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These lectures are concerned with the problem of "where are the quarks?" 

Almost 10 years ago the classic MIT-SLAC experiments on deep inelastic electron 

scattering' revealed the existence of localized bits and pieces of electromag- 

netic charge and current within the proton. These more elementary parts of 

the proton--or partons 2 --were inferred from the Bjorken scaling behavior. 

Furthermore, the subsequent studies with electron, muon, and neutrino beams 

as well as the spectacular results of electron-positron collisions have 

strengthened the interpretation of partons as quarks. 3 In fact today there 

is no persuasive alternative to the physical picture of hadrons as rather 

loosely bound aggregates of relatively light quarks. However beyond the 

impressive successes of the quark model in its diverse applications to spec- 

troscopy4 (both old and charmed), scaling behavior, and quark line counting 

rules for large p 5 
T processes, there remains a dilemma: why are individual 

quarks apparently trapped within the hadron? 

As you well know the actual experimental nature and extent of quark trap- 

ping 07 confinement is not completely settled by experiment. Although many 

searches have failed to find fractionally charged particles to a very low 

density in matter,6 LaRue, Fairbank and Hebard have recently reported 

observation of fractional charges on two superconducting Ni spheres weighing 

*Work supported by The Department of Energy. 
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10-4 grams and magnetically levitated between condenser plates. Their response 

to a periodic electric force is interpreted as evidence of charge l/3 on the 

spheres. If supported and confirmed by subsequent experiments this result 

will imply that quark confinement is not permanent but that quarks may in 

fact be paroled from their hadronic prisons by sufficiently high energies, 

perhaps one or more orders of magnitude greater than the hadron mass. 

The purer the field theorist, the more unacceptable is this alternative 

to permanent confinement. In these lectures I won't take sides. I simply 

want to describe, explain, and analyze some theoretical efforts to understand 

the novel behavior of quark constituents in the hadron. In contrast to atomic, 

molecular, and nuclear forces that grow stronger the smaller the distance 

between the interacting particles, the forces between quarks grow weaker at 

small distances-- that is how we understand Bjorken scaling and the almost-free 

quark dynamics, or asymptotic freedom, for large momentum transfer processes. 

On the other hand, these forces grow very strong--perhaps without limit if the 

confinement is indeed permanent, corresponding to "infra-red slavery"--as the 

separation increases corresponding to the dynamics of strongly interacting 

quarks at low momenta. (See Fig. 1.) 

Such novel, unconventional physical behavior translates into new and 

different mathematical behavior in the fundamental underlying theory. This 

behavior is opposite from what we are familiar with in QED, our only true 

and tested friend in the theoretical world. 

It is well known that in quantum field theories we must renormalize the 

coupling constants. In quantum electrodynamics the charge is the dimensionless 

coupling constant; and the renormalized charge eR is smaller in magnitude than 

the bare one e 0 introduced in defining the Lagrangian and Hamiltonian of the 
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theory. eR is the charge of the physical electron dressed by quantum fluctua- 

tions. The vacuum, or ground state, of the quantized electromangetic field 

is bubbling everywhere with virtual electron-positron pairs. Their presence 

originates in the zero point quantum fluctuations of the electromagnetic field 

strengths. Since all components of E and B don't commute we cannot set them 

identically to zero; only their average strength can vanish. The virtual 

pairs in the vacuum are physically polarized in the neighborhood of an elec- 

tron by the electrostatic forces. 8 The effect of this polarized cloud of 

pairs in the vacuum sea is to partially shield and reduce the strength of the 

electron charge when it is viewed from a distance greater than the range 

characteristic of the polarization, i.e., the electron compton wavelength 

RQ&QL mc ' 

Thus the electron charge as seen by a macroscopic applied field, or by a test 

charge at distances > R, corresponding to scattering with q < mc, is 

eR = p,(r) + $(r) 1 
where PO(r) = e0d3(r) for an electron at the origin; and $(r) is illustrated 

in Fig. 2. When however we probe the electron at small distances we see inside 

the polarization cloud and eventually, for q >> mc, probe the bare charge 

e. > eR. This physical picture is important in assuring us that in QED, the 

simplest of gauge field theories, the exact force law grows stronger more 

rapidly than l/r at smaller distances, and decreases for large r. This is 

precisely opposite to the desired behavior for explaining confinement and 

asymptotic freedom; i.e., a charge that grows weaker when probed at small 

distances but grows stronger at large separation. 
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From the above discussion there is a clue as to how field theory must be 

changed from QED if we are to construct a theory that incorporates asymptotic 

freedom. Spurred by the successes of QED as well as by their mathematical 

beauty we work in the context of gauge theories--such as QED-i.e., theories 

with space-tiIile 

invariant, viz. 

A,, (d 

dependent symmetry transformations under which the theory is 

in QED 

+,AV(x) + asx 
3XP 

Jl(x> -+ (1 + ieQ(x>>+(x) . 

Evidently we will require a more complex gauge theory than QED for which 

the gauge group is U(1): i.e., the group of space-time dependent phase transi- 

tions on one complex or two real fields, representing a charged particle. The 

U(1) symmetry leaves the charge residing on the electron. In contrast if the 

forces are to weaken at short distances the coupling strength must weaken for 

large q and this can happen only if the polarization cloud can acquire at 

least some of the charge of the particle itself. This in turn means that the 

quanta must be able to remove charge from the sources in contrast to the 

electrically neutral photons of QED. This is a possibility for non-abelian 

gauge theories' when other special requirements are also satisfied. A non- 

abelian gauge theory is one with internal symmetry transformations that act on 

the particle labels themselves, such as turning protons into neutrons in the 

example of SU(2), in addition to depending on space-time coordinates, viz. 



It has been shown for example that a renormalizable SU(3) gauge theory of 

strong interactions formulated with massless gluons that are color octets-- 

this is a renormalizable theory so long as the gluon fields are massless-- 

has the property of asymptotic freedom if there are not too many quarks whose 

masses are "light" on the scale of momentum transfers exhibiting the weak 
10 coupling limiting behavior and hence scaling. 

However the fact that the theory includes massless gluons introduces its 

own difficulties. With non-abelian theories the method for removing infra-red 

divergences is more complex and delicate than that of Bloch-Nordsieck since 

the ordering of vertices matters and there is no simple classical current be- 

havior in the soft gluon limit. 11 This very difficulty has been conjectured 

into a virtue in order to explain quark trapping. The untamed singularities 

in the infra-red or soft gluon limit are presumed 12 to be the source of an 

interaction strength that grows beyond bounds as the separation between quarks 

increases. There is no mathematical proof of this conjecture; what is more 

7 quarks may have in fact been observed. So this is a questionable conjecture 

on all grounds. What is known from the constructive analysis of Cheng, Eichten, 

and Li13 is that the requirements of asymptotic freedom and of freedom from IR 

divergences are mutually incompatible in renormalizable gauge theories. Hence 

we must have IR divergences if we are to insist on asymptotic freedom and, 

therefore, it is necessary for us to appeal to confinement as a way of remov- 

ing the IR difficulty. It is asserted that we cannot radiate massless gluons 

and consequently we avoid the infinities associated k-ith.their massless prop- 

agation. 

This framework of ideas has aesthetic appeal although lacking hard 

calculational foundations. The problem we face as theorists is one dating to 

Year 1 of modem physics--how to solve relativistic field theories without 
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resorting to weak coupling iterative expansions for implementing the renor- 

malization program. In other words, how can we test our theoretical ideas 

when we cannot solve our equations. That is today's problem and explains 

why I must proceed by asking very limited questions in search of modest pro- 

gress and encouragement; and why I must resort to simple models that to many 

may appear to be little more than elementary school exercises. We ask: 

What do we need, phenomenologically, of a field theory for confinement? 

What methods can we bring to bear on field theory for constructing non- 

perturbative solutions? An iterative procedure starting with quark and gluon 

degrees of freedom can hardly be expected to give low-lying physical hadronic 

spectra in a reliable way in a finite number of practicable operations. 

We take the following as the starting ingredients of a theory: 14 

1) There are three flavors of light "old" quarks. Massive new quarks 

(with "charm" and perhaps more varieties) are, by assumption, not 

2) 

3) 

essential in the study of confinement. 

Quarks carry a hidden quantum number "color." Hadrons are always 

formed of combinations of quarks that are color neutral. Ihe quarks 

come in three colors and the theory is invariant under SU(3) of 

color; then the configurations Qq and QQQ are the simplest colorless 

structures, corresponding to mesons and baryons respectively. Since 

these colorless--or color singlet --combinations of quarks have the 

quantum numbers of normal hadrons, the problem of quark confinement 

becomes that of color confinement. 

