21~h[Xt + Xi] 

specifying thus a path in Q,. We can now associate a mapping fl, with path: 

fO 
: s4 -+ s3 (4.12) 

The added structure reflects the role of the parameter X labelling the path 

in the covering space. So R. is nontrivial if and only if f. is nontrivial. 

The essential element of William's proof comes from the observation that for 

X = l/2, one has 

0; = 1 - 2 (x; + x;, 

1 
$0 = -2 CxoX1 - x3x2) (4.13) 

2 : 
9, = -2 (X0X2 - x3x1> 

which is nothing but the celebrated Hopf map S3 -t S2 [371. Furthermore f" A 0 

is known as a suspension of the Hopf map, hence nontrivial. The proof is thus 

completed. 
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Finally, it has also been shown for models of Skyrme's type that 

another defining property of a multi-fermion state, the doublevaluedness of 

the wavefunctional under field interchange implies doublevaluedness under a 

25r rotation. It was also shown that every quantized fermionic soliton will 

always differ from a bosonic soliton in at least one particle number, such 

as B in our case, as well as in spin; that the usual spin and statistics 

connection follows from the same topology invoked in the above proof, para- 

statistics being excluded [16]. 

We note that the existence of fermionic spin demonstrated topologically 

in this section is consistent with our quantum mechanical interpretation of 

the origin of quartic term in Section III and is further collaborated by the 

implications of the current algebra of Skyrme's model. 

B. Effective Dynamics 

From the foregoing sections, a general physical picture underlying 

Skyrme's model is apparent. The topological kernel of the soliton resides 

in the occurence of a simple zero in the pion fields. This singularity marks 

a local restoration of chiral symmetry at the center of the soliton due to 

the infra-red effects of the Nambu-Goldstone pions. This process is the 

obverse of that proposed by Nambu and Jona Lasinio. Through this soliton 

creation the chiral theory then generates in a self-consistent manner its 

own sources. We recall that because the chiral field U(x) is also a group 

element for any fixed x, a formal structural separation of the soliton field 

is possible, it provides a useful alternative description when no exact solu- 

tion of the field equations is available, which is the case in the model 

Eq. (3.1). This group property is responsible for the very localized char- 

acter of the soliton bound states and thus allows the soliton field to be 

factored into two pieces, an idealized point singularity and its coherent 
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pion cloud. Indeed while the interactions are simple conceptually in non- 

linear field theories, the definitions as to what constitute the particles 

on the one hand and their residual interactions on the other are corre- 

spondingly ambiguous. So the mathematical splitting through the procedure 

Eq. (2.31) of a soliton field into source and field is necessarily arbi- 

trary. To different sleections of the U,(x) must then correspond the 

appropriately different coupling constants between the sources and the 

residual fields. 

From Section III, the most natural and extreme means of lifting much 

of the above arbitrariness is provided by an U (1) given by Eq. (2.25) in 

the point-like limit of rO + 0. It is in this limit that we may hope to 

make contact with the standard linearized field theory of pions and nucleons, 

the latter being put in by hand ab initio into the Lagrangian. As is done 

in the passage from the Sine-Gordon to the massive Thirring models [31,32], 

Skyrme has studied the problem of deriving quantum mechanically an effective 

Lagrangian between point sources and residual pion fields by the method of 

collective coordinates [17]. We refer the reader to his remarkably compact 

paper. To establish a smooth connection between our work and Ref. [17], two 

remarks are in order. First, Skyrme selects to parametrize the particle 

singularity by the solution Eq. (3.24b). We have explained the inappropriate- 

ness of this ansatz. However we have verified explicitly that none of his 

results are modified in the physical solution, Eq. (3.24a), is used. Secondly, 

Skyrme's mainiobjective is to obtain a Dirac equation for the description of 

the singularity in the specific projected state with spin l/2 and isospin l/2. 

This derivation is in our opinion at most heuristic as it does not readily 

follow from his nonrelativistic collective coordinate analysis. For that 

reason, we deem it unenlightening to display his method of calculations as 
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applied to the singularity Eq. (3.24a). Instead, we shall argue that without 

invoking any detail of the dynamics, one can yet deduce the essential prop- 

erties of the spectrum of the quantized 1-soliton sector. 