Massless gauge gluons are the quanta carrying the force between 

quarks. The color quantum number plays the same role that electric 

charge does in QED; and the colored quarks interact wi-th one another 
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via colored electric and colored magnetic fields. What we are 

describing here is a non-abelian gauge theory along the lines first 

introduced by Yang and fills. 15 In contrast with abelian QED, where 

the quanta are electrically neutral and do not change the charge of 

their sources, the gluons are themselves colored. They must remain 

massless, as in QED, for the theory to be renormalizable in the 

usual fashion. However in order to maintain local color conservation 

(i.e. color conservation as a local, not simply a global, symmetry) 

the gluons must carry off, say, red-blueness upon changing a red to 

a blue quark. This means that such a theory with SU(3) of color 

must have 8 gluons corresponding to all 3 x 3 - 1 = 8 color combina- 

tions, where we have subtracted the combination that is colorless 

and does not enter the theory. Another new feature of such a non- 

abelian gauge theory is that, being colored, gluons change the color 

charge of their sources. As we mentioned earlier such a theory can 

lead to forces that grow weaker at smaller and smaller distances, 

becoming asymptotically free at very short ones. 

Such an asymptotically free gauge theory --henceforth called QCD--presents 

itself strongly as appropriate for a fundamental underlying theory of strong 

interactions if we can explain why we see neither quarks nor massless gluons-- 

namely if we can explain wcolor confinement"! Furthermore for the theory as 

stated thus far the confinement must be permanent: no massless gluons are 

observed. In 'the highly successful theoretical tradition of turning adversity 

into achievement, or Q) to 0, we appeal to the infra-red divergences to trap 

the quarks and gluons as noted earlier. This is a hope! Color confinement 

has not been proved for such theories. We are dealing with strong forces 
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and looking for composite bound states of quarks that form the observed 

extended hadrons. But we have thus far lacked the mathematical methods for 

constructing such states from elementary quark and massless gluon constituents. 

The distance from starting point to physical matter is too great for perturba- 

tion theory. 

In particular since we must avoid an iterative weak coupling expansion 

and the actual implementation of the renormalization procedure in terms of a 

Feynman graph expansion we must do something about the infinities buried in 

quantum field theory. In principle this can be done by introducing a cut-off 

and working with a theory that is finite at each stage. If the low-lying 

states and their excitation energies remain finite at the end in the limit 

of the cut-off increasing to Q) we may consider this approach satisfactory. 

One way to implement a cut-off procedure is to formulate the theory on a 

finite lattice with a finite number of degrees of freedom--in the same way 

that we can approximate a continuous string by a weighted one, or vice versa. -- 

In fact in their pioneering original paper on field quantization, Heisenberg 

and Pauli16 started from a discrete theory in terms of discrete cells in space 

and proceeded to the continuum limit. We reverse this step with the lattice 

theory. This procedure, formulated initially by Wilson 17 in the language 

of path integrals and transcribed to Hamiltonian form by Kogut and Susskind 
18 

has stimulated a lot of work--a fair amount of it right here at SLAC. 19 

Although no definitive solutions of physical gauge theories have been obtained, 

both physical insight and reliable and straightforward methods have been 

developed and I will describe them in my second lecture. 

A very nice phenomenological approach that is less ambitious on funda- 

mental theoretical grounds on one hand but which has been impressively 
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successful in reproducing known physical properties of low-lying hadronic 

states on the other is the approach of semi-classical "bag" theories; and in 

particular the XIT bag model. 20 In this approach the bag is posited by fiat 

in the form of boundary conditions imposed on a canonical field theory. 

Alternatively one can proceed by constructing exact solutions of the clas- 

sical field equations in the interacting field theory that localize the 

energy in space and that cannot be found by iterative procedures starting 

from empty space vacua. Such solutions--known as solitons--occur 21 in field 

theories with degenerate vacua, in which case they are frequently referred to 

as topological solitons, an example of which is the 't Hooft-Polyakov mono- 

pole 22 in three dimensions; they also occur in field theories with conserva- 

tion laws of charge, isospin, or some appropriate additive quantum number 

reflecting an internal symmetry, in which case they are referred to as non- 

topological solitons. 21 A well studied example is that of a charged bose or 

fermi field interacting with a neutral scalar Higgs field. The SLAC bag 

model 23 and other similar ones 24 which construct semi-classical extended 

hadrons from local field theory are of this latter class. Aside from being 

semi-classical solutions--i.e. solutions obtained by neglecting quantum fluc- 

tuations and zero point corrections to a one-particle treatment of the quarks, 

such approaches also have the presumed drawback of violating the requirements 

of asymptotic freedom since they contain Higgs scalars explicitly in the 

Hamiltonian. I view these Higgsons as a phenomenological crutch for con- 

structing low-lying colorless hadrons from QCD. They are useful because field 

theory has not yet fully demonstrated the ability to predict such hadrons from 

gluons and quarks alone. 



The MIT bag model treats a hadron as a finite region in space to which 

almost free and light quarks are confined by fiat. .This is accomplished 

formally by modifying the free quark field theory by two assumptions: 

1. A constant energy density is added to the Hamiltonian within the 

hadron, i.e.: 

within the bag, or 

H+H+B 

where the volume tension B acts to compress the bag against the 

outward pressure of the quark gas. 

2. A boundary condition is imposed such that the colored fields of 

quarks and gluons are confined within a finite region of space-- 

i.e., the interior of the hadron: 

np(T lJv + g PV B) = 0 on the surface 

In this initial zeroth order formulation of the MIT bag model, if we treat 

the surface as that of a spherical static bag, or "cavity," of radius R, the 

energy of a quark in the bag is 

4nR3 E=:+B7 

where c% 2 is a constant characterizing the energy of a massless fermion in 

a spherical well with infinitely high walls. The minimum gives a ground state 

energy and bag radius of 

(1.1) 
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Adding massless color gauge fields, or gluons, to the bag Hamiltonian, 

with the assumption that the SU(3) color symmetry is unbroken, leads to the 

result that all hadronic states have conventional quantum numbers; i.e., they 

are color singlets. This follows from the boundary conditions for the color 

gauge fields which require that they vanish on the surface of the bag if the 

total energy-momentum are conserved within the bag world line--i.e., within 

the hypertube representing the space-time trajectory of the bag. This is the 

formal statement of gluon confinement and gives 

on the surface . 

where n 
P 

is the space-like normal to the surface. Since by Gauss' law, the 

total color charge of a bag is given by a volume integral of the divergence 

of the color electric field, we have 

Q color 
J 

-kO = d3r akti = 
/ 

d S n/" = 0 (1.2) 

,bag 
volume 

bag 
surface 

Hence only color singlet bags can be formed. 

With the inclusion of gluons and of interactions between the quarks via 

gluon exchange the bag model is reminiscent of nuclear shell theory which 

describes nuclear spectroscopy in terms of nucleons confined within a phe- 

nomenological nuclear potential and interacting with one another via a spin- 

orbit potential that shapes the shell structure. Here the bag is a relativis- 
‘- 

tic representation of the dominant confining forces. There is a residual and 

relatively weak quark-quark interaction resulting from the exchange of an 

octet of massless colored gluons and which is expressed via the Yang-Mills 

mechanism. The quark-quark interaction is required to be weak at short 



- 14 - 

distances so that Bjorken scaling is not destroyed. It is also required to be 

weak at large distances, or near zero momentum, if we are to avoid large 

renormalizations of the impressively successful naive quark model estimates of 

transitions among low-lying baryonic states. The bag provides the infra-red 

cutoff so that the quark-gluon interaction is treated iteratively in a weak 

coupling expansion, only the lowest contribution of which has been analyzed. 

In this approximation, the MIT bag model remains a static spherical 

"cavity" in which quarks and gluons and their first quantized modes of motion 

satisfy appropriate boundary conditions which insure that only color singlets 

occur. It is a four-parameter model since in addition to the volume tension 

B, there is also the quark-gluon coupling constant CL= = g2/4n, which charac- 

terizes the strength of the quark-quark interaction; the mass of the strange 

quark, ms # 0, which characterizes the breaking of the SU(3) flavor symmetry; 

and a constant Z o that characterizes the volume dependent zero point energy 

associated with the quantum modes of the bag. 

There are four contributions to the energy of a hadron: 

(1) The kinetic energy of the quarks confined in the bag; for N quarks 

in S-orbits within a spherical bag of radius R this is given by 

N 

E 1 
kinetic = x x4 

x:(miR) + (miR)2 

I=1 
(1.3) 

where xi(miR) is the wave number of a quark in the sta,tic bag as fixed by 
\ 

boundary conditions, and is slowly varying with quark mass, with xi(O) z 2. 

This term gives rise to roughly 3/4 of the mass of a typical hadron. 