In particle physics, we know generally little about the strong interac- 

tion Hamiltonian. And even when we have a system like (3.1), it is no easy 

task to uncover its nonperturbative spectrum by a frontal attack. However, 

it is often possible to introduce some kind of group structure and argue for 

a choice of noninvariance group which will pin down the dynamics [38]. So we 

take this dynamical group approach in order to distill some structure out of 

Skyrme's model. Only the topology of the dynamics rooted in the boundary 

condition Eq. (2.25) is of essential importance along with the point-like 

limit of the singularity. Furthermore, our conclusions will only hold for 

the static case. 

First we observe that the static Hamiltonian HS, Eq. (3.2), is only a 

function of the current Ja. 1 In the topologically nontrival 1-soliton sector, 

the indices a and i are identified as manifest in the hedgehog ansatz, 

Eq. (3.25). In other words, the rotation group which is O(3) in the trivial 

B = 0 sector has been compactified onto SU(2) as R3 gets compactified onto S3. 

As is stated in the previous subsection, this is equivalent to the following 

statement: because the wavefunctional of the singularity is doublevalued 

under a 2~ spatial rotation, one must do canonical quantization on the cover- 

ing space where the wavefunctional is singlevalued and the Hamiltonian is 

self-adjoint. /This is the well known problem of self-adjoint extensions of 

the Hamiltonian [39], which contain new physics, that of the superselection 

rule sectors which are baryons. Specifically in the point limit where the 

singularity is represented by Eq. (3.24a) Skyrme [17] has shown that the 
, 

spin si and isospin t a of the kink is connected via s1 = e i a ta, eia 
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transforming in the covering functional space c as a vector with respect to 

the two SU(2) groups of a dynamically induced invariance group of the 

Hamiltonian Eq. (3.2) K = SU(2)J x SU(2)I which arises from the chiral 

symmetry SU(2) X SU(2). This is clear since dynamical fermionic spin is 

induced from the isospin by the compactification condition Eq. (2.25) and 

the SU(2) 8 SU(2) nature of the chiral symmetry. When we note that it can 

be shown [lo] that the effective interaction between the kink singularities 

and the pion is the usual derivative coupling, i.e. that we are considering 

a p-wave pion isotriplet the identification with the usual symmetric pseudo- 

scalar static model is complete [40]. 

On the basis of the latter, we deduce that the quantized Skyrme 

Hamiltonian in the point-source approximation Eq. (3.25) has an infinite 

sequence of bound states (isobar levels), the latter have I = 3 = l/2, 

312, . . . in the form of the unitary irreducible representation of the type 

(1,I) of the dynamically derived invariance group SU(2)J x SU(2)I. Pattern- 

ing our reasoning after the dynamical group approach [38], one further argues 

for an associated noninvariance group SU(4) which upon reduction with respect 

to O(4) lead to the above class of representations. All this is consistent 

with our intuition that the point nucleon limit should correspond to a regime 

where the pion-nucleon coupling constant tends to infinity and hence the well 

known infinite sequence of the bound states. Clearly only the low lying 

isobars are expected to be physically realized; the infinite coupling approxima- 

tion breaks down at higher energies. In the soliton language, the extension 

of the source becomes important and is correlated to the intermediate coupling 

regime. While the way is open we shall not pursue further here the dynamical 
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group approach. It suffices to note that the latter does provide a most 

suitable algebraic method to handle the rich spectrum of the quantized 

solitons. Our further comments on the formulation of the effective dynamics 

will be deferred until the final section. 
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V. CURRENT ALGEBRA 

Before the advent of QCD, there has been much interest in formulating 

complete dynamical theories based solely on current densities taken as basic 

dynamical variables [41]. The motivations are many [42]: They are the 

spectacular successes of various current algebra sum rules, the sharing of 

the same currents by all the basic interactions, the seemingly democratic 

status of all hadrons. All these features call for a deep dynamical under- 

standing and possible extension of Gell-Mann's current algebra hypothesis. 

The basic idea in dynamical theories of currents is to postulate along 

with the commutation relations between an assumed complete set of local 

current densities the dynamics by giving an energy momentum tensor made up 

solely with current. Specifically new methods were being sought to solve 

such models and to uncover how fermionic representations can emerge from a 

structure composed entirely of bose type operators. A survey of past liter- 

ature shows that no concrete answer to this key problem was available in any 

realistic theory. As will become clear, a very appealing solution is pro- 

vided by Skyrme when his model is seen from the perspective of chiral dynamics 

and current algebra. The solution is also consistent with algebraic quantum 

field theory ideas [43]. 

The Sugawara-Sommerfield theory of currents has become the prototype 

relativistic model. It is well known [25] that its canonical field theory 

realization is nothing but the Gursey et al. [22] systemZ2 in Eq. (3.1). In -- 

this case the currents are simply the conserved left and right invariant 

group currents: 

L; = $ Tr(-raU+ aPU), RL = $- Tr(raaPULJ+) (5.1) 



[V:(x), VP(y)] = [AZ(x), A:(y)]= ic2 cabc Vy (x) 63(x - y) 

+ ic2 gab acx) 63(~ - y) i (5.3) 

I = Mo” (x) , V;(Y) 2 abc c J=ic s Ai 63(x - y) 

[V;(x), V;(y)] = [V;(x), A;(y)] = [A;(x), A;(y)] = 0 

We note that the Schwinger terms are finite c-numbers, and that the appear- 

ance of the dimensional constants c arises from V-and A having dimension -1. 

We proceed to the more complex algebra of currents for the full Skyrme's 

model and analyze the modifications introduced by the quartic term. First 

we define the left and right isospin currents 
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with their zeroth components being the generators of the corresponding 

local transformations: 

[L;(x), U(y)] = - $ c2U(x) 63(x - y) 

[R;(x), U(y)] = c2U(x) $ 63(x - y) (5.2) 

Defining as usual L = VP + AP and R = V 
u IJ v 

- Au all having dimension-l, 

we readily work out the Sugawara-Sommerfield algebra for the group currents 

[V:(x), Vi(y)] = [AZ(x), A:(y)]= ic2 cabc Vi (x) 63(x - y) 

c$- 
I',a = Gab(L2)LJbb 

NI-l,a 
Jf = Gab (R2) Ruyb (5.4) 

where G ab is given by Eq. (3.10). These physical currents obey the conserva- 

tion laws 

(5.5) 

as they should. 
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Their fourth components are the generators of the corresponding left 

and right transformations 

[g; tx>, U(Y)] = - q u(x)63(x - y) 

[3; 64, u(Y)] = u(x) ; 63(x - y) 

From the.above relations we derive 

[$$ (xl, L:(y)] = i ~~~~ Loc(x)63(~ - y) 

cd, LqtY)] =i& abc LiC(X)63(X - Y) 

+ ; c6 ab a i (x)s3(~ - y> 

(5.6) 

(5.7) 

By use of Eq. (5.7) and after some tedious algebra, the universal current 

algebra of Skyrme's model is found to be 

[ g; (x> ,g; (Y) 1 = i cabc$i (X)fi3(X - y) 

i + 2 ciab(x,y)ais3(x - Y> (5.8) 

I$-; (4 9 $-“i (Y)] = i E~~~~(T(x)cS~(~ - y) 

+ 3 cab(x,y) ap3(x - y> (5.9) 

[g: (x),x:(y)] = i[A?(x,y)63(x - y) + cFJb(x,y)aj63(x - y> 

- cba 
j 

ai63(x - Y) 1 (5.10) 

where 
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2 
c;b(x,y) = y [Li(X)Li(Y) + sabL;w;(Y) 

1 

Cab(x,y) = --A- 6 ab E2 
2c2 

+ 4 (L;)2 hab - L>; + 2L# 
I (5.11) 

&2 
A$(x,y) = --4- s abc ~;~(x,y)~;(y) - cbcd A;d(x,~)L;(y)] 

and 

ATb(x,y) = L;(x)L;(y) + L;(x)L;(Y) 

And in terms of the vector and axial currents, as defined by VP = 

gp+& .~,=gp-& 9 we finally obtain the following modified 

Sugawara-Sommerfield algebra after extensive use of Trg2) = TrG2) 

=is abcy/; (x) 63(x - y) + icFb(x,y)ai63(x - Y) 

=is abcv;(x)63(x - y) + icab(x,y)ai63(x - Y) 

i v; (xl ,~;t(Y) 1 I = d;(x) /v;:(Y) 1 = iE. abc&z;(x) S3(x - Y) 
(5.12) 

It is not our purpose in the case of the space-space commutators to do an 

explicit computation say for experimental comparison with polarization 

asymmetry in electroproduction. So we do not display here the intricate 

and unenlightening looking expressions for the r.h.s. of these commutators. 