(2) The bag energy which expresses the fact that the confining potential, 

or pressure B, has a dynamical origin in an underlying relativistic field 



theory and thus carries energy; in QCD it is the average gluon field energy 

within the bag, 

E =B= vol (1.4) 

(3) The zero point energy of all the modes in the static bag, or cavity, 

enters because it changes with the volume of the cavity. In conventional 

field theory formulated over all space it is highly divergent but can be dis- 

carded as a constant, the same for all processes. Here we simply parametrize 

the finite part of the zero point energy by 

E. = -Zo/R (1.5) 

A divergent contribution proportional to V = 4~/3 R3 is submerged in a 

renormalization of B, and for simple slab-like and spherical models with 

spinor and vector field constituents there are no contributions to E 0 propor- 

tional to R2 , R, or constant. 

(4) There is a contribution to the energy associated with the gluon 

mediated interactions between the quarks. The bag itself is assumed to be 

the expression of the strong, long-range confining forces whose energy is 

given by (1.4). The residual quark-quark interaction is treated pertur- 

batively to lowest order in c1 P = g2/47T. The two lowest order Born graphs 

are shown in Fig. 3. Since to this order no gluon self-couplings occur the 

gluons behave like 8 independent color fields sa and ifa, a = 1, . . . , 8, 

which must satisfy the boundary conditions for confinement. The assumption 
! 

made in treating the self energy contributions (Fig. 3b),is that only those 

-+(a) parts of it are retained that are required to enable E and sa satisfy the 

required boundary conditions on the bag surface, i.e., 

n l 2 (R) = 0 (1.6) 
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+ 
n x i? (R) = 0 (1.7) 

Otherwise the self energy contributions are assumed'to be included in the 

assigned phenomenological quark masses. The interaction energy from Fig. 3a 

is static and has the electrostatic and magnetostatic contributions of, 

respectively, 

AE(1) E 
= $ g2 c c )@ d3 r $ (r) l s(r) 

i#j a 
bag 

m(1) =Ag’ 
II z c I d3r 2 (r) l q (r) 

a 
bag 

(1.8) 

a.91 

To this must be added from Fig. 3b the contributions required to turn (1.8) 
+a 

and (1.9) into interaction energies of fields E 
+a and B for which the boundary 

conditions (1.6) and (1.7) are satisfied. This is no problem for the 2 

which, as constructed from the quark current distribution by Maxwell's 

equations, automatically satisfy (1.7), i.e., it follows from 

v x ,(a) = ja = qi z Aa qi = -& (? x gi) AZ q 
i i 

; G E $ (1.10) 
lr 

where p:(r) is the scalar magnetization density for a quark of mass m i in the 

lowest cavity eigenstate, that 3 satisfies (1.7) automatically. However, the 

,(a) 
i do not satisfy the cavity boundary 'condition (1.6), a deficiency most 

easily remedied by adding the static electric self-energy from Fig. 3b to 

(1.8) leading to 



(1.11) 

Note that 

and if we neglect quark mass differences p. = p, independent of j. Hence 
J 

c 
j 

A; I color 
singlet > = O (1.12) 

so that the boundary condition (1.6) is satisfied since the color charge 

density vanishes locally.25 

With these assumptions --in particular the assumption of zero local color 

separation in a spherical cavity-- the electrostatic interaction energy van- 

ishes, and the final expression for the magnetic interaction simplifies to a 

spin-spin term 

(1.13) 

i>j 

where A = 1 for a baryon and = 2 for a meson; p is the quark modes' magnetic 

moment, and I is a mass dependent constant. This interaction split&the ?'I 

from the p mass, and the N from the A in the right direction. 

The sum of the four contributions to the hadron energy; i.e., (1.3), 

plus (1.4), plus (1.5), plus (1.13) evaluated in the appropriate spin and 

flavor state in the spherical static bag is then variationally minimized with 

respect to the radius R to determine the hadron mass. The spectrum of the 

ground state baryon [56] and meson [35] together with static properties of 



these states are then compared 20 with the predictions based on four adjustable 

constants in Fig. 4 and Table I. 

Fitting the data with these ingredients has been a considerable triumph 

of this MIT bag approach as seen in the next two figures. Note that these 

results emerge from a lowest order perturbation calculation of the quark-quark 

spin dependent interaction for which the expansion parameter is determined to 

be a = 0.55. C 

Buoyed by these results, one can press on further to study low-lying 

excited hadrons for which one quark is in a P-wave excited state and the re- 

mainder are in the ground state. In such a study of l/2- and 3/Z- baryons 

and of O+ and l+ mesons there are no additional free parameters since all were 

deternined in the fit to the ground state l/2+ and 3/2+ baryons and O- and l- 

mesons. In this case the study is limited 26 to quarks in Pl,2 states in a 

spherical cavity in order to satisfy the boundary conditions, which for the 

quark field become on the spherical surface 
A 
r* 'i(qq) = -2B 

and can therefore not be satisfied locally for distributions, such as P 
3/2 

states, that are not spherical. Since the calculations are carried out to 

lowest order in ac, the quarks are treated as non-interacting in forming the 

states. 
i 

However, there is a problem. If one makes hadrons out of quarks only 

in s1/2 and Pl,2 modes, one finds that the resulting baryon spectrum contains 

states which do not exist in nature. These states turn out to be modes where 

the center of mass of the quarks moves relative to the surface of the bag- 

so-called translation modes. Such modes are spurious and result from use of 
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Table I 

Magnetic 
Moments 

'P 

n/P 

A/P 

C+/P 

CO/P 

C-/P 

ZO/p 

i 
C-/p 

Experiment 

2.79 

-0.685 

-0.240 f 0.021 

0.93 + 0.16 

-0.53 + 0.13 

-0.69 t 0.27 

MIT Bag 

1.9 

-2/3 

-0.255 

0.97 

0.31 

-0.36 

-0.56 

-0.23 

Experiment (Cabibbo) MIT Bag 

As =0 As=1 

Axial-Vector 
Coupling 
Constant 

Experiment MIT Bag 

Charge 
Radii 

l/2 
0.88 f 0.03 fm 

I (ri) l/2 
-0.12 + 0.01 fm 

0.73 fm i. 

0 fm 
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a fixed cavity approximation for the bag. In reality, the quarks may move 

at will, and the surface of the bag will move to keep them confined: if the 

quark's center of mass moves, so will the "center" of the bag. 

This problem has been discussed by Rebbi. 27 Its resolution involves 

including P3,2 quark modes in the spectroscopy, since the translation modes 

are eigenstates of orbital angular momentum. However, P 
312 

modes cannot 

satisfy the bag boundary condition locally over the surface of the bag. In 

order to perform the calculations, the boundary condition has to be composed 

only to achieve a global pressure balance and spherical cavities are used for 

confinement. Ihe resulting spectrum for the L = 1[70] baryon states of nega- 

tive parity, built of two quarks in 1Sl,2 cavity eigen modes and the third 

quark in a linear combination of 1P 
112 

and 1P3,2 modes is too low as found 

by deGrand 28 and shown in Fig. 5. Much of the blame for this defect is 

attributed to the P3,2 states whose eigenfrequencies are found to be quite 

small. Resolution of this difficulty awaits future study that will require 

going beyond a static spherical cavity approtimation. 

Next I turn briefly to the problem of deriving bag models from local 

canonical field theory. 23,24 The fundamental idea is that the vacuum is 

highly polarized in the presence of quarks. The "bags" themselves are 

extended, coherent vacuum excitations to which the quarks, which may have 

an extremely large bare mass, are bound. The mechanism creating the bags in 

the published models is a scalar Higgs field that develops a non-vanishing 

expectation value. A non-abelian colored gauge interaction is introduced 

'a la QCD so that the binding to form low mass bag states occurs only when 

the quarks form color singlet states which are the hadrons. Within the bag 

the interaction between the quarks is relatively small, i.e., negligible in 
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comparison with the very strong interaction binding the quarks to the bag 

and forming their wave functions. This gives a picture of hadrons as 

bound states of two or three almost free quasi-particles from which they 

derive their SU(3) properties. However there is an energy associated with 

the size of the bag--or vacuum excitation-- containing the quarks which pre- 

vents their being separated. In this picture quark trapping may be just an 

approximate state of affairs a t low energy and massive individual colored 

quarks may be found at higher energies after all. 

The mechanism for polarizing the vacuum and forming "bags" is the same 

one giving rise to the abnormal states in the Lee-Wick theory of uniform 

nuclear matter. 29 In their example with many particles, a classical treat- 

ment with neglect of surface effects is valid. To illustrate this idea, 

consider the following classical energy expression for a statistical ensemble 

of N nucleons, each of mass M, plus a scalar field with the self coupling 

illustrated in Fig. 6. 

E= /pdV[M + go(x)] + /dVU (a) 

p(x) represents the number density of nucleons, 

and g is a measure of their interaction strength with the field strength o. 