It suffices to observe that the r.h.s. is nonvanishing and of order s2 so 

it vanishes in the limit E+O, as it should. 
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The remarkable properties of the system Eq. (5.11) which make it a much 

improved algebra over Eqs. (5.3) are 

4 In contrast to the Sugawara model [44,45], there is no problem with 

the dimensions of the currents. Here because of the quartic term, the 

VU and&$ are bona fide currents endowed with canonical dimensions, both 

the space and time components have dimension -3. 

b) The schwinger terms are being promoted from c-number to q-numbers 

[441. So the trouble with they being c-number carrying dimension -2 is 

resolved. All this is of course consistent with the interpretation of the 

quartic term as part of quantum mechanical renormalization effects. 

4 Dashen and Frishman [46] have proved that the energy momentum 

tensor is composed of two separated commuting conserved tensors inter- 

changeable under the parity operation P 

o(s)= o+ + o- 
lJv I.lV ?JV 

avo+ = 0 
I.lV 

(5.13) 

and 

p Of p-l =@ i 
PV I.lV 

Then the SU(2) x SU(2) symmetry entails a new symmetry under the product of 

two independent Poincarg groups 9+@9- , This results in a parity doubling 

of the states. It was later shown [47] that 0 
PV 

can no longer be so 

decomposed if quartic terms for instance are added to LZ' 
(2) 

and that the 

Dashen-Frishman theorem no longer applies. The same conclusion applies to 

Skyrme's model. Inspection of its 0 
PV 

shows that it cannot be partitioned 

as in Eq. (5.13), so the proclaimed parity degeneracy is lifted in the present 

case. 
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d) As noted briefly before, another desirable feature of the system 

Eq. (5.12) is the nonzero nature of the space-space commutators which are 

known to be very model dependent. The property is required if theory stands 

a chance to account for the polarization asymmetry experiments in electro- 

production [47]. 

All in all, the quartic addition to P2 has resulted in a more physically 

realistic current algebra. Of course these positive features should def- 

initely be seen in the context of the solution to another key issue in any 

theory of currents. Namely, where are the fermions in a scheme having only 

boson operators? The developments in the preceding sections provide an 

obvious answer in the soliton generation mechanism coupled to the topologi- 

cal existence proof of a spinor structure definable in the topologically 

nontrivial sectors of the phase space of fields. Due to its SU(2) quaternionic 

structure, Skyrme's model allows for dynamical baryonic number as well as 

fermionic spin generation at the quantum level. Thus one expects that Hilbert 

space of states to be splitted up into superselection rule sectors labelled by 

a Casimir invariant, the Chern-index B. B labels the inequivalent fermionic 

representations of current algebra. The analysis done on Skyrme's model seen 

as a canonical realization of the algebra Eq. (5.12) shows that baryons can 

be identified with the soliton bound states of Nambu-Goldstone bosons. This 

remarkable dynamical mechanism is dual to that of Nambu and Jona-Lasinio's. 

We have here exhibited a simple three dimensional analog of the bootstrapped 

duality which exists between the soliton of the Sine-Gordon model and the 

massive fermion of the Thirring model [31]. The latter connection was first 

studied by Skyrme [lo] and has been rigorously established recently [49]. 
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Due to the technical difficulties inherent to our realistic model, our anal- 

ysis when supplemented by Skyrme's extensive study only circumscribes semi- 

classically this mechanism of spontaneous generation of baryon number and 

fermionic spin from the dynamics of flavors. To pin it down rigorously 

necessitates a more frontal and a fully quantum mechanical attack of the 

problem. All this leads us to make some final comments next. 
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VI. FINAL REMARKS 

Since most conclusions are stated in the appropriate sections, our final 

remarks will be relatively brief. 