The "normal state" of matter is described by setting (3 = 0 so that the field 

state is at the minimum energy U(0) = 0 and the assemblage of nucleons, 

neglecting surface and kinetic effects (i.e., the height of the fermi surface 

relative to their mass energy), is 

E normal = MN = pOVOM 

in terms of the uniform nucleon density p. within the volume Vo. 
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The "abnormal state" is described by "polarizing the field vacuum" and 

exciting the field strength o = +c, the value at the local minimum in Fig. 6 

within the volume V. of nucleons, i.e., 

Cl=-0 inside V 
C 0 

(1.14) 
CT=0 outside V 0 - 

The total energy is now given by 

E abnormal = poVo(M-got) + U(-ac)VO = Enormal + V. 
C -gocPo + U(-ac) 1 

and evidently at large enough densities p o the abnormal state (1.14) will be 

at a lower energy than the normal one. 

As these models have been implemented so far the color interaction 

involving the gluons plays no direct role in the energies and structure of 

the color singlet states that are the hadrons. This is because the solutions 

have been constructed by treating the Higgs scalar field and the gauge fields 

classically and by ignoring the quantum fluctuations in treating the quark in 

terms of single particle Dirac theory. In particular the single particle 

energies of quarks trapped in bags vs. free particle quark states are con- 

sidered but the shift in vacuum energies of the quarks due to the presence 

of the bag is ignored (i.e. we work in the tree approximation, and normal 

ordering terms are dropped). The canonical field theory approach to bags 

shares with the ,MIT bag model approach the defect that neither is as yet a 

fully quantized field theory. 

Recently I!. D. Lee and collaborators 21Y24 (R. Friedberg and A. 

Sirlin) have given a thorough and systematic discussion of these quasiclas- 

sical soliton solutions for interacting spinor, scalar, and vector gluon 

fields. General solutions of the coupled field equations, including the 
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limiting forms reducing to both the MIT and SIX bag solutions have been 

described. Friedberg and Lee have also studied the accuracy of the quasi- 

classical approximation in the two limiting regions where exact answers are 

known. For fully relativistic theories of interacting spinor-scalar fields 

in the weak coupling limit the ratio R of exact binding energies to those 

calculated quasiclassically is 

R=l when N >> 1 

R= 0.77 when N=2 

where N is the number of fermions bound together. For non-relativistic quark 

fields, but relativistic scalar fields, they find 

R = 1 when N is arbitrary and the coupling is strong 
or when N >> 1 and the coupling is arbitrary 

R= 0.77 when N = 2 and the coupling is weak. 

It remains unknown however how good R is when N s 2 or 3 as for mesons and 

baryons, and when the fields are relativistic and the coupling is strong. It 

is to this question that I now turn. In Appendix A, the quantum corrections 

are calculated for a special example in lx - It dimension and shown to be 

large for N = 1 and strong coupling. 
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QUANTUM FIELD THEORY ON A LATTICE 

We shall now formulate quantum field theory on a lattice. Our first 

reason is to convert quantum field theory to a finite, well defined one with- 

out implementing a renormalization program which, in practice, requires an 

iterative weak coupling expansion in Feynman graphs. Such iterative steps 

cannot help us in calculating finite physical quantities in the presence of 

strong interactions. It is a deeper question of whether or not to take the 

lattice spacing a+0 in the end, retaining the low lying spectra and long 

wavelength coherent phenomena that survive this limit. Perhaps there is a 

fundamental length or structure on a scale that is sufficiently small, 

z (few) x 10 -16 cm , that it has not yet been probed by experiments. This can 

remain an open question today since we are concerned only with excitations 

of a few CeV and with structures 2 10 -14 cm. Particularly in this lecture I 

will discuss models leading to coherent "soliton" solutions and phase transi- 

tions. 

The second reason for going to a lattice is that phase transitions and 

coherent states have been extensively studied in statistical mechanics and 

solidstate physics which can provide us with powerful methods and deep insights. 

The alternative of working in momentum space, as we normally do with Feynman 

propagators, and simply cutting off the momenta at a k 
ITlaX 

s l/a, the recipro- 

cal of the lattice spacing, is less rich in helpful insights. The question 

of phase transitions enters naturally into these discussions as shown in 

Fig. 7. A weak coupling, abelian gauge theory like QED exhibits and describes 

free electrons and massless quanta. However we seek a strong coupling, non- 

abelian gauge theory, like QCD, which confines its quarks and vector gluons, 
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but which exhibits and describes physical hadrons. Is there a phase transi- 

tion as we go from weak to strong coupling? or from abelian to non-abelian 

gauge theories? are both of the above required? or neither, i.e., is there 

a smooth transition with a typical quark mass characterized by, say, 

Q 10 -3 GeV for g2 = A- 137 
1 rn% -e 0 -l/s2 
a 

2> >>lOGeVforg %l 

To be useful, the procedure of going onto a lattice should not destroy 

symmetries of the theory. This means we require internal symmetries such as 

local gauge invariance and chiral symmetry to remain exact. Those derived 

from the homogeneity and isotropy of space, i.e., Lorentz and Poincarg 

invariance, will be lost because there are now only discrete symmetries on 

the lattice. But we require relativistic results for spectra, say, in the 

low energy region as well as in the a + 0 limit. 

Let us first transcribe the gradient operator and then its gauge 

invariant form to a discrete lattice. For simplicity in writing I will use 

the notation of a one-dimensional spatial lattice; its generalization to 

three dimensions causes no problem. Time will be treated as a continuous 

variable, since I am constructing a Hamiltonian formalism, although formula- 

__ --. tions putting time on a discrete lattice have also been developed and give 

no special difficulties. 

The continuum variable x is replaced by a discrete lattice of length 

L and spacing a z l/A defined so that there are (2N + 1) points: 

L = (2N + 1)a (2.1) 

With periodic boundary conditions, the allowed momenta on the lattice are 
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2lT 
k L 

"-11 

and 

km=+fN. 

n = 0, f:, . . . +N 

The volume integral then becomes simply a sum over lattice points: 

(2.2) 

(2.3 

(2.4) 

The fields and canonical momenta are defined at discrete lattice points and 

their fourier expansion includes a finite number of modes up to k : max 

+kmax 
= 

x 
e W/A j,(k) 

k=-kmax 

1 
'k = 2N + 1 c *j e 

-ikj/A (2.5) 

The lattice version 

[ I 
Iii' Qj' 

of the canonical (anti-) commutator relations is 

= -ill6 jj’ 
(2.6) 

The simplest and most direct definition of the gradient on the lattice is as 

a difference operator 

1 - ‘J (2.7) 

This gives for the kinetic energy term in the Hamiltonian of a scalar field 

(2,8) 

which reduces to the usual quadratic in k for k/2A -CC 1, and for all k gives 

the connection between energy and momentum for a free particle of mass m: 



E(k) = m2 + 4A2 sin2$ (2.9) 

As illustrated this is a very good approximation to the correct dispersion 

relation for k/2A < 1 and deviates up near the max where k max/2A = IT/~, giving 

the familiar band structure of solids (Fig. 8). 

There is however 

described by spin l/2 

derivative expression 

f + 

a problem 19a,b in applying (2.7) to a theory of quarks 

Dirac fields in that (2.8) is replaced by a first 

which when properly hermitized becomes 

-i J dx $'(x)~V$'(x) = - $+(x)av$(x) - 

(2.10) 

With this form for momentum given by (2.10) the energy-momentum dispersion 

relation becomes for a free Dirac particle, instead of (2.9), 

ED(k) = 4m2 + A2 sin 2k ;? (2.11) 

which has again the correct.k/A << 1 limit but which leads to a doubling of 

states of a given energy as illustrated by Fig. 8. 

This difficulty is readily resolved by defining the gradient on the lat- 

tice to be the operator multiplying the fourier amplitude by ik and thereby 

assuring that in both cases of spin 0 and of spin 32 fermions (2.9) and (2.11) 

are replaced by the correct relativistic relation 

E(k) = 4iz-F Ikl <k-=F 

On the lattice this definition reads 



- 33 - 

-lT -7T/2 0 7T/2 lT 
S-77 

Fig. 8 



- 34 - 

('~> j z c ik eikj'A Jl(k) 
k 

1 C eik(j-j’>/A ik 
2N+lk 

z A c Qj,[-&'Cj - j')] 
-1 J 

As defined, for N * 0~ 

6' (j 
+)j-j ' 

- j') = (j-j') 
. 

(2.13) 

j # j' 

(2.14) 
= 0 j = j' 

and shows that the gradient couples sites all along the lattice. For com- 

pleteness I record the analogous result in 3 dimensions 

6p-- - j') = S'(j - jk) 6. 6 
X J,$ jz,jk (2.15) 

to show that it remains simple. 