It has been widely assumed that a basic theory of matter must involve 

fennion fields but needs not contain boson fields. The latter are to emerge 

as bound states of the former. While this may well be so in nature, other 

theoretical alternatives exist. Thus supersymmetries testify to the realiza- 

tion of fermions and bosons as equal partners in some supermultiplet. In this 

work, we focus on a third possibility, fermionization or the soliton genera- 

tion of dynamical fermion states from boson fields. 

In two dimensions where there is no spin, the equivalence between the 

quantum soliton of the Sine-Gordon model and the fermion in the Massive 

Thirring model has become an ideal showcase for the axiomatic field theo- 

rists [50]. This is so because such emergence of fermionic states from a 

structure endowed solely with commutation relations has a natural place in 

the algebraic approach to quantum field theory. Very succinctly, we recall 

that in the latter method a quantum system is completely specified by its 

algebra of local observables A (Q). This algebra corresponds to all measure- 

ments performed locally in a bounded domain R. Along with obeying the 

usual axioms of relativistic quantum physics, the observables and states 

also decompose into superselection rules sectors labelled by absolutely con- 

served quantities such as baryon or lepton numbers. This superselection 

rule structure'plays a central role since through it other derivative concepts 

such as a quantized field, its charge, its statistics can be introduced solely 

in terms of observables. For example if we wish to describe some entity 

measured in a domain a, we must introduce the notion of a local change in the 
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observable, one which reflects the existence of the object in question as com- 

pared to observations, performed in its absence, upon the vacuum. Such a 

"localized morphism," a quantum analog of a canonical transformation, trans- 

forms each observable in n into a different one causally related to it in the 

same !2. It is in this'manner that all observables and hence all states in any 

superselection rule sector can be obtained from those of the vacuum sector via 

such localized morphisms. An example is the fermion field of Skyrme [lo] and 

Mandelstam [32] which carries charge from the zero-charge sector to the charge 

one sector in the quantized Sine-Gordon model. The statistics is also 

uniquely determined by the observables and is related to the types of par- 

ticle involved; it is given by the permutation symmetry of the state vector 

of spacelike separated identical particles.. Since all charges are uniquely 

linked with the superselection rule sectors and all sectors can be reached 

from the vacuum, we must be able to predict in principle all types of par- 

ticles, their charges, masses and other quantum numbers of a theory from its 

algebra of observables alone. We just have to solve the problem of classi- 

fying its representations! In actual practice to single out of all the 

representations the physically relevant ones, which actually occur phenomeno- 

logically, we need to assume that the algebra A (Q) is derived from a field 

theory. This was done rigorously in two dimensions in the cases of the 

massless then massive Thirring models [SO]. We have initiated here a modest 

attempt in four dimensions leaning heavily on Skyrme's remarkable works by 

taking his model as a prototype dynamical theory of observable currents. 

Compared to QCD, the system Eq. (3.1) either seen as a chiral model for pions 

or a dynamical model of currents has no basic significance. It could at best 

parametrize at the outset the effective dynamics of the strangeness zero 

sector of the hydrodynamic behavior of QCD in its PCAC phase. 
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Yet the topological chiral dynamics already embodies a striking self-consistent. 

structure, a field theoretical bootstrap mechanism. 

Indeed the relation of chiral dynamics to a fundamental theory of hadrons 

may be analogous to that of the Landau-Ginzburg to the BCS theories of super- 

conductivity, of hydrodynamics to a microscopic theory of liquids. In this 

outlook, the chiral soliton generation mechanism is seen as dual to that pro- 

posed by Nambu and Jona-Lasinio 1121. In the latter approach, in consequence 

of spontaneous breakdown of y5-symmetry, massive fermions arise from massless 

ones provided Nambu-Goldstone pions are also generated as bound states and 

thus restore the symmetry. Now we recall that nonlinear chiral dynamics was 

conceived to give a well-defined meaning to the idea of symmetry restoration. 

One does not inquire into how strong interactions attain its PCAC phase but 

simply posits a dynamical symmetry, an interaction symmetry among observed 

hadrons. In the soliton generation, we witness a self-consistent mechanism 

at work, one which induces the nonlinear dynamics of the Nambu-Goldstone bosons 

which in turn produce superselection rule sectors, the baryonic bound states. 