Next we must form a gauge invariant derivative - i.e., introduce gauge 

fields while preserving local.gauge invariance on the lattice. In continuum 

QED, local gauge invariance leads to a differential law of current conserva- 

tion; i.e., locally at any point the time rate of change of the charge density 

equals the negative of the divergence of the current density from that point. 

The formal expression of the underlying local gauge invariance is this: in 

the Lagrangian or Hamiltonian of the theory there appear only the fields 

themselves 

Viz. IF 
4W 

FVV (2.16) 

or interaction terms formed gauge invariantly 
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Viz. + $J+ (x) z -(d - d(x)) $(x> 

which is invariant under 

$(x) -+ e iex(x)Q(x) 
(2.17) 

x -f ;t + i&(x) 

On the lattice we have no local divergence of the current but can speak 

only of the (color) charge being moved in a discrete step from one lattice 

site to the next and so on. Indeed by (2.13) and (2.14) the lattice gradient 

moves a particle along the entire lattice chain (in the direction of the corn- 

ponent of the gradient by (2.15)). To preserve local color charge conserva- 

tion-and the asymptotic freedom idea-evidently the gauge field must be 

defined on the links joining the lattice sites if we are to avoid discon- 

tinuous steps of color charge disappearing from one lattice point and appear- 

ing on another one. This is the formulation of K. Wilson and of A. Polyakov, 17 

who independently introduced the lattice theory with gauge fields thus defined 

as the oriented links or strings between nearest neighbor lattice points. In 

the language of abelian QED the operator representing a gauge field must trans- 

form like a field with charge +l at the starting point of the link and with 

charge -1 at the final end point. If we start with a quark of charge +l at 

lattice point j and wish to move it to the next point j+l, gauge invariance 

requires that a unit bit of string be created pointing from j to j + 1. This 

is the operator U R 
( > 

which transforms like a field with charge +l at 

j and -1 at j'+ 1. 
j, j+l 

This process is illustrated as follows in Fig. 9. The 

simplest gauge invariant expression expressing this transition is 

Tj '('j,j+l)*j+l (2.18) 
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if under the local gauge transformation, 

ij +ji e -iex(j 1 
j j 

JI j+l 
+ ,W(j+UJI 

j+l 

we also stipulate 

UC2 j ,j+l 
) -+ eieX(j) U(.& 

j ,j+l 
) e-ieX(j+l) 

(2.19) 

(2.20) 

Thus the form of U such that (2.17) carries over to the lattice for nearest 

neighbor points is 

UC1 j,j+l) = e 
ieaA(I1 j,j+l) 

with A(R 
j ,j+l > + A(a. j , j+l) + $ (x(j) - x(j + I)] 

(2.21) 

(2.22) 

under a gauge transformation. Equation (2.21) is the lattice form of the 

exponential of a line integral from j to j + 1. To transport charge over a 

succession of links we write the ordered product 

U(jl,j,) = - 
Jl 

<!<j,‘(‘) (2.23) 

and observe that with the convention 

*(% 2 1 , = -W, $ = -AWl 2) , , 

we have 

w, 2) = u+(e,,,) = u+(-il, 2) (2.24) , , 

We can now write the gauge invariant extension of (2.16) to the lattice as 

U(j19j2)Qj 
2 

+ c 2 j,>j, Jl 

(2.25) 
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' 30 and observe that in the continuum limit a + 0, (2.25) reduces to (2.17). 

For a non-abelian gauge theory the analogue to (2.21) is 

U(Z) = e 
ig 

(2.26) 
- 

where the Xcr are the c-number matrices belonging to a specific (NN)-representa- 

tion of the gauge group, par ex. the 8 hermitian generators of SU(3). The 

ordered product construction of (2.23) applies also in this case. In the 

lattice formulation the unitary operators (2.21) and (2.26) defined on lat- 

tice links (as illustrated in Fig. 9) replace the gauge field da appearing in 

(2.16) in the continuum theory. 

Local gauge invariance requires that new string bits be created for 

each increased unit of separation of a particle q and anti-particle < on the 

lattice. If each string bit has a finite mass (corresponding to finite field 

energy) the mass of a gauge invariant state increases without bound as the 
- 

separation between q and q grows; this behavior corresponds to confinement. 

What we must establish is that the lattice gauge theory we have formulated 

when applied to weak coupling abelian QED in 3x-lt dimensions does not con- 

fine; but does confine for non-abelian QCD and strong coupling. 

Nothing like this has been accomplished yet. Calculations so far by 

Wilson17 and by Kogut and Susskind and collaborators 18 have been iterative 

strong coupling treatments and contain approximations that make it impossible 

to judge the content of the theory independent of the validity of the cal- 

culational techniques. The problem at this time is to develop calculational 

methods that one can trust so that the result of calculating mass spectra in 

QCD will equally well destroy the theory if they fail to reproduce the observed 

spectra as they will confirm it if they do! No weaseling'out! Wilson's 1975 



result from his strong coupling expansion is a nucleon mass of 172o'MeV with 

a large lattice spacing of l/5 x 10 -IL3 cm . The Pad6 extension of strong 

coupling calculations by Kogut, Susskind and collaborators gives a 7~r/N mass 

ratio of .82 instead of .15 and contains difficulties related to the use of 

(2.7) for the gradient together with a compensating point splitting prescrip- 

tion to avoid the difficulty in (2.11). These efforts and our local ones 19 

are proceeding-it is slow and difficult work. Neither simplifying extreme 

of very weak or strong coupling approximations is adequate. I wish here to 

describe the methods we are exploiting and validating by solving simple models 

with known exact properties against which we can improve our understanding and 

approximations. We believe the basic problem that must be solved first is 

that of developing simple, understandable, intuitive techniques of calculation 

with which to arm oneself before undertaking the assault on the real physics 

problem. 

TRANSVERSE ISIRG MODEL 

The transverse Ising model in l-space, l-time dimension describes an 

array of spins with nearest neighbor interactions in the presence of a con- 

stant transverse magnetic field and is an interesting example on which to 

test methods for two reasons: 

1) There are a finite number of states for the spin degree of 

freedom (up or down) at each lattice site in common with spin 

l/2 quark theories (in l-x dimension there are four states at 
- 

each site for each color of quark: 0, q, q and qq). 

2) The exact solution of this model is known 31 and calculations 

can be compared with exactly computed critical indices and tem- 

peratures of the known phase transition. 
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The Ising model Hamiltonian represents an approximation to the o4 field 

theory in the lx-lt dimension if we are far into the spontaneously broken 

symmetry region with strong coupling. To see this we write this theory on 

the lattice in terms of dimensionless canonical variables, and using the 

nearest neighbor gradient 

+ H = 2 [+ 1; + AO(x; - f;)'] +g $(xj+l - xj)2 
j--N 

=I 
: Jlj 

'j 
-- 

i =j 

(2.27) 

1 1 = ib xj'Pj' jj' 

The.lowest two eigenlevels of the single-site Schrb'dinger problem (neglecting 

the coupling between two neighboring sites j and j + 1 in the gradient term) 

lie deep in the potential well if the zero point energy is very small com- 

pared with the height of the center bump; i.e., 

1; fO <c x f4 0 0 
(2.28) 

These two low lying levels are, respectively, symmetric and antisymmetric 

under reflection as shown in Fig. 10. The energy gap between them is propor- 

tional to the tunneling between the two minima in the double-bottomed potential 

X0(x: - fi)2 at 5fo. Since (2.28) means that there is very little tunneling 

this gap is very small-i.e., 

-A&f3 

"gap 
'L $ f. e O O << AZ f. (2.29) 

4 

if A+ f3 >> 1 00 - When conditions (2.28) and (2.29) are satisfied we can neglect 

higher excitations at each lattice site. The two states retained correspond 

to the spin down and up configurations in the Ising model. The gradient term 
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induces mixing between the symmetric and antisymmetric solutions which is 

approximately given by 

Gym ]xjI 2% 2 antisym) 'L f. E A0 (2.30) 

When this mixing is comparable to the gap separating the levels-i.e., for 

-AS f3 
$ f. e ' ' 2 A0 = fi (2.31) 

the gradient term is comparable to the single site terms and we.can make 

neither a weak nor strong coupling limiting approximation. Condition (2.31) 

requires fi << 1, A0 >> 1, consistent with $ fi >> 1. 