The solitons arise as local restoration of chiral symmetry due to the infrared 

effects of the Nambu-Goldstone bosons. This apparent signature of a bootstrap 

dynamics emerges from the collaborative implications of the various facets of 

the systems analysed in Sections II to V. 

For maximum benefit, our paper should be supplemented with Skyrme's works. 

Due to the technical difficulties inherent to a four dimensional nonrenormaliz- 

able model, our analysis lacks the needed mathematical penetration to rigor- 

ously uncover the full nonpertubative structure of Skyrme's model. However our 

purpose has only been to clarify and to bridge the various formerly disparate 

physical problems by way of the soliton concept. We have confined ourselves to 

correlate exact conclusions which can be reached at the semi-classical level 
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and from the topology of the dynamics. By so doing, we hope to at least bring 

a more up to date focus on Skyrme's work in the general context of chiral 

dynamics, to stimulate further and more rigorous investigations. Thus we 

close by pointing out some inviting directions for research. 

4 To seek a more derivation of Lagrangians portraying the effective 

dynamics between solitons, Skyrme's collective coordinate analysis should be 

much improved. For this task, use should be made of the general collective 

coordinate method formulated recently and applied to analogous physical 

problems [51]. The formalism of pseudomechanics [52] may be very appropriate 

to coordinatize spinor and internal degrees of freedom. 

b) The splitting of the soliton field into a point singularity plus 

cloud is presumably good only at very low energies and in the strong-coupling 

regime. For intermediate couplings the extension of the soliton plays an 

important role. It is then imperative to seek analytic solutions to (3.1) or 

to some suitably generalized form such as (3.5) [14]. One should divorce 

oneself entirely with the point-limit theory, i.e. with any contact with the 

standard chiral field theory of point nucleons and pions. The corresponding 

quantum theory of solitons should be undertaken along the lines drawn by 

Faddeev and Korepin in their comprehensive review of the quantized Sine-Gordon 

theory [2]. In this respect, we observe that the "zero soliton" sector has 

been vigorously investigated by Soviet workers [6]. It would be most interest- 

ing to supplement their method with that of Faddeev and perform computations 

in the soliton sectors. The necessary basic ingredients for such a program 

have been laid down in our Section III. A local gauge extension should be 

studied as well [13]. 

c> As the quantized soliton leads naturally to towers of states with 

spin and isospin, the connection between the quantized soliton theory in its 
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various coupling regime approximations (i.e. point-limit approximation, etc.) 

and dynamical noninvariance groups should be sought [40]. This is an impor- 

tant link as it would clarify the connection between chiral symmetry, which 

is an interaction symmetry, and the dynamical group, which is a spectrum 

generating symmetry. 

d) Regarding extension to the soliton sectors of chiral theories invari- 

ant under W(N) @ SU(N), the special role of the SU(2) @ SU(2) subgroup is 

apparent since the topological possibility of spinor structure induced by the 

correlation between space-time and internal symmetries depend crucially on 

G = SU(2). Mathematically the problem is then one of embedding SU(2) @ SU(2) 

in the larger groups in analogy to the problem of seeking monopole or Instanton 

solutions in a general Lie group [53]. The privileged role of SU(2) @ SU(2) 

may lead in soliton sectors to a dynamical understanding of the symmetry 

breaking of a SU(3) @ SU(3) theory. 

e> As to the finite mass of the physical pions, a soliton theory which 

takes the chiral geometry seriously implies that it should arise through some 

deformation of the geometry of the manifold of SU(2) x S3. This very kind of 

geometric approach to produce the desired symmetry breakings, be they weak, 

electromagnetic or strong, had in fact been proposed in connection with the 

dynamical theory of currents [54]. 

f) Finally it is clear that a latticization of Skyrme's model should be 

pursued in the manner of Polyakov's work on the 2-dimensional Heisenberg 

ferromagnet [26]. Only through the renormalization group method can one truly 

track down the rich non-perturbative structure of this model and to generate 

in a systematic and reliable way its various truncated Hamiltonian extensions, 

if one wishes to enlarge the applicability of the model to other energy scales. 
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Having satisfied ourselves of the dynamical consistency and richness of 

chiral theories we are pursuing our investigations along the above directions. 
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