The explicit form of the Hamiltonian in this approximation can be 

written in terms of Pauli matrices 

N N-l 
+z 

ct 

1 
2 co a,(j) - A0 o,(j) u,(j + 1) (2.32) 

j=-N Ic j=-N 

which is just the transverse Ising model. Looking back at (2.27) we see the 

value of configuration space methods in studying strong coupling problems in 

field theory. For large x0 the character of the solutions is determined by 

the potential term and so it makes sense to start in a representation or 

language that diagonalizes this part of the Hamiltonian. This is what we do 

in configuration space by expressing H as a sum of single site Schrb'dinger 

problems, with the "relatively" small gradient term providing the coupling 

between different sites. Such couplings can be treated iteratively in this 

limit. The spectrum of eigenstates at each site is identical. The eigen- 

states of H are then characterized by specifying the different individual 

levels of excitation populated at each site. Barring additional degeneracies 

arising for specific values of X0 and fi, the first excited state will be 
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(2N + l)-fold degenerate corresponding to having the excited level at any 

one of the lattice sites. When the gradient terms are included in H, their 

effect is to lift this degeneracy; they also mix these states in general with 

the ground state and with the more-highly-excited spectrum. It is when 

these gradient-induced splittings are small relative to the spacing between 

the single-site excited states that the site basis is expected to provide 

a reasonable picture of the true ground state. In contrast for weak coup- 

lings, we want to treat the gradient exactly and this we accomplish by working 

in momentum space in terms of which the gradient is diagonal and a propagator 

formalism is then useful for iterating the relatively weak potential terms. 

. Important features of the solution to (2.32) can be learned from study- 

ing its limiting behavior for E~/A~ + 03 (strong coupling) and E~/A~ + 0 

(weak coupling). In the strong coupling limit, E~/A~ + m, (2.32) describes 

an assembly of noninteracting spins that all line up with spin down in the 

nondegenerate ground state 

lo>=rr "1 
0 j j 

(2.33) 

of energy density (in units of A) Eo(AO/~O + 0)=- ~~/2. The particle-like 

excitations lie +E o above the ground state for each site excited to the spinup 

configuration, In the opposite, or weak coupling extreme, co/A0 + 0, 

the eigenstates 

(2.34) 

and 

I*>‘= ; -; ( ) j (2.35) 
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diagonalize the Hamiltonian. The ground state is doubly degenerate, being 

formed as a product of states (2.34) at each site, or all states (2.35) at 

each site. For each "wall" between two adjacent sites, one formed as (2.34) 

and the other reversed as (2.35), there is an excitation of +2Ao units of 

energy. In this extreme the excitations are kink-like as illustrated by 

Fig. 11. These low lying excitations in the weak coupling limit correspond 

to collective "kink" states rather than single particle excitations. 

From a study of the exact H, (2.32), it is known 31 that a second order 

phase transition occurs between the nondegenerate ground state (2.33) and the 

degenerate configurations (2.34) and (2.35). The transition occurs when 

E. 7 2A0. The behavior of the order parameter, or "magnetization," in this 

model is given by 

I 
[l - (E~/~A,)~]~‘~ for $ 2 1 

(CJ,) = (2.36) 

0 

It is these exact results that we must reproduce by a simple and direct cal- 

culational procedure that lends itself to generalization to 4-dimensional 

gauge theories. Our approach is as follows: 

1) Divide the lattice into small blocks containing several adjacent 

sites, as illustrated in Fig. 12 for two-site blocks. Within each 

block diagonalize the two site Hamiltonian; viz. for (2.32) 

Hm 
+ ~~(2) 1 ,- A0 ox(l) ~$2) (2.37) 

which has 22 = 4 eigenstates 33 that can be determined exactly. 
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2) "Thin" the degrees of freedom by a truncation procedure which 

amounts simply to keeping a suitable subset including the lowest 

lying of these eigenstates and discarding the higher excitations. 

This is equivalent to a variational solution using a trial form 

that spans a subset of the full Hilbert space and constructing an 

effective truncated Hamiltonian. Our simplest algorithm for (2.37) 

is simply to keep the two lowest of its four eigenstates. Part of 

the motivation of our work with this model is to learn by experience 

the ingredients of accurate algorithms. 

3) We then iterate this procedure, including thereby more terms 

in the gradient that couple different lattice sites by forming 

neighboring blocks: two neighboring blocks into superblocks in the 

example in Fig. 13. The two retained eigenstates from the original 

blocking form a block basis in terms of which to express the 

Hamiltonian. In this simple example we again find a spin form 

since there are 2 eigenstates at each block site; but the effec- 

tive coupling strengths, block spacings, and energy intervals 

are renormalized. 

4) We repeat the same steps successively, continually eliminating 

the higher excitations. We can think of this procedure as succes- 

sively eliminating higher momentum states in constructing the 

series of truncated Hamiltonians to describe the physics of the 

low momentum states alone. 

5) The iterative steps are continued until the successive rescal- 

ing leads to a soluble problem, either in the weak or strong 

coupling regime, for the treatment of the remaining coupling terms 
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between different blocks contained in the gradient term. 

Applying this prccedure to (2.37) we note that within one block of two 

adjacent sites there are four independent states which we denote by I++> , 

I++>, If+>, and I-C+>, where I++> z I+>1 1+>2, etc. The problem of diagonaliz- 

ing the 2-site Hamiltonian reduces simply to one of diagonalizing two 2 x 2 

matrices, since I++> mixes only with I++>, and I++> with I++>. The eigen- 

states and eigenvalues are simply found and are given in Table II. Step (i) 

of our general procedure will be to choose this set of four eigenstates as 

the new orthonormal system which we will use to construct a basis for H. 

Step (ii), the thinning out procedure, is simply accomplished by retaining 

only the two lowest energy states in Table II for each box when we add back 

the terms linking different boxes in (2.37). It is reasonable to expect 

that the most important part of the true ground state will be in the subspace 

spanned by these two states in each box. In order to implement this approxi- 

mation we need only construct the truncated or effective Hamiltonian for 

this choice of trial states and see if we can solve it. 

To compute H (tr> we label each 2-site box by an integer 'p' and divide 

the Hamiltonian into two parts, Hl and H2. Hl contains only those terms in 

(2.37) which refer to single boxes and H2 contains the remaining interaction 

terms in (2.37) which couple sites in adjacent boxes; i.e., 

H2 = -AOCax (p,l) ox (P+l,Q) 
P 

(2.38) 

where ox(p,cr) operates on the spin in box p and at site g = 0, 1 within each 

box. In keeping with our approximation of retaining only the two lowest 

(tr) states in each box, the truncated Hl can be written as a sum of 2 x 2 

matrices operating on the two states we keep for each box. In particular 
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Table II 

State Energy Energy Relative to 
Lowest State 

0 

- Ao 

&(-aoIC+> + I++>) 

1/ l+a,2 

+A 0 fm+Ao 

2 

. *a0 =(I- - .,)/A, l 

referring to Table II we see that H (tr> 
1 can be written as 

(tr) = 
H1 

]n (P) +$+q- AJoz(p)/ (2.39) 

The eigenstates of (2.39) can be written as products over boxes of the two 

lowest eigenstates in Table II; i.e., 

pl, >= boxgs p I'(')' 
(2.40) 

Hence the interaction (2.38) can now be re-expressed in terms of the trun- 

cated basis (2.40) by evaluating its matrix elements for flipping one "spin" 

in each of two adjacent boxes. To compute this we take the matrix element 
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of ox(p,l) between the states 

and 

Iq$(P) >= 5 1 I++ >+ I++ > 1 
The actual computation is quite trivial: 

ax(P,l)l$o(P)> = 
A/i&- 6 [ 

I+-+>+ a0 I++> 1 P 

and so 

<$Jl(P)Iox(PJ) IJI,(P>> = 
1 + a0 

+Gq 

Similarly 

<l),(p + l)~ox(p+l,o)IJIo(P+l)>= 
1 + a0 

+iiq 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

It follows from this that for 'j' in the p th box, and for both cases c( = 0 

and 1, 

,(tr) 
1 + a0 

X 
(j> = 

+Gq ax(p) 

(2.46) 

attr) (j + 1) = 
1 + a0 

X l/m ux(p + l) 

We can now rewrite our effective Hamiltonian for the two site box. Since our 

truncation procedure retained just two states per box we again have a spin 

form for the truncated Hamiltonian. H(tr) has exactly the same form as the 

original Hamiltonian but different coefficients: 
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H(tr) = F bl(i gp + 3 El(i -gp - Al(Y :IyiY i)p+l] (2.47) 

where 

~~ = +j-=f$ - A0 

and 

Al 
= 

Ao(l + ao12 
2(1 + ai) 

(2.48) 

At this point we face one of two possibilities. Either the values of 

~1 and A1 are such that we can treat the resulting effective Hamiltonian, 

H(tr)(l) by perturbation theory for E~/A~ > 1 or cl/A1 < 1; or, we may repeat 

the sarx procedure that we just went through, but this time combining 

neighboring pairs of blocks p in the Hamiltonian H (tr> and thereby including 

additional interaction terms in a new basis to which we again apply the 

same state-thinning steps as in (2.38) to (2.47). One readily sees in the 

comparison of (2.47) with the original (2.37) that each successive restric- 

tion of our class of trial wave functions by this procedure leads us to a new 

effective Hamiltonian of the same form as the original Hamiltonian, and with 

the coefficients of the effective Hamiltonian given by (2.48) in terms of the 

coefficients found in the preceding step of the calculation. 

The details of this procedure and its systematic improvement with more 

sophisticated and general, but nevertheless very simple, truncation steps 

are discussed in Ref. (19c). For these lectures I will simply summarize the 

mDre salient features: We define the ratio after n iterations 
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'n - WA), 

and study 

W’,) = Y,+~ - Y n (2.49) 

in order to see whether with successive iterations this ratio decreases, 

driving us to the weak coupling or gradient-dominant limit, or whether it 

increases driving us to the strong coupling limit. R(y) is plotted schemati- 

cally in Fig. 14. This figure shows that there are three fixed points in our 

procedure of generating new effective Hamiltonians in successive steps (called 

a "renormalization group transformation" by Wilson and Kadanoff); namely, at 

Y = 0, y = m, and y 
C 

= 2.55..... At fixed points, the ratio y 5 E/A does not 

change as the iteration process is continued and so H tr changes only by an 

overall scale. when R(Y) = 0 we have a fixed point. There is also a fixed 

point if y = 03 and R(a) > 0 so that this value cannot be reduced. Whenever 

R(y) < 0 the ratio (E/A) = y decreases for that iteration and so the new 

(E'/A') lies to the left of the y we started with. Since, as shown in Fig. 

14, R(y) Ss negative for all y < yc = 2.55 we see that if we start at any 

point in this range, successive iterations of our truncation procedure will 

drive us to a form for the effective Hamiltonian which is the weak coupling 

perturbation theory limit. On the other hand, for y > y, successive itera- 

tions drive us to y = 0~ since, in this case, R(y) > 0. This implies E/A >> 1 

which is the strong coupling limit of the Hamiltonian. Hence those theories 

described by (2.37) for which the initial y < y, are theories with a degenerate 

ground state and spontaneously broken symmetry as described earlier. On the 

other hand, for y > y, we have a unique ground state. Clearly y, is the point 

at which the nature of the ground state changes, and so y, is the critical 

point of this theory. 
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yc = 2.55348456... y = (&A) 
3072A7 

Fig. 14 
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The result y, = 2.55 . . . which is obtained from our simple procedure is 

exact not far from the exact transition point y, = 2 discussed above (2.36). 

The fixed points y = 0 and y = 0~ are the stable fixed points of this renor- 

malization group transformation, and the fixed point at y = y, is an unstable 

fixed point. The fact that at y = y, the Hamiltonian continues to reproduce 

itself up to a scale factor says that at this critical point the physics 

going on at different length scales is essentially the same. 

One can further discuss the order parameter (2.36) which we find with 

the above procedure to have a critical index of 0.39 instead of the exact 

result of l/8. The simple modification of replacing ao, as defined in Table 

II by our truncation procedure, by a variational parameter a(E/A) determined 

at the end of the iteration to minimize the energy reduces the calculated 

value to l/5. The comparison of the ground state energy density computed 

this way and the exact energy is shown in Fig. 15. The worst disagreement is 

3%. This can be readily reduced further. 34 Discontinuities in the ground 

state energies are also well reproduced by this procedure as described else- 

where. 19c 

Abstracting from this model we see that study of R(y), which gives the 

change in the ratio of the single site potential terms in the theory to the 

gradient terms coupling neighboring sites, teaches a great deal about what we 

want to learn from the study of 'gauge theories and confinement. Let us con- 

sider such theories with only one coupling constant--i.e., one single site 

potential term in the theory--which is the strength of the coupling between 

the quarks and gluons. Then with y defined as above as the ratio of the 

strength of the single-site coupling to the gradient term, we can plot the 

general form of the function R(y) = (change of y in finite number of iterations) 
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as in (2.49). A few examples of simple forms for R(y) are given in Figs. 

16a-16c and lead to different conclusions about the theories they are assumed 

to characterize. 

In Fig. 16a we see that R(y) > 0 for all values of 0 < y 2". If a - - 

theory has this form for R(y) we can conclude two things. First, the points 

Y = 0 and y = 03 are the only fixed points of the theory. The Hamiltonian at 

Y = 0, i.e., zero coupling constant, is a "free field theory," and can 

presumably be solved exactly. The y = ~0 Hamiltonian becomes the single site 

Schrb'dinger problem with neglect of the gradient terms. Second, we observe 

that if we start at some finite value of y successive iterations drive us to 

larger value of y; i.e., R(y) > 0. Eventually after a finite number of 

iterations our problem can be studied by treating the gradient terms as a 

perturbation on the single site terms. Hence, in any theory for which 

R(y) > 0 we can conclude that the low energy (or long-wavelength) physics is 

described by an effectively strong-coupling constant Hamiltonian. It follows 

from this discussion ,that the mass gap in such a theory will be given by 

calculating the gap between the first two eigenstates of the effective single 

site Schrodinger problem. The gap is thus a function of the effective single 

site coupling g,, where the subscript denotes the many iterations N >> 1 to 

reach the strong coupling behavior. In general, since the scale of H is set 

by the cutoffh, this means that the lowest mass gap in the theory will be 

akw. However, the scale of physical masses should be negligible with respect 

to the maximum momentum A if we are to retain practical iorentz invariance 

for the low-lying eigenstates in spite of our cutoff procedure. Therefore we 

are only interested in theories for which g, <<< 1, or in other words, &A 

finite (and perhaps 2 1 GeV). 



- 58 - 

'Y 

W 

AR(y) 

3072A.11 

Fig. 16 



- 59 - 

Generally the Hamiltonian at a fixed point reproduces itself up to a 

scale factor P, and after N iterations the overall scale of s is npN. 

Since this should be finite (? 1 GeV) this suggests that the question of the 

practical relativistic invariance of a theory for which R(y) behaves as in 

Fig. 16a can be settled by computing the scale parameter p in the y = 0 limit. 

If we find p < 1 then we can take the cutoff A + 00 and still keep the masses 

of the lowest states finite if we choose the original bare coupling constant 

go to tend appropriately to zero as a function of increasing A. This is an 

example of a theory whose short distance behavior is "free" but whose long 

wavelength behavior is not. Such a theory could describe asymptotically free 

quarks for high momenta and also give confinement. 

If we next look at R(y) for Fig. 16b we come up with the opposite con- 

clusion. If R(y) < 0 each successive set of N-iterations will make it smaller. 

Hence the large wavelength or lcw energy physics of this theory is given by 

weak coupling perturbation theory, whereas the single-site or short distance 

behavior is governed by a strong coupling constant. 

Fig. 16~ tells us that the two different cases can occur depending upon 

the starting value for y,i.e., whether y o < Y, or y. > Y,- This is just the 

form of R(y) calculated for our Ising model in Fig. 14 and one can refer back 

to the exact solution of this theory 31 to see how an effectively relativistic 

theory emerges. 

The use of the function R(y) to catalogue types of theories has its 

analogue in the study of the renormalization group equations in momentum 

space, where one encounters the well known B(g) function in terms of which 

the asymptotic behaviors of field theories are described. Both functions, 

p(g) and R(y), describe the change in coupling constant (g or y) as we change 
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the scale of distance in the theory. The two functions are complementary to 

one another in that we have introduced R(y) here in coordinate space, whereas 

B(g) normally appears in the momentum space analysis of the renormalization 

group equations. In our renormalization group procedure on a lattice we build 

larger and larger blocks at each state of the calculation so that we are 

studying the behavior of the theory at lower and lower momenta. When working 

in momentum space one normally studies the renormalization group equations by 

scaling up the momenta to higher and higher values at each stage, and cor- 

respondingly to smaller and smaller values of the underlying lattice spacing. 

In our approach Fig. 16a describes a theory which is asymptotically free (high 

momenta) and Fig. 16b describes one that is infrared stable. The B function 

has just the complementary behavior as illustrated by Fig. 17 for asymptoti- 

cally free and infrared stable theories. 

THIRRING YODEL 

The Thirring model 35 of quartically self-coupled fermions, described 

by the Hamiltonian 

(2.50) 

is a more interesting one for applying these methods for several important 

reasons: 

1) It deals with fermions (2 la quarks). 

2) It is essential to use the definition (2.13) for the lattice 

gradient which couples distant lattice sites in order to avoid the 

deficiency in (2.11) of doubling the number of states as illus- 

trated in Fig. 8 and at the same time preserve chiral symmetry. 

3) In the continuum Thirring model the wave function renormaliza- 

tion Z2 vanishes when, the strength of the coupling g exceeds a 
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finite critical value and it is important to reproduce this 

behavior indicating failure of the multiplicative renormalization 

procedure and the concomitant loss of the single charged fermion 

(and generally charged degrees of freedom) from the finite mass 

spectrum. Failure of such states to propagate is a form of con- 

finement in this model. 

- ---- Introducing dimensionless field variables x. = A-\ and a convenient 
J j 

matrix representation that diagonalizes the quartic term in (2.50); viz. 

1 0 ( ) ( ) 01 
a = Y5 = o -1 yo= 10 

Xj = 

= 0 etc. 

the Hamiltonian can be written 36 

where %(j> E 

possesses two 

Q = 

= 16’ (j, 
j,J, 

1 

(2.51) 

(2.52) 

.-g C (%(j) + n,(j) - 1)2 
j 

b: bj and n,(j) 3 d; dj are number operators. This theory 

conserved "charges" 

C (y)(j) - n,(j)) =C :Xi Xj’ 
j j 

Q, = (j) + n,(j) - 1 > = C Xi'Y5 Xj 
j 

(2.53) 

as well as discrete P, C, and T operations for classifying states. The weak 

coupling limit g = 0 reduces to free massless fermions, the solution to which 



- 63 - 

is most readily recognized in momentum space which diagonalizes the gradient 

operator. In fact with 

we have 

b(k) f ' c bj eeikj" 
J2Nj 

(2.54) 

d(k) 5 ' c dj e-ikj'A 
J2N + 1 j 

H(g = 0) = - d+(k)d(k) 

k=--TTA 

k max 

- rid(k)) 

(2.55) 

The lowest eigenstate of (2.55) corresponds to filling all k < 0 states with 

fennions (b-quanta) and all k > 0 ones with antifermions (d-quanta), i.e. 

%(k) = 0(-k> 

rid(k)) = 8(k) . 

This leads to a doubly degenerate ground state in the neutral Q = 0 sector 

depending on whether the k = 0 state is empty (Q, = -1) or occupied by a pair 

(Q, = +l) and to two states of the same energy and with charge Q = _+l, Q, = 0 

corresponding to a fermion or an antifermion present in the k = 0 state. The 

energy of these four-fold degenerate states is 

k max 

EO = -2 kFo k 
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In contrast the strong coupling limiting behavior g >> 1 is found 

simply from the quartic term in (2.52) which can be diagonalised on each site 

separately. There are only four states at each site corresponding to rib(j)) 

= 1, 0 and n,(j) = 1, 0. These site states, their quantum numbers and 

eigenenergies are shown in Table III, where O> is defined by bjlO(j) > = 

djlO(j)> = 0. 

We see therefore that at each site the Q = 0 states, corresponding to 

nothing or a bound pair at a site, are degenerate ground states, with the I. 

single fermion states of charge Q = +1 pushed up in energy by gA. Therefore 

any neutral state which contains an unbound pair with a fermion and an anti- 

fermion split to different lattice sites will lie higher in energy by 2gA for 

each such split pair. One can of course study how the gradient term splits 

the 2(2N + l)-fold degeneracy of the ground states with Q = 0. However it is 

clear that we are seeing here a form of quark confinement in the strong 

coupling limit with g >> 1 since the gap to propagating single quark states 

is % 2gA >> A, the lattice cutoff. 

The perturbation treatment of the gradient term in the strong coupling 

limit has been given. 19b It is clear from the form of (2.52) that the gradient 

moves single fermions or antifermions from one lattice site to another and 

gives no first order energy shift to the low lying states with Q = 0 and 

rib(j)) = n,(j). In second order either a fermion and antifermion are both 

moved from a common initial lattice site to a common final one, as illus- 

trated (Fig. lga), or the (anti-) fermion is moved away and returns to its 

initial site (Fig. 18b). 

It is not surprising that there eldsts a spin formalism in the sector 

of low lying states in which each lattice site is either empty (spin down) 
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Table III < 

2 State - 4 95 y,(j) + nd(j) 1 I 

I o> 0 -1 -g 

I+>= b+lO> +1 0 0 

I->= d+jO> -1 0 0 

It >= b+d+lQ > 0 +1 -g 

(a) 

(b) 
first . 0 l 0 0 0 - 

order ’ 
l l l l . 

iz 
---a + 

0 -77 

second 
order . y-: l ’ 

+ 3265AlO 

Fig. 18 
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or occupied by a pair (spin up). In fact the second order treatment of the 

gradient gives an effective Hamiltonian in order l/g2 that is identical to the 

Heisenberg antiferromagnetic chain about which a great deal has been known 

since the work of Bethe 37 in 1931. In particular such a system is known to 

have a doubly degenerate ground state for a chain with an odd number, 2N + 1, 

of lattice sites corresponding to the odd site being either spin up (S3 = %) 

or down (S3 = -$) and to have a low lying excitation spectrum of spin waves 

that is linear in k, without a mass gap, for an infinitely long chain. 

Our interest, as in the Ising model, is mainly in the intermediate 

coupling region where the Thirring model changes from free fermion to no single 

fermion propagation. Can we understand what is going on, as learned from the 

study of the continuum model, by our lattice truncation methods? 

Aside from detailed technical issues associated with the fact that 

fermions give us two eigenstates at each lattice site for both particles and 

antiparticles and with the use of the gradient operator 6' coupling distant 

lattice sites, (2.32) for the Ising model and (2.52) are very similar. There- 

fore so is the formal treatment via the lattice blocking procedure--and not 

surprisingly the success of these methods as well as the character of the 

results that are obtained. Already we have noted the strong coupling limiting 

behavior that charged fermions move high up to mass % gA and fail to propagate. 

In fact these methods show 19d that 'there is a critical coupling strength such 

that for g > gcr 2 1.1 we are driven to the strong coupling limiting behavior; 

whereas for g '< gcr, the Hamiltonian converges to the same fixed form that 

the free g = 0 Hamiltonian iterates to. What happens is that the wave function 

renormalization constant defined as the amplitude to create a Q = 1, Q, = 0 

state at rest from the vacuum, i.e., 
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h,(p)(;) = <OIx(k = O)l+> 

vanishes for finite g 2 gcr even in the presence of a finite cutoff A. When 

one discusses the continuum Thirring model it is necessary to give singular 

quantities in the theory well defined meanings. For example Johnson intro- 

duced a point splitting prescription 

+lim 
j'(x) = E+O 

([ 
ax + El ,YFlqJ(X - E) I> 

to define the current, where the bracket indicates a suitable averaging over 

directions of E. This procedure also leads to a wave function renormalization 

Z2(g) that vanishes at a finite value of g, similar to the lattice result. 

In both formulations the theory cannot be multiplicatively renormalized for g 

greater than some finite critical value gcr and the Schwinger terms are similar. 

The picture emerging from this truncation procedure is found to be con- 

sistent with the continuum model in that there is a finite critical value gcr 

such for g < gcr the theory has no mass gap; for g > gcr the cutoff lattice 

theory cannot be multiplicatively renormalized in the usual fashion. The lat- 

tice theory still exists for g > go; in fact, for this region its behavior 

seems entirely sensible and is driven to the strong coupling limit which 

corresponds to a Heisenberg antiferromagnetic chain with nearest neighbor 

interactions only. This theory possesses a massless excitation spectrum as 

first found by Bethe. For g > gcr, however, the "single particle" operator 

1 - 
I- &- 

dx Q'(x);fails to create any finite energy states from the vacuum. In 

fact, the excitations of unit charge are found to lie an energy Q gl\ above 

the ground state. This result shows that for a certain region of the parameter 

g the particles and low-lying excitation spectra found in finite cutoff lattice 
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theories are not simply related to the fundamental field introduced in the 

starting Lagrangian and Hamiltonian. 

The breakdown of multiplicative renormalization and the concomitant loss 

of the charged degrees of freedom from the finite mass spectrum is interesting 

in that it seems to occur in several types of lattice theories for appropriate 

values of coupling constant. The strong coupling limit of the Schwinger 

mode138-i.e., QED in lx-lt dimensions --is very similar to the Thirring model 

in that charged fermion states move up to high mass and fail to propagate. 19b 

In particular each bit of gauge field adds an energy % goA, where go is the 

dimensionless coupling constant and is related by go G e/A to the dimensional 

charge e as defined in (2.21) for a lx-lt dimensional gauge theory. Hence 

in this extreme limit each lattice site is "neutral." However the results 

, of the blocking procedure with arbitrary coupling strength have not yet been 

found. Presumably if there is a qualitative difference between non-abelian 

gauge theories to which we look for an explanation of quark confinement, and _ 

these non-gauge models, it will be that for the gauge theories whenever g # 0 

we will lose the simple multiplicative renormalization procedure and, with 

it, propagating free fermion (quark) states. 

This is where our program now stands. Having also shown that the itera- 

tive renormalization group techniques that I have been describing in this 

lecture satisfy Coleman's theorem 39 by not predicting false Goldstone bosons 

in lx-lt dimensions, 40 we are finally ready to tackle gauge theories in 

higher dimensions. 


